Skip to main content

Advertisement

Log in

Positive Storm Surges in the Río de la Plata Estuary: forcings, long-term variability, trends and linkage with Southwestern Atlantic Continental Shelf dynamics

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

The Río de la Plata Estuary (RdP), one of the most populated and developed areas of Southern South America, often experiences positive storm surges (PSS). These episodic rises of sea level due to meteorological forcing drive floods that endanger human lives and cause property damage. In this work, PSS are studied and contextualized in both the dynamics of the adjacent Southwestern Atlantic Continental Shelf (SWACS) and the synoptic dynamics of the atmosphere. The study is based on statistical analyses of tide gauge observations gathered at the upper RdP (period 1934–2020), numerical simulations of sea level in the SWACS and atmospheric reanalysis products. Results reveal hitherto unknown aspects of ocean dynamics in the SWACS forced by the atmosphere in which PSS events impacting the RdP are embedded, showing that: (1) Strong PSS in the RdP can be locally forced by cyclogenesis; nevertheless, most of PSS events affecting the estuary are remotely forced at the southern SWACS and reach the estuary as free propagating coastal waves, producing a surge that can be as strong as the locally forced ones; (2) the spatial pattern of the sea level anomalies in the SWACS during the PSS in the RdP can be described in terms of three distinctive modes (or spatial structures), each one of them related to characteristic regional atmospheric synoptic processes (in particular traveling Rossby waves and cyclogenesis); this provides clues to both better understand the surges and to extend their predictability; and (3) the PSS extension in the SWACS and the RdP depends on the speed at which atmospheric systems pass through the region. These findings provide valuable insights that can aid in anticipating extreme situations several days in advance to the numerical ocean forecast systems. The analysis of the gauge observations at Buenos Aires shows that (1) the number of cases of PSS per year presents large multidecadal and interannual (pseudo-cycle at 5 years) variability; (2) in this frame, it is not reasonable to estimate long-term lineal trends and/or extrapolate tendencies; therefore, our results refute the suggestion that the number of PSS cases in the RdP has been increasing over time, as reported in previous works.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Adam RJ, Hilton MJ, Jowett T et al (2021) The magnitude and frequency of storm surge in southern New Zealand. NZ J Mar Freshw Res 55(2):336–351

    Article  Google Scholar 

  • Alexander MA, Bladé I, Newman M et al (2002) The atmospheric bridge: the influence of ENSO teleconnections on air-sea interaction over the global oceans. J Clim 15(16):2205–2231. https://doi.org/10.1175/1520-0442(2002)015<2205:TABTIO>2.0.CO;2

    Article  Google Scholar 

  • Barros V, Gonzalez M, Liebmann B et al (2000) Influence of the South Atlantic convergence zone and South Atlantic sea surface temperature on interannual summer rainfall variability in Southeastern South America. Theor Appl Climatol 67(3–4):123–133. https://doi.org/10.1007/s007040070002

    Article  Google Scholar 

  • Barth A, Alvera-Azcarate A, Beckers JM et al (2009) Dynamically constrained ensemble perturbations—application to tides on the West Florida Shelf. Ocean Sci 5(3):25. https://doi.org/10.5194/osd-6-1-2009

    Article  Google Scholar 

  • Barth A, Alvera-Azcárate A, Gurgel KW et al (2010) Ensemble perturbation smoother for optimizing tidal boundary conditions by assimilation of High-Frequency radar surface currents - application to the german bight. Ocean Sci 6(1):161–178. https://doi.org/10.5194/os-6-161-2010

    Article  Google Scholar 

  • Berden G, Charo M, Möller OO et al (2020) Circulation and hydrography in the Western South Atlantic Shelf and export to the deep adjacent ocean: 30\(^\circ\)s to 40\(^\circ\)s. J Geophys Res Oceans 125(10):25. https://doi.org/10.1029/2020jc016500

    Article  Google Scholar 

  • Berden G, Piola AR, Palma ED (2022) Cross-shelf exchange in the Southwestern Atlantic Shelf: climatology and extreme events. Front Mar Sci 9:25. https://doi.org/10.3389/fmars.2022.855183

    Article  Google Scholar 

  • Blázquez J, Solman SA (2015) Intraseasonal variability of wintertime frontal activity and its relationship with precipitation anomalies in the vicinity of South America. Clim Dyn 46(7–8):2327–2336. https://doi.org/10.1007/s00382-015-2704-0

    Article  Google Scholar 

  • Bodnariuk N, Simionato CG, Saraceno M (2021) SAM-driven variability of the southwestern Atlantic shelf sea circulation. Cont Shelf Res 212:104313. https://doi.org/10.1016/j.csr.2020.104313

    Article  Google Scholar 

  • Bodnariuk N, Simionato CG, Saraceno M (2022) Water exchanges between the Northern Argentinean Shelf and the open ocean on interannual timescales: remote influences. J Geophys Res Oceans 127(6):517. https://doi.org/10.1029/2022jc018517

    Article  Google Scholar 

  • Borús J, Uriburu Quirno M, Calvo D (2008) Evaluación de caudales diarios descargados por los grandes riós del sistema del Plata al estuario del Río de la Plata. Dirección de Sistemas de Información y Alerta Hidrológico, Instituto Nacional del Agua p, p 154

  • Broomhead D, King GP (1986) Extracting qualitative dynamics from experimental data. Physica D 20(2):217–236. https://doi.org/10.1016/0167-2789(86)90031-X

    Article  Google Scholar 

  • Clara ML, Simionato CG, D’Onofrio E et al (2015) Future sea level rise and changes on tides in the Patagonian Continental Shelf. J Coast Res 313:519–535. https://doi.org/10.2112/jcoastres-d-13-00127.1

    Article  Google Scholar 

  • Combes V, Matano RP (2018) The Patagonian Shelf circulation: drivers and variability. Prog Oceanogr 167:24–43. https://doi.org/10.1016/j.pocean.2018.07.003

    Article  Google Scholar 

  • Combes V, Matano RP (2019) On the origins of the low-frequency sea surface height variability of the Patagonia shelf region. Ocean Model 142:101454. https://doi.org/10.1016/j.ocemod.2019.101454

    Article  Google Scholar 

  • De Lange W, Gibb J (2000) Seasonal, interannual, and decadal variability of storm surges at Tauranga, New Zealand. NZ J Mar Freshw Res 34(3):419–434

    Article  Google Scholar 

  • Debreu L, Marchesiello P, Penven P et al (2012) Two-way nesting in split-explicit ocean models: algorithms, implementation and validation. Ocean Model 49–50:1–21

    Article  Google Scholar 

  • Dennis KC, Schnack EJ, Mouzo FH et al (1995) Sea-level rise and Argentina: potential impacts and consequences. J Coast Res 25:205–223

    Google Scholar 

  • Depetris P, Griffin J (1968) Suspended load in the Río de la Plata drainage basin. Sedimentology 11(1–2):53–60

    Article  Google Scholar 

  • Dinápoli MG, Simionato CG, Moreira D (2020) Development and evaluation of an ensemble forecast/hindcast system for storm surges in the Río de la Plata Estuary. Q J R Meteorol Soc. https://doi.org/10.1002/qj.3933

    Article  Google Scholar 

  • Dinápoli MG, Simionato CG, Moreira D (2020) Development and validation of a storm surge forecasting/hindcasting modelling system for the extensive Río de la Plata Estuary and its adjacent Continental Shelf. Nat Hazards. https://doi.org/10.1007/s11069-020-04079-5

    Article  Google Scholar 

  • Dinápoli MG, Simionato CG, Moreira D (2020) Model sensitivity during extreme positive and negative surges in the río de la plata estuary: highlighting the need for an appropriate hindcast/forecast system. Weather Forecast 35(3):1097–1112. https://doi.org/10.1175/waf-d-19-0171.1

    Article  Google Scholar 

  • Dinápoli MG, Simionato CG, Moreira D (2020) Nonlinear interaction between the tide and the storm surge with the current due to the river flow in the Río de la Plata. Estuar Coasts. https://doi.org/10.1007/s12237-020-00844-8

    Article  Google Scholar 

  • Dinápoli MG, Simionato CG, Moreira D (2020) Nonlinear tide-surge interactions in the Río de la Plata Estuary. Estuar Coast Shelf Sci 241:106834. https://doi.org/10.1016/j.ecss.2020.106834

    Article  Google Scholar 

  • Dinápoli MG, Ruiz JJ, Simionato CG et al (2023) Improving the short-range forecast of storm surges in the Southwestern Atlantic Continental Shelf using 4DEnSRF data assimilation. Q J R Meteorol Soc. https://doi.org/10.1002/qj.4509

    Article  Google Scholar 

  • Dinápoli M, Ruiz J, Simionato C et al (2022) Improving the short-range forecast of storm surges in the Southwestern Atlantic Continental Shelf using EnSRF data assimilation. EuroSea and OceanPredict Workshop on Ocean Prediction and Observing system design

  • D’Onofrio EE, Fiore MM, Romero SI (1999) Return periods of extreme water levels estimated for some vulnerable areas of Buenos Aires. Cont Shelf Res 19(13):1681–1693. https://doi.org/10.1016/s0278-4343(98)00115-0

    Article  Google Scholar 

  • D’Onofrio EE, Fiore MME, Pousa JL (2008) Changes in the regime of storm surges at Buenos Aires, Argentina. J Coast Res 24(1A):260–265

    Article  Google Scholar 

  • Doyle ME, Barros VR (2002) Midsummer low-level circulation and precipitation in Subtropical South America and related sea surface temperature anomalies in the South Atlantic. J Clim 15(23):3394–3410.

    Article  Google Scholar 

  • Egbert GD, Erofeeva SY (2002) Efficient inverse modeling of barotropic ocean tides. J Atmos Ocean Technol 19(2):183–204

    Article  Google Scholar 

  • Egbert GD, Ray RD (2000) Significant dissipation of tidal energy in the deep ocean inferred from satellite altimeter data. Nature 405(6788):775–778. https://doi.org/10.1038/35015531

    Article  CAS  Google Scholar 

  • Escobar G, Vargas W, Bischoff S (2004) Wind tides in the Río de la Plata estuary: meteorological conditions. Int J Climatol 24(9):1159–1169. https://doi.org/10.1002/joc.1026

    Article  Google Scholar 

  • Etcheverry LAR, Saraceno M, Piola AR et al (2016) Sea level anomaly on the Patagonian continental shelf: trends, annual patterns and geostrophic flows. J Geophys Res Oceans 121(4):2733–2754. https://doi.org/10.1002/2015jc011265

    Article  Google Scholar 

  • Foreman MGG (1977) Manual for tidal heights analysis and prediction. Institute of Ocean Sciences, Patricia Bay

    Google Scholar 

  • Framiñan MB, Brown OB (1996) Study of the Río de la Plata turbidity front, Part 1: spatial and temporal distribution. Cont Shelf Res 16(10):1259–1282. https://doi.org/10.1016/0278-4343(95)00071-2

    Article  Google Scholar 

  • Ghil M, Allen MR, Dettinger MD et al (2002) Advanced spectral methods for climatic time series. Rev Geophys 40(1):3-1-3–41. https://doi.org/10.1029/2000RG000092

    Article  Google Scholar 

  • Glorioso PD (2000) Patagonian shelf 3d tide and surge model. J Mar Syst 24(1–2):141–151. https://doi.org/10.1016/s0924-7963(99)00084-6

    Article  Google Scholar 

  • Glorioso PD, Flather RA (1997) The Patagonian Shelf tides. Prog Oceanogr 40:263–283

    Article  Google Scholar 

  • Grinsted A, Moore JC, Jevrejeva S (2004) Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Process Geophys 11(5/6):561–566. https://doi.org/10.5194/npg-11-561-2004

    Article  Google Scholar 

  • Groth A, Ghil M (2015) Monte carlo singular spectrum analysis (SSA) revisited: detecting oscillator clusters in multivariate datasets. J Clim 28(19):7873–7893. https://doi.org/10.1175/jcli-d-15-0100.1

    Article  Google Scholar 

  • Hague BS, Jones DA, Jakob D et al (2022) Australian coastal flooding trends and forcing factors. Earth’s Future 10(2):e2021EF002483

    Article  Google Scholar 

  • Jaureguizar AJ, Cortés F, Milessi AC et al (2015) A trans-ecosystem fishery: environmental effects on the small-scale gillnet fishery along the Río de la Plata boundary. Estuar Coast Shelf Sci 166:92–104. https://doi.org/10.1016/j.ecss.2014.11.003

    Article  Google Scholar 

  • Kidson JW (1999) Principal Modes of Southern Hemisphere low-frequency variability obtained from NCEP-NCAR reanalyses. J Clim 12(9):2808–2830

    Article  Google Scholar 

  • Lago LS, Saraceno M, Martos P et al (2019) On the wind contribution to the variability of ocean currents over wide continental shelves: a case study on the Northern Argentine Continental Shelf. J Geophys Res Oceans 124(11):7457–7472. https://doi.org/10.1029/2019jc015105

    Article  Google Scholar 

  • Lago LS, Saraceno M, Piola AR et al (2021) Volume transport variability on the Northern Argentine Continental Shelf from in situ and satellite altimetry data. J Geophys Res Oceans 126(2):256. https://doi.org/10.1029/2020jc016813

    Article  Google Scholar 

  • Lanfredi IS, de Camargo R (2018) Classification of extreme cold incursions over South America. Weather Forecast 33(5):1183–1203. https://doi.org/10.1175/waf-d-17-0159.1

    Article  Google Scholar 

  • Lunn AD, Thiebaux HJ (1996) Statistical data analysis for ocean and atmospheric sciences. J R Stat Soc A Stat Soc 159(2):356. https://doi.org/10.2307/2983195

    Article  Google Scholar 

  • Marshall GJ (2003) Trends in the Southern Annular Mode from observations and reanalyses. J Clim 16(24):4134–4143

    Article  Google Scholar 

  • McMonigal K, Larson S, Hu S et al (2023) Historical changes in wind-driven ocean circulation can accelerate global warming. Geophys Res Lett 50(4):487. https://doi.org/10.1029/2023gl102846

    Article  Google Scholar 

  • Meccia VL (2008) Estudios de la circulación forzada por el viento en el estuario del Río de la Plata y sus implicancias en la estratificación: resultados del análisis de datos y simulaciones numéricas. PhD thesis, Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales

  • Meccia VL, Simionato CG, Fiore ME et al (2009) Sea surface height variability in the Río de la Plata estuary from synoptic to inter-annual scales: results of numerical simulations. Estuar Coast Shelf Sci 85(2):327–343. https://doi.org/10.1016/j.ecss.2009.08.024

    Article  Google Scholar 

  • Mechoso CR, Iribarren GP (1992) Streamflow in Southeastern South America and the southern oscillation. J Clim 5(12):1535–1539

    Article  Google Scholar 

  • Mo KC (2000) Relationships between low-frequency variability in the Southern Hemisphere and Sea Surface Temperature Anomalies. J Clim 13(20):3599–3610

    Article  Google Scholar 

  • Mulligan RP, Swatridge L, Cantelon J et al (2023) Local and remote storm surge contributions to total water levels in the gulf of St. Lawrence during Hurricane Fiona. J Geophys Res Oceans 128(8):e2023JC019910

  • Park K, Federico I, Di Lorenzo E et al (2022) The contribution of hurricane remote ocean forcing to storm surge along the southeastern us coast. Coast Eng 173:104098

    Article  Google Scholar 

  • Piecuch C (2022) River effects on sea-level rise in the Río de la Plata during the past century. Authorea Preprints. https://doi.org/10.5194/egusphere-2022-700

  • Piola AR, Rivas A (1997) Corrientes en la Plataforma continental. Antecedentes históricos de las exploraciones en el mar y las características ambientales

  • Piola AR (2005) The influence of the Plata River discharge on the western South Atlantic shelf. Geophys Res Lett 32(1):8547. https://doi.org/10.1029/2004gl021638

    Article  Google Scholar 

  • Pousa JL, D’Onofrio EE, Fiore MME et al (2012) Environmental impacts and simultaneity of positive and negative storm surges on the coast of the Province of Buenos Aires, Argentina. Environ Earth Sci 68(8):2325–2335. https://doi.org/10.1007/s12665-012-1911-9

    Article  Google Scholar 

  • Preisendorfer R, Mobley C (1988) Principal component analysis in meteorology and oceanography. In: Developments in atmospheric science. Elsevier. https://books.google.com.ar/books?id=Mt_scAAACAAJ

  • Robertson A, Mechoso CR (1998) Inter-annual and decadal cycles in river flows of southeastern South America. J Clim 11:2570–2581

    Article  Google Scholar 

  • Rusticucci M, Vargas W (2007) Synoptic situations related to spells of extreme temperatures over Argentina. Meteorol Appl 2(4):291–300. https://doi.org/10.1002/met.5060020401

    Article  Google Scholar 

  • Saha S, Moorthi S, Pan HL et al (2010) The NCEP climate forecast system reanalysis. Bull Am Meteorol Soc 91(8):1015–1058. https://doi.org/10.1175/2010bams3001.1

    Article  Google Scholar 

  • Saurral RI, Ruiz JJ (2019) Revisiting the extreme cold air outbreak of June 1967 over central Argentina, fifty years later. Meteorologica 44(2):35–55. https://doi.org/10.1007/s00382-015-2704-0

    Article  Google Scholar 

  • Seluchi ME (1995) Diagnosis and prognosis of synoptic conditions conducive to cyclogensis over eastern South America. Geofis Int 34:171–186

    Article  Google Scholar 

  • Seluchi ME, Saulo AC (1996) Possible mechanisms yielding an explosive cyclogenesis over South America: experiments using a limited area model. Aust Meteorl Mag 47:309–320

    Google Scholar 

  • Simionato CG, Nuñez et al (2002) Estudio de la respuesta del modelo HamSOM/CIMA a vientos intensos sobre el Río de la Plata. In: Informe Proyecto AIACC LA2G

  • Simionato CG, Dragani WC, Meccia VL et al (2004) A numerical study of the barotropic circulation of the Río de la Plata Estuary: sensitivity to bathymetry, the earth’s rotation and low frequency wind variability. Estuar Coast Shelf Sci 61(2):261–273

    Article  Google Scholar 

  • Simionato CG, Dragani WC, Nuñez MN et al (2004) A set of 3-D nested models for tidal propagation from the Argentinian Continental Shelf to the Río de la Plata Estuary: I. M2. J Coast Res 20(3):893–912

    Article  Google Scholar 

  • Simionato CG, Meccia VL, Dragani WC et al (2005) Barotropic tide and baroclinic waves observations in the Río de la Plata Estuary. J Geophys Res 52:C06008. https://doi.org/10.1029/2004JC002842

    Article  Google Scholar 

  • Simionato CG, Meccia VL, Dragani WC et al (2006) Río de la Plata estuary response to wind variability in synoptic to intraseasonal scales: barotropic response. J Geophys Res Oceans 111(C9):874. https://doi.org/10.1029/2005JC003297

    Article  Google Scholar 

  • Simionato CG, Meccia VL, Dragani WC et al (2006) On the use of the NCEP/NCAR surface winds for modelling barotropic circulation in the Río de la Plata Estuary. Estuar Coast Shelf Sci 70:195–206

    Article  Google Scholar 

  • Simionato CG, Meccia VL, Guerrero R et al (2007) Río de la Plata estuary response to wind variability in synoptic to intraseasonal scales: 2. Currents’ vertical structure and its implications for the salt wedge structure. J Geophys Res 112(C7):815. https://doi.org/10.1029/2006jc003815

    Article  Google Scholar 

  • Simionato C, Dinápoli M, Etala P et al (2022) Development and implementation of an operational ocean sea level and waves forecasting system at the southwestern Atlantic continental shelf. EuroSea and OceanPredict Workshop on Ocean Prediction and Observing system design

  • Strub PT, James C, Combes V et al (2015) Altimeter-derived seasonal circulation on the southwest Atlantic shelf: 27\(^\circ\)–43\(^\circ\)s. J Geophys Res Oceans 120(5):3391–3418. https://doi.org/10.1002/2015jc010769

    Article  Google Scholar 

  • Trenberth KE (1991) Climate diagnostics from global analyses: conservation of mass in ECMWF analyses. J Clim 4(7):707–722

    Article  Google Scholar 

  • Urien CM, Zambrano JJ (1973) The geology of the basins of the Argentine Continental Margin and Malvinas Plateau. In: The South Atlantic. Springer, pp 135–169. https://doi.org/10.1007/978-1-4684-3030-1_4

  • Vera CS, Vigliarolo PK, Berbery EH (2002) Cold season synoptic-scale waves over subtropical South America. Mon Weather Rev 130(3):684–699

    Article  Google Scholar 

  • Violante R, Costa I, Cavallotto J et al (2014) Morphosedimentary features, processes and evolution of the Argentine Continental Shelf since the Last Glacial Maximum. Revista de la Asociacion Geologica Argentina 71:292–310

    Google Scholar 

  • Wang X, Verlaan M, Veenstra J et al (2022) Data-assimilation-based parameter estimation of bathymetry and bottom friction coefficient to improve coastal accuracy in a global tide model. Ocean Sci 18(3):881–904. https://doi.org/10.5194/os-18-881-2022

    Article  Google Scholar 

  • Zilli MT, Carvalho LM, Lintner BR (2019) The poleward shift of South Atlantic convergence zone in recent decades. Clim Dyn 52:2545–2563

    Article  Google Scholar 

Download references

Acknowledgements

This study was funded by the UBACYT 20020190100200BA and the Pampa Azul PIDT A5 “Desarrollo e implementación de un sistema de pronóstico oceánico operativo para la gestión y explotación sostenible de los recursos marinos”; both projects funded by the University of Buenos Aires and the Ministry of Science, Technology and Innovation of Argentina, respectively. The second project has been endorsed as part of the UN Decade of Ocean Science for Sustainable Development 2021-2030.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guadalupe Alonso.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alonso, G., Simionato, C.G., Dinápoli, M.G. et al. Positive Storm Surges in the Río de la Plata Estuary: forcings, long-term variability, trends and linkage with Southwestern Atlantic Continental Shelf dynamics. Nat Hazards 120, 5007–5032 (2024). https://doi.org/10.1007/s11069-024-06402-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-024-06402-w

Keywords

Navigation