Skip to main content

Advertisement

Log in

Reconstruction of extreme floods and tsunamis from coastal sedimentary archives in Los Choros, Coquimbo region, 28°S, Chile

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

This study used sedimentary archives obtained from a high-standing terrace along the coastal zone of the Coquimbo region to reconstruct past extreme events (floods and tsunamis). Using sedimentological (grain size), geochemical (XRF), and geochronological (14C and 137Cs) analyses, we identified nine flood deposits (1957, 1965, 1984, 1987, 1991, 1997, 2002, 2015, and 2017) and one tsunami deposit (1922). The sedimentary flood record appears complete for the last 70 years and is useful for reconstructing paleoflood events, highlighting the relevance of coastal high-standing terraces to improve our understanding of the frequency of floods in Chilean coastal areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Aceituno PE (1992) Niño, the Southern Oscillation, and ENSO: confusing names for a complex ocean–atmosphere interaction. Bull Am Meteor 73:483–485

    Article  Google Scholar 

  • Aguilar G, Cabré A, Fredes V, Villela B (2020) Erosion after an extreme storm event in an arid fluvial system of the southern Atacama Desert: an assessment of the magnitude, return time, and conditioning factors of erosion and debris flow generation. Nat Hazards Earth Syst Sci. https://doi.org/10.5194/nhess-20-1247-2020

  • Aguirre E (1924) Informe presentado por el Ingeniero don Ernesto Aguirre sobre los materiales y los procedimientos de construcción en la región afectada por el terremoto del 10 de noviembre de 1922. In: Anales de la Universidad de Chile

  • Aiguo D, Wigley TML (2000) Global patterns of ENSO-induced precipitation. Geophys Res Lett 27:1283–1286. https://doi.org/10.1029/1999GL011140

    Article  Google Scholar 

  • Araya K, Muñoz P, Dezileau L, Maldonado A, Campos-Caba R, Rebolledo L, Salamanca M (2022) Extreme sea surges, tsunamis and pluvial flooding events during the last ~1000 years in the semi-arid wetland. Coquimbo Chile Geosci 12:135. https://doi.org/10.3390/geosciences12030135

    Article  Google Scholar 

  • Araya-Vergara JF (1979) Las Incidencias Cataclismáticas de las Bravezas en la Evolución de la Costa de Chile Central. Departamento de Geografía, Universidad de Chile. Revista Informaciones Geográficas. Universidad de Chile. Santiago, Chile, pp 19–42

  • Araya–Vergara JF (1982) Análisis de la localización de los procesos y formas predominantes de la línea litoral de Chile: Observación Preliminar. Revista Informaciones Geográficas. N°29. Universidad de Chile. Santiago

  • Araya-Vergara JF (1983) Influencias Morfogenéticas de los Desalineamientos y líneas de costa contrapuestas en el litoral de Chile central. Revista Informaciones Geográficas. Universidad de Chile, Santiago

    Book  Google Scholar 

  • Atwater BF (1987) Evidence for great holocene earthquakes along the outer coast of Washington state. Science 236:942–944

    Article  CAS  Google Scholar 

  • Barrett BS, Campos DA, Veloso JV, Rondanelli R (2016) Extreme temperature and 686 precipitation events in March 2015 in central and northern Chile. J Geophys Res Atmos. https://doi.org/10.1002/2016JD024835

    Article  Google Scholar 

  • Beck S, Barrientos S, Kausel E, Reyes M (1998) Source characteristics of historic earthquakes along the central Chile subduction zone. J S Am Earth Sci 11:115–129. https://doi.org/10.1016/S0895-9811(98)00005-4

    Article  Google Scholar 

  • Blanco JL, Carr M-E, Thomas A, Strub PT (2002) Hydrographic conditions off of northern Chile during the 1996–1998 La Niña and El Niño. J Geophys Res 107:3017. https://doi.org/10.1029/2001JC001002

    Article  Google Scholar 

  • Blott SJ, Pye K (2001) GRADISTAT: a grain size distribution and statistics package for the analysis of unconsolidated sediments. Earth Surf Process Landforms 26:1237–1248. https://doi.org/10.1002/esp.261

    Article  Google Scholar 

  • Börgel R (1983) Geografía de Chile. Geomorfología. Instituto Geográfico Militar, Santiago, 182

  • Bozkurt D, Rondanelli R, Garreaud R, Arriagada A (2016) Impact of warmer eastern tropical pacific SST on the March 2015 Atacama Floods. Monthly Weather Rev 144:4441–4460

    Article  Google Scholar 

  • Campos J, Hatzfeld D, Madariaga R, Lopez G, Kausel E, Zollo A, Iannacone G, Fromm R, Barrientos S, Lyon-Caen H (2002) A seismological study of the 1835 seismic gap in south-central Chile. Phys Earth Planet 132:177–195

    Article  Google Scholar 

  • Carvajal M, Cisternas M, Gubler A, Catalán PA, Winckler P, Wesson RL (2017) Reexamination of the magnitudes for the 1906 and 1922 Chilean earthquakes using Japanese tsunami amplitudes: implications for source depth constraints. J Geophys Res Solid Earth 122:4–17. https://doi.org/10.1002/2016JB013269

    Article  Google Scholar 

  • Castro C, Brignardello L (2005) Geomorfología aplicada a la ordenación territorial de litorales arenosos. Orientaciones para la protección, usos y aprovechamiento sustentables del sector de Los Choros, comuna de La Higuera, IV Región. Revista De Geografia Norte Grande 33:33–58

    Google Scholar 

  • Ceresis (1985) Centro Regional de Sismología para América del Sur. Catálogo de Terremotos para América del Sur; Lima, Perú, p 12

  • Chagué-Goff C (2010) Chemical signatures of palaeotsunamis: a forgotten proxy? Mar Geol 271:67–71. https://doi.org/10.1016/j.margeo.2010.01.010

    Article  CAS  Google Scholar 

  • Chaumillon E, Bertin X, Fortunato AB, Bajo M, Schneider J-L, Dezileau L, Walsh JP, Michelot A, Chauveau E, Créach A (2017) Storm-induced marine flooding: lessons from a multidisciplinary approach. Earth-Sci Rev 165:151–184. https://doi.org/10.1016/j.earscirev.2016.12.005

    Article  Google Scholar 

  • Cisternas M, Torrejan F, Gorigoitia NS (2012) Amending and complicating Chile’s seismic catalog with the Santiago earthquake of 7 August 1580. J S Am Earth Sci 33:102–109

    Article  Google Scholar 

  • Curtis S, Adler R (2000) ENSO indices based on patterns of satellite derived precipitation. J Clim 13:2786–2793

    Article  Google Scholar 

  • Curtis S, Adler R (2003) Evolution of El Niño-precipitation relationships from satellites and gauges. J Geophys Res 108(D4):4153. https://doi.org/10.1029/2002JD002690

    Article  Google Scholar 

  • DeMets C, Gordon RG, Argus DF, Stein S (1994) Effect of recent revisions to the geomagnetic reversal time scale on estimates of current plate motions. Geophys Res Lett 21:2191–2194. https://doi.org/10.1029/94GL02118.17

    Article  Google Scholar 

  • DePaolis JM, Dura T, MacInnes B, Lisa LE, Cisternas M, Carvajal M, Tang H, Fritz HM, Mizobe C, Wesson RL et al (2021) Stratigraphic evidence of two historical tsunamis on the semi-arid coast of north-central Chile. Quat Sci Rev 226:1070252. https://doi.org/10.1016/j.quascirev.2021.107052

    Article  Google Scholar 

  • Dezileau L, Terrier B, Berger JF, Blanchemanche P, Latapie A, Freydier R, Paquier A, Lang M, Delgado JL (2014) Reconstrucción paleohidrológica de inundaciones extremas del río Gardon, SE France, La Houille Blanche. Radiocarbon 100(4):44–52. https://doi.org/10.1051/lhb/2014037

    Article  Google Scholar 

  • Dezileau L, Lehu R, Lallemand S, Hsu S-K, Babonneau N, Ratzov G, Lin A, Dominguez S (2016) Historical reconstruction of submarine earthquakes using Pb-210, Cs-137, and Am-241 turbidite chronology and radiocarbon reservoir age estimation off East Taiwan. Radiocarbon 58:25–36

    Article  CAS  Google Scholar 

  • Dezileau L, Bordelais S, Condomines M, Bouchette F, Briqueu L (2015) Evolution des Lagunes du Golfe d’Aigues-Mortes à Partir de l’Étude de Carottes Sédimentaires Courtes (Étude Géochronologique, Sédimentologique et Géochimique des Sédiments Récents); Publications ASF: Paris, France, 51, 91

  • DAMDN (1964) Dirección de Aeronáutica. Ministerio de Defensa Nacional. Fuerza aérea de Chile. Oficina Meteorológica de Chile. Anuario Meteorológico de Chile 1957. Library Weather Bureau. Visite 22/03/2022 https://climatologia.meteochile.gob.cl/application/publicaciones/documentoPdf/anuario/anuario-1957.pdf

  • Donnelly JP, Bryant SS, Butler J, Dowling J, Fan L, Hausmann N, Newby P, Shuman B, Stern J, Westover K, Webb T (2001) 700 yr sedimentary record of intense hurricane landfalls in southern New England. Geol Soc Am Bull 113:714–727

    Article  Google Scholar 

  • Duganan SP, Turner ET (2004) Regional paleohydrologic and paleoclimatic settings of wetland/lacustrine depositional systems in the Morrison Formation (Upper Jurassic), Western Interior, USA. Sediment Geol 167:269–294. https://doi.org/10.1016/j.sedgeo.2004.01.007

    Article  CAS  Google Scholar 

  • Dunbar PK, Lockridge PA, Whiteside LS (1992) Catalogue of Significant Earthquakes 2150 B.C.-1991 A.D.; World Data Center A for Solid Earth Geophysics Reports; U. S. Dept. of Commerce, NOAA, National Geophysical Data Center: Boulder, CO, USA, 320

  • Eglitis L (n.d.) Laenderdaten.info.: https://www.laenderdaten.info/naturkatastrophen.php. Accessed 15 juin 2020

  • Freytet P, Plaziat JC (1982) Continental Carbonate Sedimentation and Pedogenesis—Late Cretaceous and Early Tertiary of Southern France E. Schweizerbart’sche Verlagsbuchhandlung (Nagel u. Obermiller), Germany

  • Fuenzalida HA, Sánchez R, Garreaud RD (2005) A climatology of cutoff lows in the Southern Hemisphere. J Geophys Res. https://doi.org/10.1029/2005JD005934

    Article  Google Scholar 

  • Garreaud RD, Fuenzalida HA (2007) The influence of the Andes on Cutoff Lows: a modeling study. Mon Weather Rev 135:1596–1613

    Article  Google Scholar 

  • Jordan TE, Herrera C, Godfrey LV, Colucci SJ, Gamboa C, Urrutia J, González G, Paul JF (2019) Isotopic characteristics and paleoclimate implications of the extreme rain event of March 2015 in northern Chile. Andean Geol 46:2019

    Google Scholar 

  • Kanamori H, Rivera L, Ye L, Lay T, Murotani S, Tsumura K (2019) New constraints on the 1922 Atacama, Chile, earthquake from Historical seismograms. Geophys J Int 219:645–661. https://doi.org/10.1093/gji/ggz302

    Article  Google Scholar 

  • Kellehier JA (1972) Rupture zones of large South American eartquakes and some predictions. J Geophys Res 11:2087–2103. https://doi.org/10.1029/JB077i011p02087

    Article  Google Scholar 

  • Khalfaoui O, Dezileau L, Degeai JP, Snoussi M (2020) A late Holocene record of marine high-energy events along the Atlantic coast of Morocco: new evidences from the Tahaddart estuary. Geoenviron Disasters 7:31. https://doi.org/10.1186/s40677-020-00169-5

    Article  Google Scholar 

  • León T, Lau AYA, Easton G, Goff J (2023) A comprehensive review of tsunami and palaeotsunami research in Chile. Earth-Sci Rev. https://doi.org/10.1016/j.earscirev.2022.104273

    Article  Google Scholar 

  • Li L, Switzer AD, Wand Y, Chan C-H, Qiu Q, Weiss R (2018) A modest 0.5-m rise in sea level will double the tsunami. Sci Adv 4:8. https://doi.org/10.1126/sciadv.aat1180

    Article  Google Scholar 

  • Liu K, Fearn M (1993) Lake-sediment record of Late Holocene hurricane activities from coastal Alabama. Geology 21:793–796. https://doi.org/10.1130/0091-7613(1993)0212.3.CO;2

    Article  Google Scholar 

  • Liu K, Fearn L (2000) Reconstruction of prehistoric landfall frequencies of catastrophic hurricanes in NW Florida from lake sediment records. Quart Res 54:238–245. https://doi.org/10.1006/qres.2000.2166

    Article  Google Scholar 

  • Liu Y, Cobb KM, Song H, Li Q, Li CY, Nakatsuka T, An Z, Zhou W, Cai Q, Li J, Leavitt SW, Sun C, Mei R, Shen CC, Chan MH, Sun J, Yan L, Lei Y, Ma Y, Li X, Chen D, Linderholm HW (2017) Recent enhancement of central Pacific El Niño variability relative to last eight centuries. Nat Commun 30:8. https://doi.org/10.1038/ncomms15386

    Article  CAS  Google Scholar 

  • Lockridge PA (1985) Tsunamis in Peru-Chile. In: World data center a for solid earth geophysics; National Geophysical Data Center: Boulder, CO, USA; Report SE-39, 97

  • Lomnitz C (1970) Major earthquakes and tsunamis in Chile during the period 1535 to 1955. Geol Rundsch 59:938–960. https://doi.org/10.1007/BF02042278

    Article  Google Scholar 

  • Lomnitz C (2004) Major earthquakes of Chile: a historical survey, 1535–1960. Seismol Res Lett 75:368–378. https://doi.org/10.1785/gssrl.75.3.368

    Article  Google Scholar 

  • May S, Pint A, Rixhon G, Kelletat D, Wennrich V, Brückner H (2013) Holocene coastal stratigraphy, coastal changes and potential palaeoseismological implications inferred from geo-archives in Central Chile (29–32 °S). Z Für Geomorphol Suppl Issues 57:201–228. https://doi.org/10.1127/0372-8854/2013/S-00154

    Article  Google Scholar 

  • Métois M, Vigny C, Socquet A, Delorme A, Morvan S, Ortega I, Valderas- Bermejo CM (2013) GPS-derived interseismic coupling on the subduction and seismic hazards in the Atacama region, Chile. Geophys J Int 196:644–655. https://doi.org/10.1093/gji/ggt418

    Article  Google Scholar 

  • Monecke K, Anselmetti FS, Becker A, Schnellmann M, Sturm M, Giardini D (2006) Earthquake-induced deformation structures in lake deposits: a late pleistocene to holocene paleoseismic record for Central Switzerland. Eclogae Geol Helv 99:343–362. https://doi.org/10.1007/s00015-006-1193-x

    Article  Google Scholar 

  • Monecke K, Finger W, Klarer D, Kongko W, McAdoo BG, Moore AL, Sudrajat SU (2008) A 1,000-year sediment record of tsunami recurrence in northern Sumatra. Nature 455:1232–1234

    Article  CAS  Google Scholar 

  • Moscoso R, Nasi C, Salinas P (1982) Carta Geológica de Chile. Hoja De Vallenar y Parte Norte de La Serena. 1:250.000. Sernageomin 55. Santiago, Chile

  • Nanayama F, Satake K, Furukawa R, Shimokawa K, Atwater BF, Shigeno K, Yamaki S (2003) Unusually large earthquakes inferred from tsunami deposits along the Kuril trench. Nature 424:660–663. https://doi.org/10.1038/nature01864

    Article  CAS  Google Scholar 

  • NCEI/WDS (2020) National Geophysical Data Center/World Data Service: Global Historical Tsunami Database; NOAA National Centers for Environmental Information: Stennis Space Center, MI, USA. https://doi.org/10.7289/V5PN93H7

  • NGDC. National Geophysical Data Center/ World Data service: NCEI/WDS Global historical Tsunami Database. NOAA National Centers for Environmental Information. https://www.ngdc.noaa.gov/hazel/view/hazards/tsunami/event-data?regionCode=89&country=CHILE. Accessed 20 June 2020

  • Nieto R, Gimeno L, De la Torre L, Ribera P, Barriopedro D, Garcia-Herrera L, Serrano A, Gordillo A, Redaño A, Lorente J (2006) Interannual variability of cut-off low systems over the European sector: the role of blocking and the Northern Hemisphere circulation modes. Meteorol Atmos Phys 96:85–101. https://doi.org/10.1007/s00703-006-0222-7

    Article  Google Scholar 

  • CIIFEN (2017) El Niño 2015–16: evolution, vulnerability and impacts in Latin America, pp 1–38 https://www.researchgate.net/publication/321724092_El_Nino_2015-16_evolucion_vulnerabilidad_e_impactos_en_Latinoamerica

  • Nishenko SP (1985) Seismic potential for large and great interplate earthquakes along the Chilean and Southern Peruvian margins of South America: a quantitative reappraisal. J Geophys 90:3589–3615

    Article  Google Scholar 

  • Novoa J, López D (2001) CAPÍTULO 2 - IV REGIÓN: EL ESCENARIO GEOGRÁFICO FÍSICO. Libro Rojo de la Flora Nativa y de los Sitios Prioritarios para su Conservación: Región de Coquimbo (F.A. Squeo, G. Arancio y J.R. Gutiérrez, Eds.). Ediciones Universidad de La Serena

  • Ocampo T (2015) Analisis de la geormorfologia y sedimentología de la Quebrada Los Choros, regiones de Atacama y Coquimbo, Chile (29°09’ y 29°33’S). Memoria para optar al título de Geologa. Facultad de Ciencias Físicas y Matemticas. Universidad de Chile. Santiago, Chile

  • Ortega C, Vargas G, Rutllant J, Jackson D, Méndez C (2012) Major hydrological regime change along the semiarid western coast of South America during the Early Holocene. Quat Res 78:513–527

    Article  Google Scholar 

  • Ortega C, Vargas G, Rutllant J (2013) Major hydrological regime change along the semiarid western coast of South America during the Early Holocene—response to comments by Maldonado and Moreiras. Quat Res 80:140–142

    Article  Google Scholar 

  • Ortega C, Vargas G, Rojas M, Rutllant J, Muñoz P, Lange CB, Pantoja S, Dezileau L, Ortlieb L (2019) Extreme ENSO-driven torrential rainfalls at the southern edge of the Atacama Desert during the late Holocene and their projection into the 21th century. Global Planet Change. https://doi.org/10.1016/j.gloplacha.2019.02.011

    Article  Google Scholar 

  • Ortlieb L (1995) Eventos El niño y episodios lluviosos en el desierto de Atacama: El registro de los últimos dos siglos. El niño events rainfall episodes in the Atacama desert: the record of the last two centuries. Bull Inst Fr Études Andines 2:519–537

    Google Scholar 

  • Paskoff R (1999) Contribuciones recientes al conocimiento del cuaternario marino del centro y norte de Chile. Revista De Geografía, Norte Grande 26:43–575

    Google Scholar 

  • Pedoja K, Husson L, Johnson ME, Melnick D, Witt C, Pochat S, Nexer M, Delcaillau B, Pinegina T, Poprawski Y, Authemayou C, Elliot M, Regard V, Garestier F (2014) Coastal staircase sequences reflecting sea-level oscillations and tectonic up-lift during the Quaternary and Neogene. Earth-Sci Rev 132:13–38

    Article  Google Scholar 

  • Peralta F, Díaz G, Wood G (1971) Hidrogeología de la Quebrada de Los Choros: informe preliminar. CORFO, de mapas plegables

  • Pérez C (2005) Cambio Climático: Vulnerabilidad, Adaptación y Rol Institucional. Estudio de Casos en el Valle de Elqui. Memoria para Optar al Título de Ingeniero Civil Ambiental; Facultad de Ingeniería, Universidad de La Serena: La Serena, Chile

  • Pérez C, Fiebig-Wittmaack M, Cepeda J, Pizarro-Araya J (2008) Desastres Naturales y plagas en el valle del río Elqui (Natural disasters and population outbreaks in the Elqui River valley. Los sistemas naturales de la cuenca del río Elqui (Región de Coquimbo, Chile): Vulnerabilidad y cambio del clima. CEPEDA PJ. Ediciones Universidad de La Serena, La Serena, Chile, pp 295–333

  • Pfeiffer M, Morgan A, Heimsath A, Jordan T, Howard A, Amundson R (2021) Century scale rainfall in the absolute Atacama Desert: landscape response and implications for past and future rainfall. Quat Sci Rev. https://doi.org/10.1016/j.quascirev.2021.106797106797

    Article  Google Scholar 

  • Platt NH (1989) Lacustrine carbonates and pedogenesis: sedimentology and origin of palustrine deposits from the Early Cretaceous Rupelo Formation, W. Cameros Basin, N. Spain. Sedimentology 36:665–684

    Article  CAS  Google Scholar 

  • Raji O, Dezileau L, Von Grafenstein U, Niazi S, Snoussi M, Martinez P (2015) Extreme Sea events during the last millennium in the northeast of Morocco. Nat Hazards Earth Syst Sci 15:1533–1543. https://doi.org/10.5194/nhess-15-1-2015

    Article  Google Scholar 

  • Ruiz S, Madariaga R (2018) Historical and recent large megathrust earthquakes in Chile. Tectonophysics 733:37–56. https://doi.org/10.1016/j.tecto.2018.01.015

    Article  Google Scholar 

  • Rutllant J, Fuenzalida H (1991) Synoptic aspects of the central Chile rainfall variability associated with the Southern Oscillation. Int J Climatol 11:63–76

    Article  Google Scholar 

  • Rutllant J, Montecino V (2002) Multiscale upwelling forcing cycles and biological response off northcentral Chile. Ciclos multiescala en el forzamiento de la surgencia y respuesta biológica en el centro-norte de Chile. Rev Chil Hist Nat 75:217–231

    Article  Google Scholar 

  • Sabatier P, Dezileau L, Condomines M, Briqueu L, Colin C, Bouchette F, Le Duff M, Blanchemanche P (2008) Reconstruction of paleostorm events in a coastal lagoon (Hérault, south of France). Mar Geol 251:224–232

    Article  Google Scholar 

  • Sabatier P, Moernaut J, Bertrand S, Van Daele M, Kremer K, Chaumillon E, Arnaud F (2022) A review of event deposits in lake sediments. Quaternary 5:34. https://doi.org/10.3390/quat5030034

    Article  Google Scholar 

  • Saillard M, Hall SR, Audin L, Farber DL, Herail G, Martinod J, Regard V, Finkel RC, Bondoux F (2009) Non-steady longterm uplift rates and Pleistocene marine terrace development along the Andean margin of Chile (31 °S) inferred from 10Be dating. Earth Planet Sci Lett 277:50–63

    Article  CAS  Google Scholar 

  • Salazar D, Easton G, Goff J, Guendon JL, Gonzalez-Alfaro J, Andrade P, Villagran X, Fuentes M, Leon T, Abad M, Izquierdo T, Power X, Sitzia L, Alvarez G, Villalobos A, Olguín L, Yrarrazaval S, Gonzalez G, Flores C, Borie C, Castro V, Campos J (2022) Did a 3800-year-old Mw ~9.5 earthquake trigger major social disruption in the Atacama Desert? Science. https://doi.org/10.1126/sciadv.abm2996

    Article  Google Scholar 

  • Schillereff DN, Chiverrell RC, Macdonald N, Hooke JM (2014) Flood stratigraphies in lake sediments: a review. Earth-Sci Rev 135:17–37. https://doi.org/10.1016/j.earscirev.2014.03.011

    Article  Google Scholar 

  • Scileppi E, Donnelly JP (2007) Sedimentary evidence of hurricane strikes in western Long Island, New York. Geochem Geophys Geosyst 8:25. https://doi.org/10.1029/2006GC001463

    Article  Google Scholar 

  • SERNAGEOMIN (2017) Primer catastro nacional de desastres naturales, Chile, p 45. http://sitiohistorico.sernageomin.cl/pdf/presentaciones-geo/Primer-Catastro-Nacional-Desastres-Naturales.pdf

  • SHOA (2016) Tablas de Marea de la Costa de Chile. Publicación N°3009. Servicio Hidrográfico y Oceanográfico de la Armada de Chile, p 339

  • Soto MV, Märker M, Rodolfi G, Sepúlveda SA, Cabello M (2014) Assessment of geomorphic processes affecting the paleolandscape of Tongoy Bay, Coquimbo region, central Chile. Geogr Fis Din Quat 37:51–66

    Google Scholar 

  • Storen EWN, Paasche O, Hirt AM, Kumari M (2016) Magnetic and Geochemical Signatures of Flood Layers in a Lake System: signatures of floods in lake sediments. Geochem Geophys Geosyst 17:4236–4253. https://doi.org/10.1002/2016GC006540

    Article  Google Scholar 

  • Tech V (2018) Climate change sea level rises could increase risk for more devastating tsunamis worldwide: even minor sea-level rise, by as much as a foot, poses greater risks. Sci Daily

  • Udías A, Madariaga R, Buforn E, Muñoz D, Ros M (2012) The large Chilean historical earthquakes of 1647, 1657, 1730, and 1751 from contemporary documents. Bull Seismol Soc Am 102:1639–1653. https://doi.org/10.1785/0120110289

    Article  Google Scholar 

  • Urrutia HR, Lazcano CL (1993) Catástrofes en Chile 1541–1992. Editorial La Noria, Santiago, Chile

  • Vigny C, Rudloff A, Ruegg J-C, Madariaga R, Campos J, Alvarez M (2009) Upper plate deformation measured by GPS in the Coquimbo Gap, Chile. Phys Earth Planet Int 175(1–2):86–95

    Article  Google Scholar 

  • Villagran C (2007) “Dinámica costera en el sistema de bahías comprendidas entre Ensenada Los Choros y Bahía Tongoy” Región de Coquimbo. Memoria para optar al título de geógrafo. Facultad de Arquitectura y Urbanismo Escuela de Geografía. Universidad de Chile. Santiago, Chile

  • Wang D, Gouhier TC, Menge BA, Ganguly AR (2015) Intensification and spatial homogenization of coastal upwelling under climate change. Nature 518:390–394. https://doi.org/10.1038/nature14235

    Article  CAS  Google Scholar 

  • Wilcox AC, Escauriaza C, Agredano R, Mignot E, Zuazo V, Otárola S, Castro L, Gironás J, Cienfuegos R, Mao L (2016) An integrated analysis of the March 2015 Atacama floods. Geophys Res Lett 43:8035–8043. https://doi.org/10.1002/2016GL069751

    Article  Google Scholar 

  • Yang S, Oh JH (2020) Efects of modes of climate variability on wave power during boreal summer in the western North Pacifc. Sci Rep 10:5187. https://doi.org/10.1038/s41598-020-62138-0

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support of the Project Fondec-yt#1140851/Fondecyt #1180413 and the international cooperation project Conicyt related to the ANID scholarship program within the framework of the DOCTORATE SCHOLARSHIP CONTEST ABROAD, SCHOLARSHIPS CHILE, CALL 2017/Folio 72180323. We extend our gratitude to the CLAP program (Concurso de Fortalecimiento al Desarrollo Científico de Centros Regionales 2020-R20F0008-CEAZA) and to ANID—Millennium Science Initiative ProgramNucleo Milenio UPWELL (NCN19_153), contributors to the completion of this study. We also thank the staff of the oceanography laboratory of Universidad Católica del Norte. In addition, we are grateful to Anne Bocquet-Liénard and Juliette Dupré of the Archeology Laboratory at the Center Michel-de-Boüard/CRAHAM (UMR 6273) of Normandy University, Unicaen, CNRS, Magalie Legrain M2C Caen of Normandy University for allowing us to conduct granulometric and chemical analyses.

Funding

This work was funded by the following projects: Fondecyt#1140851/Fondecyt #1180413, CLAP program (Concurso de Fortalecimiento al Desarrollo Científico de Centros Regionales 2020-R20F0008-CEAZA), ANID scholarship program (CONICYT), ANID—Millennium Science Initiative Program Nucleo Milenio UPWELL (NCN19_153).

Author information

Authors and Affiliations

Authors

Contributions

KA performed the granulometry and geochemical analysis, analyzed the data, prepared figures and tables, authored the drafts of the paper and approved the final draft. PM, LD and AM worked on the data analysis, prepared figures and tables, authored and/or reviewed drafts of the paper and approved the final draft. PO-U, BAA and OK helped with the geochemical interpretations and dating methods, and reviewed and approved the final drafts. MC performed gamma-spectrometry analyses, helped with the interpretation of 210Pb and 137Cs data, and approved the final drafts. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Karen Araya.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Araya, K., Dezileau, L., Muñoz, P. et al. Reconstruction of extreme floods and tsunamis from coastal sedimentary archives in Los Choros, Coquimbo region, 28°S, Chile. Nat Hazards (2024). https://doi.org/10.1007/s11069-024-06644-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11069-024-06644-8

Keywords

Navigation