Skip to main content
Log in

Well-posedness and longtime behaviour of a coupled nonlinear system modeling a suspension bridge

  • Advances in Dynamics, Stability and Control of Mechanical Systems
  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

In this paper we discuss the well-posedness and the asymptotic behavior of a doubly nonlinear problem describing the vibrations of a Kelvin–Voigt string–beam system which models a suspension bridge. For this model we obtain the existence and uniqueness of solutions and the exponential stability of the homogeneous system, provided that the constant axial force \(p\) is smaller than a critical value. For a general \(p,\) the existence of the regular global attractor is proved when the external loads are independent of time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Abdel-Ghaffar AM, Rubin LI (1983) Non linear free vibrations of suspension bridges: theory. ASCE J Eng Mech 109:313–329

    Article  Google Scholar 

  2. Abdel-Ghaffar AM, Rubin LI (1983) Non linear free vibrations of suspension bridges: application. ASCE J Eng Mech 109:330–345

    Article  Google Scholar 

  3. Ahmed NU, Harbi H (1998) Mathematical analysis of dynamic models of suspension bridges. SIAM J Appl Math 109:853–874

    MathSciNet  Google Scholar 

  4. Babin AV, Vishik MI (1992) Attractors of evolution equations. North-Holland, Amsterdam

    MATH  Google Scholar 

  5. Bochicchio I, Giorgi C, Vuk E (2010) Long-term damped dynamics of the extensible suspension bridge. Int J Differ Equ. doi:10.1155/2010/3834202010

  6. Bochicchio I, Giorgi C, Vuk E (2010) On some nonlinear models for suspension bridges. In: Andreucci D, Carillo S, Fabrizio M, Loreti P, Sforza D (eds) Proceedings of the conference “Evolution Equations and Materials with Memory Proceedings”, “La Sapienza” Università di Roma 2011, Rome, 12–14 July 2010. ISBN 978-88-95814-51-3

  7. Bochicchio I, Giorgi C, Vuk E (2012) Long-term dynamics of the coupled suspension bridge system. Math Models Methods Appl Sci 22:1250021. doi:10.1142/S02182025125002122012

  8. Bochicchio I, Giorgi C, Vuk E (2013) Asymptotic dynamics of nonlinear coupled suspension bridge equations. J Math Anal Appl 402:319–333. doi:10.1016/j.jmaa.2013.01.036

    Article  MATH  MathSciNet  Google Scholar 

  9. Choi QH, Jung T (1999) A nonlinear suspension bridge equation with nonconstant load. Nonlinear Anal 35:649–668

    Article  MATH  MathSciNet  Google Scholar 

  10. Conti M, Pata V (2005) Weakly dissipative semilinear equations of viscoelasticity. Commun Pure Appl Anal 4:705–720

    Article  MATH  MathSciNet  Google Scholar 

  11. Conti M, Pata V, Squassina M (2006) Singular limit of differential systems with memory. Indiana Univ Math J 55:169–216

    Article  MATH  MathSciNet  Google Scholar 

  12. Drábek P, Holubová G, Matas A, Nečesal P (2003) Nonlinear models of suspension bridges: discussion of the results. Appl Math 48:497–514

    Article  MATH  MathSciNet  Google Scholar 

  13. Giorgi C, Pata V, Vuk E (2008) On the extensible viscoelastic beam. Nonlinearity 21:713–733

    Article  ADS  MATH  MathSciNet  Google Scholar 

  14. Hale JK (1988) Asymptotic behavior of dissipative systems. American Mathematical Society, Providence

    MATH  Google Scholar 

  15. McKenna PJ, Walter W (1987) Nonlinear oscillations in a suspension bridge. Arch Ration Mech Anal 98:167–177

    Article  MATH  MathSciNet  Google Scholar 

  16. Pata V, Prouse G, Vishik MI (1998) Traveling waves of dissipative nonautonomous hyperbolic equations in a strip. Adv Methods Differ Equ 3:249–270

    MATH  MathSciNet  Google Scholar 

  17. Temam R (1997) Infinite-dimensional dynamical systems in mechanics and physics. Springer, New York

    Book  MATH  Google Scholar 

  18. Zhong C, Ma Q, Sun C (2007) Existence of strong solutions and global attractors for the suspension bridge equations. Nonlinear Anal 67:442–454

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivana Bochicchio.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bochicchio, I., Giorgi, C. & Vuk, E. Well-posedness and longtime behaviour of a coupled nonlinear system modeling a suspension bridge. Meccanica 50, 665–673 (2015). https://doi.org/10.1007/s11012-014-9996-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-014-9996-8

Keywords

Mathematics Subject Classification

Navigation