Skip to main content
Log in

Constraints on building susceptibility zone from tephra-lapilli loading through isopach mapping: A case study of the Quaternary (<27.4 - >1.1 ka ), VEI 3–4 eruptions of Sumbing volcano, Central Java, Indonesia

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

This study documents the first record of seven-, Quaternary (<27.4 - >1.1 ka) lapilli fall layers at Sumbing volcano, Central Java, Indonesia. These lapilli layers (from lower towards upper stratigraphic height) are named orange–red lapilli, dark brown lapilli, orange lapilli, red–brown lapilli, blackish brown lapilli, pale red lapilli, and red lapilli. All deposits were dominated by juvenile scoria (\(C_{scoria}\) = 54–96%) with various portions of volcanic lithics (\(C_{lithics}\) = 4–44%). The products were dispersed across a wide area (400–2149 km2 for 1 cm isopach), suggesting sub-Plinian to Plinian intensity, with mean eruption plumes reaching 15–28 km and volcano explosivity index (VEI) of 3–4. The deposition of tephra (lapilli) on the roof provides load pressure, thus threatening buildings from collapse. No significant bulk density (\({\uprho }_{bulk}\)) variation between each lapilli deposit (690–813 kg/m3 for dry tephra, 856–1007 kg/m3 for wet tephra, and 1208–1422 kg/m3 for saturated tephra). Thus, tephra thickness (\(h\)) is believed to play the most significant role in controlling load pressure (\(P = {\uprho }_{bulk} \times h\)), as it varies over three orders of magnitude (< 1–100 cm). Finally, under the assumption that all-nearby settlements followed the national standard for maximum load capacity (MLC; 487 kg/m2), we proposed three susceptible zones (SZs). The estimated radius for SZ I (representing dry tephra condition) is  ~7.7 km and  ~14.6 km for VEI 3 and 4 eruptions, respectively. If tephra becomes wet and/or even saturated with water due to heavy rain (which is likely to occur in tropical regions such as the present case), the estimated radius increases to ~12.7 km and ~15.3 km (VEI 3), and ~17.7 km and ~22.1 km (VEI 4) for SZ II and SZ III, respectively. These areas must be evacuated immediately if VEI 3–4 eruptions were to occur at Sumbing volcano.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Availability of data and materials

All data generated and analyzed during this study are included in this published article.

References

  • Asikin S, Handoyo A, Busono H, Gafoer S (1992). Peta geologi lembar Kebumen. Pusat Penelitian dan Pengembangan Geologi

  • Badan Standarisasi Nasional C (2020) Beban desain minimum dan kriteria terkait untuk bangunan gedung dan struktur lain. Standar Nasional Indonesia 1727

  • Badan Pusat Statistik Jawa Tengah (2022). https://jateng.bps.go.id/

  • Biass S, Bonadonna C (2011) A quantitative uncertainty assessment of eruptive parameters derived from tephra deposits: the example of two large eruptions of Cotopaxi volcano, Ecuador. Bull Volcanol 73:73–90

    Article  Google Scholar 

  • Bohm M, Haberland C, Asch G (2013) Tectonophysics imaging fluid-related subduction processes beneath Central Java (Indonesia) using seismic attenuation tomography. Tectonophysics 590:175–188

    Article  Google Scholar 

  • Bonadonna C, Costa A (2013) Plume height, volume, and classification of explosive eruptions based on the Weibull function. Bull Volcanol 75:742

    Article  Google Scholar 

  • Bonadonna C, Houghton BF (2005) Total grain-size distribution and volume of tephra-fall deposits. Bull Volcanol 67:441–456

    Article  Google Scholar 

  • Carey S, Sparks RSJ (1986) Quantitative models of the fallout and dispersal of tephra from volcanic eruption columns. Bull Volcanol 48:109–125

    Article  Google Scholar 

  • Castruccio A, Clavero J, Segugra A, Samaniego P, Roche O, Le Pennec JL, Droguett B (2016) Eruptive parameters and dynamics of the April 2015 sub-Plinian eruptions of Caalbuco volcano (southern Chile). Bull Volcanol 78:62

    Article  Google Scholar 

  • Claproth R (1989) Petrography and geochemistry of volcanic rocks from Ungaran, Central Java, Indonesia. Dissertation, University of Wollongong

  • Costantini L, Bonadonna C, Houghton BF, Wehrmann H (2009) New physical characterization of the Fontana Lapilli basaltic Plinian eruption Nicaragua. Bull Volcanol 71(3):337–355. https://doi.org/10.1007/s00445-008-0227-9

  • Constantinescu R, Zucolotto KG, Ferrés D, Sieron K, Siebe C, Connorr C, Capra L, Tonini R (2022) Probabilistic volcanic hazard assessment at an active but under-monitored volcano: Ceboruco, Mexico. J Appl Volcanol 11:11

    Article  Google Scholar 

  • Costa F, Andreastuti S, de Maisonneuve CB, Pallister JS (2013) Petrological insights into the storage conditions, and magmatic processes that yielded the centennial 2010 Merapi explosive eruption. J Volcanol Geotherm Res 261:209–235

    Article  CAS  Google Scholar 

  • Craig H, Wilson T, Stewart C, Outes V, Villarosa G, Baxter P (2016) Impacts to agriculture and critical infrastructure in Argentina after ashfall from the 2011 eruption of the Cordon Caulle volcanic complex: an assessment of published damage and function thresholds. J Appl Volcanol 5:7

    Article  Google Scholar 

  • Darmawan H, Walter TR, Troll VR, Budi-Santoso A (2018) Structural weakening of the Merapi dome identified by drone photogrammetry after the 2010 eruption. Nat Hazards Earth Syst Sci 18:3267–3281

    Article  Google Scholar 

  • Dempsey SR (2013) Geochemistry of volcanic rocks from the Sunda Arc. Dissertation, Durham University

  • Fierstein J, Nathenson M (1992) Another look at the calculation of fallout tephra volumes. Bull Volcanol 54:156–167

    Article  Google Scholar 

  • Gertisser R, Charbonnier S, Keller J, Quidelleur X (2012) The geological evolution of Merapi volcano Central Java Indonesia. Bull Volcanol 74(5):1213–1233. https://doi.org/10.1007/s00445-012-0591-3

  • Gomez C (2012) Multi-scale topographic analysis of Merbabu and Merapi volcanoes using wavelet decomposition. Environ Earth Sci 67(5):1423–1430. https://doi.org/10.1007/s12665-012-1587-1

  • Gudnason J, Thordarson T, Houghton BF, Larsen G (2017) The opening subplinian phase of the Hekla 1991 eruption: properties of the tephra fall deposit. Bull Volcanol 79:34

    Article  Google Scholar 

  • Gunawan H, Surono BA, Kristanto PO, McCausland W, Pallister J, Iguchi M (2019) Overview of the eruptions of Sinabung volcano, 2010 and 2013-present and details of the 2013 phreatomagmatic phase. J Volcanol Geotherm Res 382:103–119

    Article  CAS  Google Scholar 

  • Hadmoko DS, Belizal E, Mutaqin BW, Arya G et al (2018) Post-eruptive lahars at Kali Putih following the 2010 eruption of Merapi volcano Indonesia: occurrences and impacts. Nat Hazards 94(1):419–444. https://doi.org/10.1007/s11069-018-3396-7

  • Harijoko A, Uruma R, Wibowo HE, Setijadji LD, Imai A, Yonezu K, Watanabe K (2015) Geochronology and magmatic evolution of the Dieng Volcanic Complex, Central Java, Indonesia and their relationships to geothermal resources. J Volcanol Geotherm Res 310:209–224

    Article  Google Scholar 

  • Harijoko A, Sari SA, Wibowo HE, Setiawan NI, Moktikanana MLA (2021) Stratigraphy, chronology, and magma evolution of Holocene volcanic products from Mt. Slamet deposited in the Guci Valley, Central Java, Indonesia. J Volcanol Geotherm Res 418:107341

    Article  CAS  Google Scholar 

  • Hartono U (1994) The petrology and geochemistry of the Willis and Lawu volcanoes, East Java, Indonesia. Dissertation, University of Tasmania

  • Hayes JL, Deligne NI, Bertin L, Calderon R, Wardman JB, Wilson TM, Leonard GS, Stewart C, Wallace KL, Baxter PJ (2019) Impacts of the 2015 eruption of Calbuco volcano on Chilean infrastructure, utilities, agriculture, and health. Lower Hutt (NZ): GNS Science Report

  • Indriyanto JN, Ohba T, Hoshide T, Angkasa SS, Abdurrachman M (2023) Eruptive history of the-1300-years activity of Kelud volcano, Indonesia: inferences from stratigraphy, chronology, sedimentology, componentry, and geochemistry. J Volcanol Geotherm Res 433:107723

    Article  CAS  Google Scholar 

  • Kandlbauer J, Sparks RSJ (2014) New estimates of the 1815 Tambora eruption volume. J Volcanol Geotherm Res 286:93–100

    Article  CAS  Google Scholar 

  • Le Guern F, Tazieff H, Pierret RF (1982) An example of health hazard: people killed by gas during a phreatic eruption: Dieng plateau (Java, Indonesia), February 20th 1979. Bull Volcanol 45:2

    Article  Google Scholar 

  • Maeno F, Nagai M, Nakada S, Burden RE, Engwell S, Suzuki Y, Kaneko T (2014) Constraining tephra dispersion and deposition from three subplinian explosions in 2011 at Shinmoedake volcano, Kyushu, Japan. Bull Volcanol 76:823

    Article  Google Scholar 

  • Maeno F, Nakada S, Yoshimoto M, Shimano T, Hokanishi N, Zaennudin A, Iguchi M (2019a) Eruption pattern and a long-term magma discharge rate over the past 100 years at Kelud volcano, Indonesia. J Disaster Res 14(1):27–39

    Article  Google Scholar 

  • Maeno F, Nakada S, Yoshimoto M, Shimano T, Hokanishi N, Zaennudin A, Iguchi M (2019b) A sequence of a plinian eruption preceded by dome destruction at Kelud volcano, Indonesia, on February 13, 2014, revealed from tephra fallout and pyroclastic density current deposits. J Volcanol Geotherm Res 382:24–41

    Article  CAS  Google Scholar 

  • Mitsuoka T, Toramaru A, Harijoko A, Wibowo HE (2021) Eruption types and conduit dynamics of Kukusan and Genteng volcanoes of the Ijen volcanic complex, Indonesia. Kyushu Univ Int Repos Ser D Earth Planet Sci 35:1–17

    Google Scholar 

  • Miyaji N, Kan’no A, Kanamaru T, Mannen K (2011) High-resolution reconstruction of the Hoei eruption (AD 1707) of Fuji volcano, Japan. J Volcanol Geotherm Res 207:113–129. https://doi.org/10.1016/j.jvolgeores.2011.06.013

    Article  CAS  Google Scholar 

  • Mulyaningsih S, Hidayat S, Rumanto BA, Saban G (2016) Identifikasi karakteristik erupsi Gunung Api Merbabu berdasarkan stratigrafi dan mineralogi batuan gunung api. Prosiding Seminar Nasional Aplikasi Sains & Teknologi (SNAST), pp 85–97

  • Newhall CG, Self S (1982) The volcanic explosivity index (VEI) an estimate of explosive magnitude for historical volcanism. J Geophys Res Oceans 87:1231–1238

    Article  Google Scholar 

  • Newhall CG, Bronto S, Alloway B, Banks NG, Bahar I, del Marmol MA, Hadisantono RD, Holcomb RT, McGeehin J, Miksic JN, Rubin M, Sayudi SD, Sukhyar R, Andreastuti S, Tilling RI, Torley R, Trimble D, Wirakusumah AD (2000) 10000Years of explosive eruptions of Merapi Volcano Central Java: archaeological and modern implications. J Volcanol Geoth Res 100(1–4):9–50. https://doi.org/10.1016/S0377-0273(00)00132-3

  • Pardo N, Cronin S, Palmer A, Procterr J, Smith I (2012) Andesitic plinian eruuptions at Mt. Ruapehu: quantifying the uppermost limits of eruptive parameters. Bull Volcanol 74:1161–1185

    Article  Google Scholar 

  • Phuong NK, Harijoko A, Itoi R, Unoki Y (2012) Water geochemistry and soil gas survevy at Ungaran geothermal field, central Java, Indonesia. J Volcanol Geotherm Res 229–230:23–33

    Article  Google Scholar 

  • Pistolesi M, Rosi M, Cioni R, Cashman KV, Rosotti A, Aguilera E (2011) Physical volcanology of the post-twelfth-century activity at Cotopaxi volcano, Ecuador: behavior of an andesitic central volcano. Bull Geol Soc Am 123:1193–1215

    Article  CAS  Google Scholar 

  • Poli P, Shapiro NM (2022) Rapid characterization of large volcanic eruptions: measuring the impulse of the Hunga Tonga Ha’apai explosion from teleseismic waves. Geophys Res Lett 49:e2022GL098123

    Article  Google Scholar 

  • Prambada O, Arakawa Y, Ikehata K, Furukawa R, Takada A, Wibowo HE, Nakagawa M, Kartadinata MN (2016) Eruptive history of Sundoro volcano, Central Java, Indonesia. Bull Volcanol 78:81

    Article  Google Scholar 

  • Ramírez J, Vasconez FJ, López A, Valencia F, Quilumba F, Müller AV, Hidalgo S, Bernard B (2022) Remotely assessing tephra fall building damage and vulnerability: Kelud Volcano, Indonesia. J Appl Volcanol 9:10

    Google Scholar 

  • Robertson R, Cole P, Sparks RSJ, Harford C, Lejuene AM, McGuire WJ, Miller AD, Murphy MD, Norton G, Stevens NF, Young SR (1998) Geophys Res Lett 25:18, 3429–332

  • Saibi H, Aboud E, Setyawan A, Ehara S, Nishijima J (2012) Gravity data analysis of Ungaran volcano, Indonesia. Ararb J Geosci 5:1047–1054

    Article  Google Scholar 

  • Sable J, Houghton B, Carlo PD et al (2006) Changing conditions of magma ascent and fragmentation during the Etna 122 BC basaltic Plinian eruption: evidence from clast. microtextures J Volcanol Geoth Res 158(3-4):333–354. https://doi.org/10.1016/j.jvolgeores.2006.07.006

  • Santoso A, Parung J, Prayogo DN, Lolita A (2021) Designing an Indonesian disaster information management system with local characteristics: a case study of Mount Merapi. J Disaster Res 16:4

    Article  Google Scholar 

  • Sarna-Wojcicki AM, Shipley S, Waitt Jr. RB, Dzurisin D, Wood SH (1981) Areal distribution, thickness, mass, volume, and grain size of air-fall ash from the six major eruptions of 1980. Geosciences Faculty Publications and Presentations, Boise State University

  • Sieron K, Ferrers D, Siebe C, Capra L, Constantinescu R, Agustín-Flores J, Zuccolotto KG, Böhnel H, Connor L, Connor CB, Groppelli G (2019a) Ceboruco hazard map: part I—definition of hazard scenaraions based on the eruptive history. J Appl Volcanol 8:9

    Article  Google Scholar 

  • Sieron K, Ferrers D, Siebe C, Constantinescu R, Capra L, Connor L, Groppelli G, Zuccolotto KG (2019b) Ceboruco hazard map: part II—modelling volcanic phenomena and construction of the general hazard map. Nat Hazards 96:893–933

    Article  Google Scholar 

  • Sitorus KS, Erfan RDE, Bacharudin RB, Mulyana ARM et al (1994) Direktorat Vulkanologi Peta Geologi Gunungapi Sumbing, Jawa Tengah, Direktorat Vulkanologi. https://vsi.esdm.go.id/

  • Solikhin A, Thouret JC, Liew SC, Gupta A, Sayudi DS, Oehler JF, Kassouk Z (2015) High-spsatial-resolution imagery helps map deposits of the large (VEI 4) 2010 Merapi volcano eruption and their impact. Bull Volcanol 77:20

    Article  Google Scholar 

  • Sparks RSJ, Bursik MI, Ablay GJ, Thomas RME, Carey SN (1992) Sedimentation of tephra by volcanic plumes, part 2: controls on thickness and grain-size variations of tephra deposits. Bull Volcanol 54:685–695

    Article  Google Scholar 

  • Suhardja SK, Widiyantoro S, Metaxian JP, Rawlinson N, Ramdhan M, Budi-Santoso A (2020) Crustal thickness beneath Mt. Merapi and Mt. Merbabu, Central Java, Indonesia, inferred from receiver function analysis. Phys Earth Planet Inter 302:106455

    Article  Google Scholar 

  • Suhendro I, Isnain MN, Wahyudi R (2022a) Rock characteristics of post-caldera volcanoes in Dieng volcanic complex (DVC), Central Java, Indonesia. J Geosci Eng Environ Technol 7(4):151–157

    Article  Google Scholar 

  • Suhendro I, Mutaqin BW, Sobaruddin DP, Agustiningtyas L, Humaida H, Marfai MA, Hadmoko DS (2022b) Dynamics of two caldera-forming eruptions (Banda Besar and Naira) in the marine conservation zone of Banad, Maluku, Indonesia. Geosciences 12:428

    Article  CAS  Google Scholar 

  • Suhendro I, Toramaru A, Harijoko A, Wibowo HE (2022c) The origins of transparent and non-transparent white pumice: a case study of the 52 ka Maninjau caldera-forming eruption, Indonesia. J Volcanol Geotherm Res. https://doi.org/10.1016/j.jvolgeores.2022.107643

  • Taverne NJM (1926) Vulkanstudien Op Java. Vulk Meded 7:1–132

    Google Scholar 

  • Tregoning P, Brunner FK, Bock Y, Puntodewo SSO, McCaffrey R, Genrich JF, Calais E, Rais J, Subarya C (1994) First geodetic measurement of convergence across the Java Trench. Geophys Res Lett 21(19):2135–2138

    Article  Google Scholar 

  • Vukadinovic D, Nicholls IA (1989) The petrogenesis of island arc basalts from Gunung Slamet volcano, Indonesia. Geochim Et Cosmochim Acta 53(9):2349–2363

    Article  CAS  Google Scholar 

  • Walker GPL (1971) Grain-size characteristics of pyroclastic deposits. J Geol 79(6):696–714

    Article  Google Scholar 

  • Walker GPL (1973) Explosive volcanic eruptions-a new classification scheme. Geol Rundsch 62:431–446

    Article  CAS  Google Scholar 

  • Walker GPL, Self S, Wilson L (1984) Tarawera 1886 New Zealand — A basaltic plinian fissure eruption. J Volcanol Geoth Res 21(1–2):61–78 https://doi.org/10.1016/0377-0273(84)90016-7

  • Wibowo HE, Nakagawa M, Kuritani T, Furukawa R, Prambada O, Harijoko A (2022) Petological and geochemical study of Sundoro volcano, Central Java, Indonesia: temporal variations in differentiation and source processes during the growth of an individual volcano. J Petrol 63:1–22

    Article  CAS  Google Scholar 

  • Williams GT, Jenkins SF, Biass S, Wibowo HE, Harijoko A (2020) Remotely assessing tephra fall building damage and vulnerability: Kelud Volcano, Indonesia. J Appl Volcanol 9:10

    Article  Google Scholar 

  • Williams GT, Jenkins SF, Lee DWJ, Wee SJ (2021) How rainfall influences tephra fall loading—an experimental approach. Bull Volcanol 83:42

    Article  Google Scholar 

  • Wright HMN, Cashman KV, Mothes PA, Hall ML, Ruiz AG, Le Pennec JL (2008) Estimating rates of decompression from textures of erupted dash particles produced by 1999–2006 eruptions of Tungurahua volcano, Ecuador. Geol 40(7):619–622

    Article  Google Scholar 

Download references

Acknowledgements

This study was funded by the Faculty of Geography, Universitas Gadjah Mada under the scheme of Dana Hibah Kluster Penelitian Mandiri Dosen batch 1, 2023. We thank Prof. Bambang Suhendro from the Faculty of Engineering, Universitas Gadjah Mada for the fruitful discussion on load pressure. We also thank two anonymous reviewers for their constructive comments, and the editor for handling our manuscript.

Funding

Funding was provided by Universitas Gadjah Mada.

Author information

Authors and Affiliations

Authors

Contributions

Indranova Suhendro (I.S.) conceptualized the research, conducted fieldwork and all analysis (except grain size distribution (GSD) and componentry), supervised the GSD and componentry analyses, data curation, interpretation, visualization, and wrote the manuscript. Sonna Diwijaya (S.D.), Zulfa Yogi Rahmawati (Z.Y.R.), Pandu Eka Priyana (P.E.P), Revina Fitri Zen (R.F.Z.), Andre Jonathan (A.J.), Muhammad Alsamtu Tita Sabila Suhartono (M.A.T.S.S.), Gammanda Adhny El Zamzamy Latief (G.A.E.Z.L.), and Endra Yuliawan (E.Y.) joined all fieldwork, conducted GSD and componentry analysis, preparing the basic maps. All authors contributed to refining the manuscript.

Corresponding author

Correspondence to Indranova Suhendro.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suhendro, I., Diwijaya, S., Rahmawati, Z.Y. et al. Constraints on building susceptibility zone from tephra-lapilli loading through isopach mapping: A case study of the Quaternary (<27.4 - >1.1 ka ), VEI 3–4 eruptions of Sumbing volcano, Central Java, Indonesia. Nat Hazards 120, 5785–5809 (2024). https://doi.org/10.1007/s11069-024-06449-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-024-06449-9

Keywords

Navigation