Skip to main content
Log in

Elliptic balance solution of two-degree-of-freedom, undamped, forced systems with cubic nonlinearity

  • Original Article
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The solution of a system of two coupled, nonhomogeneous undamped, ordinary differential equations with cubic nonlinearity and sinusoidal driving force is obtained by the use of Jacobian elliptic functions and the elliptic balance method. To assess the accuracy of our proposed solution, we consider an example that arises in the study of the finite amplitude, nonlinear vibration of a simple shear suspension system. It is shown that the analytical results exhibit good agreement with the numerical integration solutions even for moderate values of the system parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Elías-Zúñiga, A., Beatty, M.F.: On the application of the elliptic balance method to two degree of freedom, undamped, homogeneous systems having cubic nonlinearities. nonlinearities. J. Sound Vib Submitted for publication

  2. Hsu, C.S.: On the application of elliptic functions in nonlinear forced oscillations. Q. Appl. Math. 17, 393–407 (1960)

    MATH  Google Scholar 

  3. Iwan, W.D.: On defining equivalent systems for certain ordinary nonlinear differential equations. Int. J. Non-linear Mech. 4, 325–334 (1969)

    Article  MATH  Google Scholar 

  4. Hsu, C.S.: Some simple exact periodic responses for a nonlinear system under parametric excitation. J. Appl. Mech. 1135–1137 (1974)

  5. Elías-Zúñiga, A., Beatty, M.F.: Método de Balanceo Elíptico Aplicado a la solución de la ecuación amortiguada de duffing con término forzante de tipo elíptico. avances en ingeniería mecánica. memoria del 1er congreso internacional de ingeniería electromecánica y de systemas, IPN México D.F., pp. 228–234 (1996)

  6. Detinko, F.M.: Applications of Jacobian elliptic functions to the analysis of forced vibrations of a nonlinear conservative system. Mech. Solids 31, 5–8 (1996)

    Google Scholar 

  7. Barkham, P.G., Soudack, A.C.: An extension to the method of Kryloff and Bogoliuboff. Int. J. Control 10, 377–392 (1969)

    MATH  MathSciNet  Google Scholar 

  8. Soudack, A.C., Barkham, P.G.: On the transient solution of the unforced Duffing equation with large damping. Int. J. Control 13, 767–769 (1971)

    MATH  Google Scholar 

  9. Christopher, P.A.: An approximate solution to a strongly nonlinear, second order, differential equation. Int. J. Control 17, 597–608 (1973)

    MATH  Google Scholar 

  10. Christopher, P.A., Brocklehurst, A.: A generalized form of an approximate solution to a strongly nonlinear, second order, differential equation. Int. J. Control 19, 831–839 (1974)

    MATH  Google Scholar 

  11. Yuste, S.B., Bejarano, J.D.: Construction of approximate analytical solutions to a new class of nonlinear oscillator equations. J. Sound Vib. 110, 347–350 (1986)

    Article  Google Scholar 

  12. Yuste, S.B., Bejarano, J.D.: Amplitude decay of damped nonlinear oscillators studied with Jacobian elliptic functions. J. Sound Vib. 114, 33–44 (1987)

    Google Scholar 

  13. Yuste, S.B., Bejarano, J.D.: Extension and improvement to the Krylov–Bogoliubov methods using elliptic functions. Int. J. Control 49, 1127–1141 (1989)

    MATH  Google Scholar 

  14. Bejarano, J.D., Margallo, J.G.: Stability of limit cycles and bifurcations of generalized van der Pol oscillators: X+AX-2BX3+ε (z3+z2X2+z1X4)x=0. Int. J. Nonlinear Mech. 25, 663–675 (1990)

    Article  MATH  Google Scholar 

  15. Coppola, T., Rand, R.H.: Averaging using elliptic functions: Approximation of limit cycles. Acta Mech. 81, 125–142 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  16. Bravo Yuste, S., Diaz Bejarano, J.: Improvement of a Krylov–Bogoliubov method that uses Jacobi elliptic functions. J. Sound Vib. 139, 151–163 (1990)

    Article  MathSciNet  Google Scholar 

  17. Yuste, S.B.: Comments on the method of harmonic balance in which Jacobi elliptic functions are used. J. Sound Vib. 145, 381–390 (1991)

    Article  Google Scholar 

  18. Yuste, S.B.: Quasi-pure-cubic oscillators studied using a Krylov–Bogoliubov method. J. Sound Vib. 158, 267–275 (1992)

    Article  MATH  Google Scholar 

  19. Yuste, S.B.: Cubication of non-linear oscillators using the principle of harmonic balance. Int. J. Nonlinear Mech. 27, 347–356 (1992)

    Article  MATH  Google Scholar 

  20. Chen, S.H., Cheung, Y.K.: An elliptic perturbation method for certain strongly non-linear oscillators. J. Sound Vib. 192, 453–464 (1996)

    Article  MathSciNet  Google Scholar 

  21. Chen, S.H., Cheung, Y.K.: An elliptic Lindstedt–Poincaré method for analysis of certain strongly non-linear oscillators. Nonlinear Dyn. 12, 199–213 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  22. Chen, S.H., Yang, X.M., Cheung, Y.K.: Periodic solutions of strongly quadratic non-linear oscillators by the elliptic perturbation method. J. Sound Vib. 212, 771–780 (1998)

    Article  MathSciNet  Google Scholar 

  23. Cveticanin, L.: Analytical methods for solving strongly non-linear differential equations. J. Sound Vib. 214, 325–338 (1998)

    Article  MathSciNet  Google Scholar 

  24. Bejarano, J.D., García-Mergallo: The greatest number of limit cycles of the generalized Rayleigh-Lienard oscillator. J. Sound Vib. 221, 133–142 (1999)

    Article  Google Scholar 

  25. Chen, S.H., Yang, X.M.: Periodic solutions of strongly quadratic non-linear oscillators by the elliptic Lindstedt–Poincaré method. J. Sound Vib. 227, 1109–1118 (1999)

    Article  MathSciNet  Google Scholar 

  26. Beatty, M.F.: Stability of a body supported by a simple vehicular shear suspension system. Int. J. Nonlinear Mech. 24, 65–77 (1989)

    Article  MATH  Google Scholar 

  27. Elías-Zúñiga, A., Beatty, M.F.: Forced vibrations of a body supported by hyperelastic shear mountings. Mech. Res. Commun. 28, 429–446 (2001)

    Article  Google Scholar 

  28. Elías-Zúñiga, A.: Absorber control of the finite amplitude nonlinear vibrations of a simple shear suspension system. Ph.D. Dissertation, University of Nebraska – Lincoln, Lincoln NE (1994)

  29. Meirovitch, L.: Elements of Vibration Analysis. McGraw-Hill, New York (1986)

    Google Scholar 

  30. Stoker, J.J.: Non-Linear Vibrations in Mechanical and Electrical Systems. Wiley, New York (1950)

    Google Scholar 

  31. Hayashi, C.: Nonlinear Oscillation in Physical Systems. Princeton University Press, Princeton, NJ (1964)

    Google Scholar 

  32. Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley, New York (1979)

    MATH  Google Scholar 

  33. Sanders, J.A., Verhulst, F.: Averaging Methods in Nonlinear Dynamical Systems. Springer, New York (1985)

    MATH  Google Scholar 

  34. Byrd, P.F., Friedman, M.D.: Handbook of Elliptic Integrals for Engineers and Physicists. Springer, Berlin (1953)

    Google Scholar 

  35. Szemplińska-Stupnicka, W.: The Behavior of Nonlinear Vibrating Systems, Vol. I. Kluwer, Dordrecht, The Netherlands (1990)

    Google Scholar 

  36. Szemplińska-Stupnicka, W.: The Behavior of Nonlinear Vibrating Systems, Vol. II. Kluwer, Dordrecht, The Netherlands (1990)

    Google Scholar 

  37. Mickens, R.E.: Comments on the method of harmonic balance. J. Sound Vib. 94, 456–460 (1984)

    Article  MathSciNet  Google Scholar 

  38. Mickens, R.E.: A generalization of the method of harmonic balance. J. Sound Vib. 111, 515–518 (1986)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alex Elías-zúñiga.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elías-zúñiga, A., Beatty, M.F. Elliptic balance solution of two-degree-of-freedom, undamped, forced systems with cubic nonlinearity. Nonlinear Dyn 49, 151–161 (2007). https://doi.org/10.1007/s11071-006-9119-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-006-9119-8

Keywords

Navigation