Skip to main content
Log in

The capture into parametric autoresonance

  • Original Article
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this work, we show that the capture into parametric resonance may be explained as pitchfork bifurcation in the primary parametric resonance equation. We prove that the solution close to the moment of the capture is descibed by the Painlevé-2 equation. We obtain connection formulae for the asymptotic solution of the primary parametric resonance equation before and after the capture using the matching of asymptotic expansions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chirikov, B.V.: Passage of nonlinear oscillatory system through resonance. Sov. Phy. Dokl. 4, 390–394 (1959)

    MathSciNet  Google Scholar 

  2. Neishtadt, A.I.: Passage through a separatrix in a resonance problem with a slowly-varying parameter. Prikladnaya Mat. i Mekhanika 39, 621–632 (1975) (Journal of Applied Mathematics and Mechanics 39, 594–605 (1975))

    MathSciNet  Google Scholar 

  3. Itin, A.P., Neishtadt, A.I., Vasiliev, A. A.: Captures into resonance and scattering on resonance in dynamics of a charged relativistic particle in magnetic field and electrostatic wave' Physica D 141, 281–296 (2000)

    Article  MathSciNet  Google Scholar 

  4. Veksler, V.I.: A new method of acceleration of relativistic particles. Journal of Physics USSR 9, 153–158 (1945)

    Google Scholar 

  5. McMillan, E.M.: The synchrotron — a proposed high energy particle accelerator. Physics Review 68, 143–144 (1945)

    Article  Google Scholar 

  6. Friedland, L.: From the pendulum to Rydberg accelerator and planetary dynamics: Autoresonant formation and control of nonlinear states. In: Proceedings of the Symposium: PhysCon2005, St. Petersburg, Russia, (2005)

  7. Kalyakin, L.A.: Asymptotics for the solutions of the principal resonance equations. Teoreticheskaya i Matematicheskaya Fizika 137, 142–152 (2003)

    MathSciNet  Google Scholar 

  8. Glebov, S.G., Kiselev, O.M.: Applicability of the WKB method in the perturbation problem for the equation of principal resonance. Russ. J. Math. Phys. 9(1), 60–83 (2002)

    MathSciNet  Google Scholar 

  9. Kiselev, O.M., Glebov, S.G.: An asymptotic solution slowly crossing the separatrix near a saddle-centre bifurcation point. Nonlinearity 16, 327–362 (2003)

    Article  MathSciNet  Google Scholar 

  10. Kiselev, O.M.: Hard loss of stability in Painlevé-2 equation. J. Nonlinear Math. Phys. 8(1), 65–95 (2001)

    MathSciNet  Google Scholar 

  11. Floquet, Annales de l'Ecole normale superiore, XII(2), 47 (1883)

    MathSciNet  Google Scholar 

  12. Bogolyubov, N.N., Mitropolskii, Yu. A.: Asymptotic Methods in the Theory of Non-Linear Oscillations, Gordon and Breach, New York (1961)

    MATH  Google Scholar 

  13. Fajans, J., Gilson, E., Friedland, L.: Second harmonic autoresonance control of the l = 1 diocotron mode in pure electron plasmas. Phys. Rev. E 62, 4131–4136 (2000)

    Article  Google Scholar 

  14. Khain, E., Meerson, B.: Parametric autoresonance. Phys. Rev. E 64, 036619 (2001)

    Article  Google Scholar 

  15. Asaf, M., Meerson, B.: Parametric autoresonance of Faraday waves. ArXiv:Physics/0506026, (3 June 2005)

  16. Haberman, R.: Slowly varying jump and transition phenomena associated with algebraic bifurcation problem. SIAM J. App. Math. 37, 69–109 (1979)

    Article  MathSciNet  Google Scholar 

  17. Maree, G.J.M.: Slow passage through a pitchfork bifurcation', SIAM Journal of Applied Mathematics, 56, 889–918 (1996)

    Article  MathSciNet  Google Scholar 

  18. Haberman, R.: Slow passage through the nonhyperbolic homoclinic orbit associated with a subcritical pitchfork bifurcation for hamiltonian systems and the change the action. SIAM J. App. Math. 62(2), 488–513 (2001)

    Article  MathSciNet  Google Scholar 

  19. Guckenheimer, J., Mahalov, A.: Instability inducted by symmetry reduction. Phy. Rev. Lett. 68, 225–2260 (1992)

    MathSciNet  Google Scholar 

  20. Its, A.R., Fokas, A.S., Kapaev, A.A.: On the asymptotic analysis of the Painlevé equations via the isomonodromy method. Nonlinearity 7, 1291–1325 (1994)

    Article  MathSciNet  Google Scholar 

  21. Belogrudov, A.N.: Ob asimptotike vyrozhdennogo resheniya vtorogo uravneniya Painlevé. Differencial'nye Uravneniya 33(5), 587–594 (1997)

    MathSciNet  Google Scholar 

  22. Il'in, A.M.: Matching of asymptotic expansions of solutions of boundary value problems. Transl. of Mathematical Monographs, V. 102, AMS, Providence, Rhode Island (1992), 281 p

  23. Flaschka, H., Newell, A.C.: Monodromy and spectrum preserving deformations. Commun. Math. Phys. 76, 65–116 (1980)

    Article  MathSciNet  Google Scholar 

  24. Its, A.R., Novokshenov, V. Yu.: The isomonodromic deformation method in the theory of Painlevé equations. In: Lecture Notes in Mathematics, Vol. 1191, Springer-Verlag, Berlin, (1986)

    Google Scholar 

  25. Vainstein, D.L., Zelenyi, L.M., Neishtadt, A.I., Savenkov, B.V.: Jumps of adiabatic invariant for small initial values. Plasma Phys. 25, 333–337 (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. M. Kiselev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kiselev, O.M., Glebov, S.G. The capture into parametric autoresonance. Nonlinear Dyn 48, 217–230 (2007). https://doi.org/10.1007/s11071-006-9084-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-006-9084-2

Keywords

Navigation