Skip to main content
Log in

Socio-geoenvironmental vulnerability index (SGeoVI) derived from hybrid modeling related to populations at-risk to landslides

  • Review Article
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

In the present study, we propose a transdisciplinary investigation aimed at developing an index to assess the vulnerability to landslides in the Brazilian municipality of São José dos Campos. The proposed Socio-Geoenvironmental Vulnerability Index (SGeoVI) was developed using a hybrid modeling approach that integrates socioeconomic data with landslide susceptibility mapping. Landslide susceptibility was derived from the FS FIORI deterministic model, which calculates the Safety Factor (FS) using the concept of limit equilibrium. The mapping of land use and land cover enabled the inclusion of new parameters related to certain anthropogenic conditions and vegetation cover, such as the overabundance of buildings and the presence or absence of tree vegetation, which are significant factors influencing landslide occurrence. Socioeconomic indicators were extracted from Brazilian Institute of Geography and Statistics (IBGE) census data, and variables were selected and spatially represented for each of São José dos Campos’s 1073 census tracts. Socioeconomic indicators were taken into account for the SGeoVI proposal and categorized into five thematic groups: economic; educational; housing infrastructure; social dependency; e family structure. Based on the Socio-geoenvironmental vulnerability indicators, several neighborhoods in São José dos Campos, SP, were selected for a detailed SGeoVI assessment. In Pinheirinhos, a neighborhood situated in the southernmost part of São José dos Campo, the highest SGeoVI value reached to 0.91. In contrast, Jardim Apolo I, an established neighborhood located in the Central Region of São José dos Campos, exhibited a considerably lower SGeoVI value of only 0.04, for instance. The verification results of SGeoVI revealed socioeconomic disparities that align with geomorphological variations. The northern and southern parts of the municipality exhibit high susceptibility to landslides, coupled with low-income communities and inadequate housing structures, contributing to elevated socio-geoenvironmental vulnerability. In contrast, central regions feature flat terrain, reduced natural susceptibility, higher income levels, and improved access to housing infrastructure, resulting in lower vulnerability values. Given its ability to assess intra-municipal socio-geoenvironmental vulnerability, SGeoVI holds potential for extrapolation to other municipalities. Consequently, it can serve as a valuable tool for municipal authorities in formulating public policies aimed at landslide risk management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • ABNT (1980) NBR 6120: cargas para o cálculo de estruturas de edificações. Rio de Janeiro, RJ

  • Alexander D (2005) Vulnerability to landslides. Landslide hazard and risk. Wiley, pp 175–198

  • Alvalá RCS, Dias MC, de Saito A SM, et al (2019) Mapping characteristics of at-risk population to disasters in the context of Brazilian early warning system. Int J Disaster Risk Reduct 41:101326. https://doi.org/10.1016/j.ijdrr.2019.101326

    Article  Google Scholar 

  • Alvares CA, Stape JL, Sentelhas PC et al (2013) Köppen’s climate classification map for Brazil. Meteorol Z 22:711–728. https://doi.org/10.1127/0941-2948/2013/0507

    Article  Google Scholar 

  • Anazawa TM, VULNERABILIDADE E TERRITORIO NO LITORAL NORTE DE SÂO PAULO (2012) : INDICADORES, PERFIS DE ATIVOS E TRAJETÓRIAS. Instituto Nacional de Pesquisas Espaciais (INPE)

  • Anazawa TM, Feitosa FF, Monteiro AMV (2013a) VULNERABILIDADE SOCIOECOLÓGICA NO LITORAL NORTE DE SÃO PAULO: MEDIDAS, SUPERFÍCIES E PERFIS DE ATIVOS. Geografia 38:189–208

    Google Scholar 

  • Anazawa TM, Feitosa FF, Monteiro AM v (2013b) Vulnerabilidade socioecológica no litoral norte de São Paulo: medidas, superfícies e perfis de ativos. Geografia Rio Claro 38:189–208

    Google Scholar 

  • Ávila FF, MODELAGEM APLICADA AO ESTUDO DE ESTABILIDADE DE ENCOSTAS ANTROPIZADAS E DA VULNERABILIDADE SOCIOGEOAMBIENTAL DE SÃO JOSÉ DOS CAMPOS-SP (2021). São José dos Campos

  • Ávila FF, Alvalá RC, Mendes RM, Amore DJ (2021) The influence of land use/land cover variability and rainfall intensity in triggering landslides: a back-analysis study via physically based models. Nat Hazards 105:1139–1161. https://doi.org/10.1007/s11069-020-04324-x

    Article  Google Scholar 

  • Cairns G, Wright G (2018) Advanced methods in Scenario Development: uncovering causality and using the Delphi Method. Scenario thinking. Springer International Publishing, Cham, pp 141–154

    Chapter  Google Scholar 

  • Caleca F, Tofani V, Segoni S et al (2022) A methodological approach of QRA for slow-moving landslides at a regional scale. Landslides 19:1539–1561. https://doi.org/10.1007/s10346-022-01875-x

    Article  Google Scholar 

  • Camarinha P (2016) Vulnerabilidade aos desastres Naturais decorrentes de deslizamentos de terra em cenários de mudanças climáticas na porção paulista da Serra do Mar. Doutorado, Instituto Nacional de Pesquisas Espaciais (INPE)

  • CMSP (1994) Memorial justificativo dos parâmetros geotécnicos do Projeto Básico da Linha 4 – Amarela. São Paulo

  • CMSP (2011) Relatórios geológico-geotécnicos do projeto básico da Linha 6 – Laranja. São Paulo

  • CPRM (2006) Mapa geológico do Estado de São Paulo: carta geológica do Brasil ao milionésimo – programa geológico do Brasil

  • Cutter SL, Boruff BJ, Shirley WL (2003) Social Vulnerability to Environmental Hazards

  • Dai FC, Lee CF, Ngai YY (2002) Landslide risk assessment and management: an overview. Eng Geol 64:65–87. https://doi.org/10.1016/S0013-7952(01)00093-X

    Article  Google Scholar 

  • de Assis Dias MC, Saito SM, dos Alvalá RC S, et al (2020) Vulnerability index related to populations at-risk for landslides in the Brazilian early warning system (BEWS). Int J Disaster Risk Reduct 49:101742. https://doi.org/10.1016/j.ijdrr.2020.101742

    Article  Google Scholar 

  • de Brito Junior I, de Rosis CHV, Carneiro PV et al (2014) Proposta De um programa de treinamento de desastres naturais considerando o perfil das vítimas. Ambiente Sociedade 17:153–176. https://doi.org/10.1590/1809-4422ASOC1092V1742014

    Article  Google Scholar 

  • de Loyola Hummell BM, Cutter SL, Emrich CT (2016) Social Vulnerability to Natural hazards in Brazil. Int J Disaster Risk Sci 7:111–122. https://doi.org/10.1007/s13753-016-0090-9

    Article  Google Scholar 

  • Dintwa KF, Letamo G, Navaneetham K (2019) Quantifying social vulnerability to natural hazards in Botswana: an application of cutter model. Int J Disaster Risk Reduct 37:101189. https://doi.org/10.1016/j.ijdrr.2019.101189

    Article  Google Scholar 

  • Eakin H, Luers AL (2006) Assessing the vulnerability of Social-Environmental systems. Annu Rev Environ Resour 31:365–394. https://doi.org/10.1146/annurev.energy.30.050504.144352

    Article  Google Scholar 

  • ESRI (2011) ArcGis Desktop, version 10.1

  • Fell R, Ho K, Lacasse S, Leroi E (2005) A framework for landslide risk assessment and management

  • Fiori AP (2015) Fundamentos De mecânica dos solos e das rochas: aplicações na estabilidade de taludes, 3rd edn. Oficina de Textos, São Paulo

    Google Scholar 

  • Galli M, Guzzetti F (2007) Landslide vulnerability criteria: a Case Study from Umbria, Central Italy. Environ Manage 40:649–665. https://doi.org/10.1007/s00267-006-0325-4

    Article  Google Scholar 

  • Gao J (1993) Identification of topographic settings conducive to landsliding from dem in Nelson County, Virginia, U.S.A. Earth Surf Process Landf 18:579–591. https://doi.org/10.1002/esp.3290180702

    Article  Google Scholar 

  • Gautam D (2017) Assessment of social vulnerability to natural hazards in Nepal. Nat Hazards Earth Syst Sci 17:2313–2320. https://doi.org/10.5194/nhess-17-2313-2017

    Article  Google Scholar 

  • Goto EA, Suarez AM, Ye H (2022) Spatial analysis of social vulnerability in São Paulo city, Brazil. Appl Geogr 140:102653. https://doi.org/10.1016/j.apgeog.2022.102653

    Article  Google Scholar 

  • Guimarães RF, Montgomery DR, Greenberg HM et al (2003) Parameterization of soil properties for a model of topographic controls on shallow landsliding: application to Rio De Janeiro. Eng Geol 69:99–108. https://doi.org/10.1016/S0013-7952(02)00263-6

    Article  Google Scholar 

  • Gurgueira MD (2013) Correlação De Dados geológicos E geotécnicos na bacia de São Paulo. Dissertação (Mestrado em Geotectônica). Universidade de São Paulo (USP)

  • Hayati E, Majnounian B, Abdi E et al (2013) An expert-based approach to forest road network planning by combining Delphi and spatial multi-criteria evaluation. Environ Monit Assess 185:1767–1776. https://doi.org/10.1007/s10661-012-2666-1

    Article  Google Scholar 

  • Hummell BM, de Cutter L, Emrich SL CT (2016) Social Vulnerability to Natural hazards in Brazil. Int J Disaster Risk Sci 7:111–122. https://doi.org/10.1007/s13753-016-0090-9

    Article  Google Scholar 

  • IBGE (2023) População São José dos Campos/SP. https://cidades.ibge.gov.br/brasil/sp/sao-jose-dos-campos/panorama. Accessed 19 Sep 2023

  • IPPLAN (2018) Avaliação De áreas de risco do município de São José Dos Campos. São José dos Campos - SP

  • IPT (1996) Relatório técnico acerca da carta geotécnica do município de São José dos Campos (Relatório no 34.645). São Paulo

  • IPT/CPRM (2014) Carta de suscetibilidade aos deslizamentos de terra e inundações do município de São. José dos Campos – SP

  • Kaztman R (2000) Notas Sobre La medición De La Vulnerabilidad social: borrador para discusión. Programa Para El Mejoramiento De Las Encuestas Y La Medición De Las Condiciones De Vida En América Latina Y El Caribe. Programa MECOVI), Santiago, Chile

    Google Scholar 

  • König T, Kux HJH, Mendes RM (2019) Shalstab mathematical model and WorldView-2 satellite images to identification of landslide-susceptible areas. Nat Hazards 97:1127–1149. https://doi.org/10.1007/s11069-019-03691-4

    Article  Google Scholar 

  • Lampis A (2010) POBREZA Y RIESGO MEDIOAMBIENTAL. Un problema de Vulnerabilidad y Desarrollo

  • Listo FLR (2015) Propriedades geotécnicas dos solos e modelagem matemática de previsão a escorregamentos translacionais rasos. Doutorado em Geografia, Universidade de São Paulo (USP)

  • Listo F, Vieira B (2010) Análise de condicionantes topográficos como subsídio para avaliação de áreas de risco a escorregamentos rasos. Revista De Geografia 27:174–187

    Google Scholar 

  • Listo F, Vieira B (2012) Mapping of risk and susceptibility of shallow-landslide in the city of São Paulo. Brazil Geomorphology 169–170:30–44. https://doi.org/10.1016/j.geomorph.2012.01.010

    Article  Google Scholar 

  • Listo F, Gomes MCV, Vieira BC, AVALIAÇÃO DA VARIAÇÃO DO FATOR DE SEGURANÇA COM O MODELO TRIGRS (2018) Revista Brasileira De Geomorfologia. https://doi.org/10.20502/rbg.v19i1.1256. 19:

    Article  Google Scholar 

  • Maffra C, Sousa R, Sutili F, Pinheiro R (2019) The effect of roots on the Shear strength of texturally distinct soils. Floresta E Ambiente 26. https://doi.org/10.1590/2179-8087.101817

  • Marandola E Jr, Hogan DJ (2006) As Dimensões Da Vulnerabilidade. São Paulo em Perspectiva 20:33–43

    Google Scholar 

  • Mendes RM, Valério Filho M (2015) Real-Time Monitoring of Climactic and Geotechnical Variables during Landslides on the Slopes of Serra do Mar and Serra da Mantiqueira(São Paulo State, Brazil). Engineering 07:140–159. https://doi.org/10.4236/eng.2015.73012

  • Mendes RM, de Andrade MRM, Graminha CA et al (2018) Stability Analysis on Urban Slopes: Case Study of an anthropogenic-Induced landslide in São José Dos Campos, Brazil. Geotech Geol Eng 36:599–610. https://doi.org/10.1007/s10706-017-0303-z

    Article  Google Scholar 

  • Michel GP (2013) Modelagem De estabilidade de encostas com consideração do efeito da vegetação. Dissertação (Mestrado em Engenharia Ambiental). Universidade Federal de Santa Catarina (UFSC)

  • Moghadas M, Asadzadeh A, Vafeidis A et al (2019) A multi-criteria approach for assessing urban flood resilience in Tehran, Iran. Int J Disaster Risk Reduct 35:101069. https://doi.org/10.1016/j.ijdrr.2019.101069

    Article  Google Scholar 

  • Mohanty A, Hussain M, Mishra M et al (2019) Exploring community resilience and early warning solution for flash floods, debris flow and landslides in conflict prone villages of Badakhshan, Afghanistan. Int J Disaster Risk Reduct 33:5–15. https://doi.org/10.1016/j.ijdrr.2018.07.012

    Article  Google Scholar 

  • Nazir Hossain Md (2015) Analysis of human vulnerability to cyclones and storm surges based on influencing physical and socioeconomic factors: evidences from coastal Bangladesh. Int J Disaster Risk Reduct 13:66–75. https://doi.org/10.1016/j.ijdrr.2015.04.003

    Article  Google Scholar 

  • Pellogia A (1998) O homem e o ambiente geológico: geologia, sociedade e ocupação Urbana no município De São Paulo, 1st edn. Xamã, São Paulo

    Google Scholar 

  • PNUD (2015) Atlas do desenvolvimento humano nas regiões metropolitanas brasileiras: Baixada Santista. Campinas, Maceió e Vale do Paraíba

  • Radeljak Kaufmann P (2016) Integrating factor analysis and the Delphi method in scenario development: a case study of Dalmatia. Croatia Appl Geogr 71:56–68. https://doi.org/10.1016/j.apgeog.2016.04.007

    Article  Google Scholar 

  • Rowe G, Wright G (1999) The Delphi technique as a forecasting tool: issues and analysis. Int J Forecast 15:353–375. https://doi.org/10.1016/S0169-2070(99)00018-7

    Article  Google Scholar 

  • Salvati P, Petrucci O, Rossi M et al (2018) Gender, age and circumstances analysis of flood and landslide fatalities in Italy. Sci Total Environ 610–611:867–879. https://doi.org/10.1016/j.scitotenv.2017.08.064

    Article  CAS  Google Scholar 

  • Segoni S, Caleca F (2021) Definition of environmental indicators for a fast estimation of landslide risk at National Scale. Land (Basel) 10:621. https://doi.org/10.3390/land10060621

    Article  Google Scholar 

  • Selby MJ (1982) Hillslope materials and processes, 1st edn. Oxford University Press, Oxford

    Google Scholar 

  • Seluchi ME, Chou SC (2009) Synoptic patterns associated with landslide events in the Serra do Mar, Brazil. Theor Appl Climatol 98:67–77. https://doi.org/10.1007/s00704-008-0101-x

    Article  Google Scholar 

  • SMA/CPLA (2012) ZEE zoneamento ecológico-econômico. base para o desenvolvimento sustentável do estado de São Paulo

  • Smyth CG, Royle SA (2000) Urban landslide hazards: incidence and causative factors in Niterói, Rio De Janeiro State, Brazil. Appl Geogr 20:95–118. https://doi.org/10.1016/S0143-6228(00)00004-7

    Article  Google Scholar 

  • Teixeira M, Bateira C, Marques F, Vieira B (2015) Physically based shallow translational landslide susceptibility analysis in Tibo catchment, NW of Portugal. Landslides 12:455–468. https://doi.org/10.1007/s10346-014-0494-9

    Article  Google Scholar 

  • Tian Y, Yang Q (2008) Urban disaster response capacity evaluation index system model design based on AHP-DELPHI method. 32:168–171

  • Valério FM, Mendes RM, Faria DGM et al (2014) Mapeamento das áreas de riscos associados a escorregamentos de encostas no município de São José dos Campos - SP. São José dos Campos - SP

  • Varnes DJ (1981) The principles and practice of landslide hazard zonation. Bull Int Assoc Eng Geol 23:13–14. https://doi.org/10.1007/BF02594720

    Article  Google Scholar 

  • Vieira BC, Fernandes NF, Augusto Filho O (2010) Shallow landslide prediction in the Serra do Mar, São Paulo, Brazil. Nat Hazards Earth Syst Sci 10:1829–1837. https://doi.org/10.5194/nhess-10-1829-2010

    Article  Google Scholar 

  • Vieira B, Martins T, Listo F (2017) Previsão De Escorregamentos rasos utilizando modelos matemáticos em bases físicas. In: GUNTHER W, CICCOTTI L, RODRIGUES A (eds) Desastres: múltiplas abordagens e desafios. Elsevier, Rio de Janeiro, pp 231–242

    Google Scholar 

  • Vuillez C, Tonini M, Sudmeier-Rieux K et al (2018) Land use changes, landslides and roads in the Phewa Watershed, Western Nepal from 1979 to 2016. Appl Geogr 94:30–40. https://doi.org/10.1016/j.apgeog.2018.03.003

    Article  Google Scholar 

Download references

Funding

The authors have no relevant financial or non-financial interests to disclose.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Frederico ÁVILA, Regina AVALÁ, Rodolfo MENDES and Diogo AMORE. The first draft of the manuscript was written by Frederico ÁVILA and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Frederico Fernandes de Ávila.

Ethics declarations

Ethical approval

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Ávila, F.F., Alvalá, R.C., Mendes, R.M. et al. Socio-geoenvironmental vulnerability index (SGeoVI) derived from hybrid modeling related to populations at-risk to landslides. Nat Hazards (2024). https://doi.org/10.1007/s11069-024-06526-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11069-024-06526-z

Keywords

Navigation