Skip to main content

Advertisement

Log in

Nonlinear Interaction Between the Tide and the Storm Surge with the Current due to the River Flow in the Río de la Plata

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

The Río de la Plata estuary (RdP) is characterized by the large flow of its tributary rivers (Q), with an average of 22,000 m3 s− 1 and an interannual variability range from 8000 to 90,000 m3 s− 1. In this work, the hypothesis that the current due to that flow (CDR) interacts nonlinearly with both the tides and storm surges is evaluated utilizing water level observations and numerical simulations. Two tide gauge time series gathered at the freshwater tidal zone (FTZ) of the RdP are analyzed with the novel surrogate analysis. The analysis is applied for periods of high, medium and low Q. Results show that both interactions occur at the upper half of the FTZ and increase with Q. Harmonic analyses support the surrogate analysis’ conclusions and show that tide-CDR interaction redistributes the energy among tidal harmonics, increasing asymmetry. Numerical simulations confirm that (i) both interactions maximize at the upper half of the FTZ and decrease downstream; and (ii) they are modulated by Q; a rise of about 14,000 m3 s− 1 (interquartile range) can produce an intensification of 50% and 100% of the amplitudes of the tide-CDR and surge-CDR interactions, respectively; and (iii) both interactions introduce asymmetries in the water level, with faster rises and slower falls; (iv) the quadratic bottom friction is the main source of both interactions; (v) tide-CDR interaction represents 12% of the water level associated with the tide, whereas surge-CDR interaction accounts for 5% of the surge peak; and (vi) the interactions are significant in the upper FTZ because there, the magnitude of the currents associated with the tide and the surge are comparable to CDR; downstream, the channel widens and CDR decreases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Alebregtse, N, and H de Swart. 2016. Effect of river discharge and geometry on tides and net water transport in an estuarine network, an idealized model applied to the Yangtze Estuary. Continental Shelf Research 123: 29–49. https://doi.org/10.1016/j.csr.2016.003.028.

    Article  Google Scholar 

  • Amante, C. 2009. ETOPO1 1 Arc-Minute Global Relief Model : Procedures, Data Sources and Analysis. National Oceanic and Atmospheric Administration, National Environmental Satellite, Data and Information Service, National Geophysical Data Center. Marine Geology and Geophysics Division.

  • Balay, MA. 1961. El Río de la Plata entre la atmósfera y el Mar, publicación h-621 edn Servicio de hidrografía Naval. Armada Argentina, Buenos Aires.

  • Bernier, NB, and KR Thompson. 2007. Tide-surge interaction off the east coast of Canada and northeastern United States. Journal of Geophysical Research: Oceans 112.

  • Bijlsma, AC. 1986. Investigation of surge-tide interaction in storm surge model CSM-16. Delf Hydraulics.

  • Borús, J, M Uriburu Quirno, and D Calvo. 2008. Evaluación de caudales diarios descargados por los grandes riós del sistema del Plata al estuario del Río de la Plata. Dirección de Sistemas de información y Alerta hidrológico, Instituto Nacional del Agua 154.

  • Bowden, KF. 1983. Physical oceanography of coastal waters, Ellis Horwood ltd. Chichester: Cambridge University Press.

    Google Scholar 

  • Buschman, FA, AJF Hoitink, M van der Vegt, and P Hoekstra. 2009. Subtidal water level variation controlled by river flow and tides. Water Resources Research 45(10). https://doi.org/10.1029/2009wr008167.

  • Cai, H, Q Yang, Z Zhang, X Guo, F Liu, and S Ou. 2018. Impact of river-tide dynamics on the temporal-spatial distribution of residual water level in the Pearl River channel networks. Estuaries and Coasts 41(7): 1885–1903. https://doi.org/10.1007/s12237-018-0399-2.

    Article  Google Scholar 

  • Campos, EJD, CAD Lentini, JL Miller, and AR Piola. 1999. Interannual variability of the sea surface temperature in the South Brazil Bight. Geophysical Research Letters 26(14): 2061–2064. https://doi.org/10.1029/1999gl900297.

    Article  Google Scholar 

  • Copernicus Climate Change Service. 2017. ERA5: Fifth generation of ECMWF atmospheric reanalyses of the global climate. Copernicus climate change service climate data store (CDS). https://cds.climate.copernicus.eu/cdsapp!/home.

  • Courant, R, K Friedrichs, and H Lewy. 1928. Uber die partiellen differenzengleichungen der mathematischen physik. Mathematische Annalen 100: 32–74.

    Article  Google Scholar 

  • Debreu, L, P Marchesiello, P Penven, and G Cambon. 2012. Two-way nesting in split-explicit ocean models: algorithms, implementation and validation. Ocean Modelling 49-50: 1–21.

    Article  Google Scholar 

  • Dinȧpoli, MG, CG Simionato, and D Moreira. 2020a. Development and validation of a storm surge forecasting/hindcasting modelling system for the extensive Río de la Plata Estuary and its adjacent Continental Shelf. Natural Hazards. https://doi.org/10.1007/s11069-020-04079-5.

  • Dinȧpoli, MG, CG Simionato, and D Moreira. 2020b. Model sensitivity during extreme positive and negative surges in the Río de la plata estuary: Highlighting the need for an appropriate hindcast/forecast system. Weather and Forecasting 35(3): 1097–1112. https://doi.org/10.1175/waf-d-19-0171.1.

    Article  Google Scholar 

  • Dinȧpoli, MG, CG Simionato, and D Moreira. 2020c. Nonlinear tide-surge interactions in the Río de la Plata Estuary. Estuarine, Coastal and Shelf Science 241: 106834. https://doi.org/10.1016/j.ecss.2020.106834.

    Article  Google Scholar 

  • Dogliotti, A, K Ruddick, and R Guerrero. 2016. Seasonal and inter-annual turbidity variability in the Río de la Plata from 15 years of MODIS: El niño dilution effect. Estuarine, Coastal and Shelf Science 182: 27–39. https://doi.org/10.1016/j.ecss.2016.09.013.

    Article  Google Scholar 

  • D’Onofrio, EE. 1984. Desarrollo de un nuevo sistema de procesamiento de información de marea, informe técnico no. 25 edn Servicio de hidrografía Naval, Buenos Aires, Argentina.

  • D’Onofrio, EE, MM Fiore, and SI Romero. 1999. Return periods of extreme water levels estimated for some vulnerable areas of Buenos Aires. Continental Shelf Research 19(13): 1681–1693. https://doi.org/10.1016/s0278-4343(98)00115-0.

    Article  Google Scholar 

  • D’Onofrio, EE, MME Fiore, and JL Pousa. 2008. Changes in the regime of storm surges at Buenos Aires, Argentina, 260–265. http://www.jstor.org/stable/30133742.

  • Doodson, AT. 1956. Tides and storm surges in a long uniform gulf. Proceedings of the Royal Society of London A 237: 325–343. https://doi.org/10.1098/rspa.1956.0180.

    Article  Google Scholar 

  • Dragani, WC, and SI Romero. 2004. Impact of a possible local wind change on the wave climate in the upper Río de la plata. International Journal of Climatology 24(9): 1149–1157. https://doi.org/10.1002/joc.1049.

    Article  Google Scholar 

  • Dronkers J. 1986. Tide-induced residual transport of fine sediment. Physics of shallow estuaries and bays, american geophysical union, 228–244. https://doi.org/10.1029/ln016p0228.

  • Dullaart, JCM, S Muis, N Bloemendaal, and JCJH Aerts. 2020. Advancing global storm surge modelling using the new ERA5 climate reanalysis. Climate Dynamics 54(1): 1007–1021. https://doi.org/10.1007/s00382-019-05044-0.

    Article  Google Scholar 

  • Egbert, GD, and SY Erofeeva. 2002. Efficient inverse modeling of barotropic ocean tides. Journal of Atmospheric and Oceanic Technology 19(2): 183–204. https://doi.org/10.1175/1520-0426(2002)019<0183:eimobo>2.0.co;2.

    Article  Google Scholar 

  • Flather, RA. 2001. Storm surges. Encyclopedia of ocean sciences, eds. Steele j, Thorpe S, and Turekian K, 2882–2892. San Diego, Academic.

  • Framiñán, MB, MP Etala, EM Acha, RA Guerrero, CA Lasta, and OB Brown. 1999. Physical characteristics and processes of the Río de la Plata Estuary. Estuaries of South America: Their morphology and dynamics, eds. Perillo G, Piccolo M, and Quivira MP, 161–194. Berlin, Springer.

  • Framiṅan, MB, and OB Brown. 1996. Study of the Río de la Plata turbidity front, Part 1: spatial and temporal distribution. Continental Shelf Research 16(10): 1259–1282. https://doi.org/10.1016/0278-4343(95)00071-2.

    Article  Google Scholar 

  • Friedrichs, CT, and DG Aubrey. 1994. Tidal propagation in strongly convergent channels. Journal of Geophysical Research 99(C2): 3321. https://doi.org/10.1029/93jc03219.

    Article  Google Scholar 

  • Gallo, M, and S Vinzon. 2005. Generation of overtides and compound tides in Amazon estuary. Ocean Dynamics 55: 441–448. https://doi.org/10.1007/s10236-005-0003-8.

    Article  Google Scholar 

  • Gill, A. 1982. Atmosphere-ocean dynamics, 1st ed. New York: Elsevier.

    Google Scholar 

  • Godin, G. 1972. The analysis of tide. Toronto: University of Toronto Press.

    Google Scholar 

  • Godin, G. 1985. Modification of river tides by the discharge. Journal of Waterway, Port, Coastal, and Ocean Engineering 111(2): 257–274.

    Article  Google Scholar 

  • Godin, G. 1991. Compact approximations to the bottom friction term, for the study of tides propagating in channels. Continental Shelf Research 11(7): 579–589.

    Article  Google Scholar 

  • Godin, G. 1999. The propagation of tides up rivers with special considerations on the upper Saint Lawrence River. Estuarine, Coastal and Shelf Science 48(3): 307–324.

    Article  Google Scholar 

  • Guerrero, R, M Acha, M Framinan, and C Lasta. 1997. Physical oceanography of the Río de la Plata Estuary, Argentina. Continental Shelf Research 17: 727–742. https://doi.org/10.1016/S0278-4343(96)00061-1.

    Article  Google Scholar 

  • Guo, L, M van der Wegen, DA Jay, P Matte, ZB Wang, D Roelvink, and Q He. 2015. River-tide dynamics: Exploration of nonstationary and nonlinear tidal behavior in the Yangtze River estuary. Journal of Geophysical Research: Oceans 120(5): 3499–3521. https://doi.org/10.1002/2014jc010491.

    Article  Google Scholar 

  • Hoitink, AJF, and DA Jay. 2016. Tidal river dynamics: Implications for deltas. Reviews of Geophysics 54(1): 240–272. https://doi.org/10.1002/2015rg000507.

    Article  Google Scholar 

  • Horrevoets, A, H Savenije, J Schuurman, and S Graas. 2004. The influence of river discharge on tidal damping in alluvial estuaries. Journal of Hydrology 294(4): 213–228. https://doi.org/10.1016/j.jhydrol.2004.02.012.

    Article  Google Scholar 

  • Idier, D, F Dumas, and H Muller. 2012. Tide-surge interaction in the English Channel. Natural Hazards and Earth System Sciences 12: 3709–3718. https://doi.org/10.5194/nhess-12-3709-2012.

    Article  Google Scholar 

  • Jaime, P, A Menéndez, M Uriburu Quirno, and J Torchio. 2002. Análisis del régimen hidrológico de los Ríos paraná y Uruguay Informe LHA 05-216-02 Instituto Nacional del Agua, Buenos Aires, Argentina.

  • Jay, DA. 1991. Green’s law revisited: Tidal long-wave propagation in channels with strong topography. Journal of Geophysical Research: Oceans 96(C11): 20585–20598.

    Article  Google Scholar 

  • Jay, DA, and EP Flinchem. 1997. Interaction of fluctuating river flow with a barotropic tide: a demonstration of wavelet tidal analysis methods. Journal of Geophysical Research: Oceans 102(C3): 5705–5720.

    Article  Google Scholar 

  • Jay, DA, and EP Flinchem. 1999. A comparison of methods for analysis of tidal records containing multi-scale non-tidal background energy. Continental Shelf Research 19(13): 1695–1732.

    Article  Google Scholar 

  • Jay, DA, and T Kukulka. 2003. Revising the paradigm of tidal analysis - the uses of non-stationary data. Ocean Dynamics 53(3): 110–125. https://doi.org/10.1007/s10236-003-0042-y.

    Article  Google Scholar 

  • Jay, DA, AB Borde, and HL Diefenderfer. 2016. Tidal-fluvial and estuarine processes in the Lower Columbia River: II. Water level models, floodplain wetland inundation, and system zones. Estuaries and Coasts 39(5): 1299–1324. https://doi.org/10.1007/s12237-016-0082-4.

    Article  Google Scholar 

  • Jones, JE, and AM Davies. 2008. On the modification of tides in shallow water regions by wind effects. Journal of Geophysical Research 113(C5). https://doi.org/10.1029/2007jc004310.

  • Kim, DH, SJ Hong, HY Lee, DS Kim, YH Jung, HT Kim, and CI Yoo. 2018. Combined effect of river discharge and storm surge on safe water level around urbanized estuary. Coastal Engineering Proceedings 1: 96. https://doi.org/10.9753/icce.v36.papers.96.

    Article  Google Scholar 

  • Kukulka, T. 2003. Impacts of Columbia River discharge on salmonid habitat: 1. a nonstationary fluvial tide model. Journal of Geophysical Research 108(C9). https://doi.org/10.1029/2002jc001382.

  • Lancaster, G, D Iatsenko, A Pidde, V Ticcinelli, and A Stefanovska. 2018. Surrogate data for hypothesis testing of physical systems. Physics Reports 748: 1–60. https://doi.org/10.1016/j.physrep.2018.06.001. surrogate data for hypothesis testing of physical systems.

    Article  Google Scholar 

  • LeBlond, PH. 1978. On tidal propagation in shallow rivers. Journal of Geophysical Research: Oceans 83(C9): 4717–4721.

    Article  Google Scholar 

  • Li, T, F Wang, J Hou, Z Che, and J Dong. 2019. Validation of an operational forecasting system of sea dike risk in the southern Zhejiang, South China. Journal of Oceanology and Limnology 37 (6): 1929–1940. https://doi.org/10.1007/s00343-019-8240-8.

    Article  Google Scholar 

  • Losada, MA, M Díez-Minguito, and MÁ Reyes-Merlo. 2017. Tidal-fluvial interaction in the Guadalquivir River Estuary: Spatial and frequency-dependent response of currents and water levels. Journal of Geophysical Research: Oceans 122(2): 847–865. https://doi.org/10.1002/2016jc011984.

    Article  Google Scholar 

  • Luz Clara Tejedor, M, CG Simionato, EE D’Onofrio, MME Fiore, and D Moreira. 2014. Variability of tidal constants in the Río de la Plata estuary associated to the natural cycles of the runoff. Estuar Coastal Shelf S 148(7): 85–96.

    Article  Google Scholar 

  • Luz Clara Tejedor, M, CG Simionato, EE D’Onofrio, and D Moreira. 2015. Future sea level rise and changes on tides in the Patagonian Continental Shelf. Journal of Coastal Research 313: 519–535. https://doi.org/10.2112/jcoastres-d-13-00127.1.

    Article  Google Scholar 

  • Lyddon, C, JM Brown, N Leonardi, and AJ Plater. 2018. Flood hazard assessment for a hyper-tidal estuary as a function of tide-surge-morphology interaction. Estuaries and Coasts 41(6): 1565–1586. https://doi.org/10.1007/s12237-018-0384-9.

    Article  Google Scholar 

  • Mannattil, M, H Gupta, and S Chakraborty. 2016. Revisiting evidence of chaos in X-ray light curves: The case of grs 1915 + 105. The Astrophysical Journal 833(2): 208. https://doi.org/10.3847/1538-4357/833/2/208.

    Article  Google Scholar 

  • Mannattil, M, A Pandey, MK Verma, and S Chakraborty. 2017. On the applicability of low-dimensional models for convective flow reversals at extreme Prandtl numbers. The European Physical Journal B 90 (12): 259. https://doi.org/10.1140/epjb/e2017-80391-1.

    Article  CAS  Google Scholar 

  • Maskell, JH, J Grieser, J Rodney, and NJ Howe. 2016. Investigating typhoon induced river-surge interactions in the Tamsui Estuary, Taiwan. American geophysical union, EC34B– 1177.

  • Maskell, J. 2012. Storm surge and river interaction in estuaries. EGU general assembly conference abstracts.

  • Maskell, J, K Horsburgh, M Lewis, and P Bates. 2013. Investigating river-surge interaction in idealised estuaries. Journal of Coastal Research 30. https://doi.org/10.2112/JCOASTRES-D-12-00221.1.

  • Maskell, J, K Horsburgh, M Lewis, and P Bates. 2014. Investigating river-surge interaction in idealised estuaries. Journal of Coastal Research 294: 248–259. https://doi.org/10.2112/jcoastres-d-12-00221.1.

    Article  Google Scholar 

  • Matte, P, Y Secretan, and J Morin. 2014. Temporal and spatial variability of tidal-fluvial dynamics in the St. Lawrence fluvial estuary: An application of nonstationary tidal harmonic analysis. Journal of Geophysical Research: Oceans 119(9): 5724–5744. https://doi.org/10.1002/2014jc009791.

    Article  Google Scholar 

  • Meccia, VL, CG Simionato, and RA Guerrero. 2013. The [r]ío de la Plata Estuary response to wind variability in synoptic timescale: Salinity fields and salt wedge structure. Journal of Coastal Research 286: 61–77. https://doi.org/10.2112/jcoastres-d-11-00063.1.

    Article  Google Scholar 

  • Moreira, D, and CG Simionato. 2019. Modeling the suspended sediment transport in a very wide, shallow, and microtidal estuary, the Río de la Plata, Argentina. Journal of Advances in Modeling Earth Systems 11(10): 3284–3304. https://doi.org/10.1029/2018MS001605. https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2018MS001605.

    Article  Google Scholar 

  • Moreira, D, CG Simionato, F Gohin, F Cayocca, and MLC Tejedor. 2013. Suspended matter mean distribution and seasonal cycle in the Río de la Plata estuary and the adjacent shelf from ocean color satellite (MODIS) and in-situ observations. Continental Shelf Research 68: 51–66. https://doi.org/10.1016/j.csr.2013.08.015.

    Article  Google Scholar 

  • Murty, TS. 1984. Storm surges: Meteorological ocean tides. Canadian Bulletin of Fisheries and Aquatic Sciences 212: 897.

    Google Scholar 

  • Parker, BB. 2007. Tidal analysis and prediction. https://doi.org/10.25607/OBP-191.

  • Pedlosky, J. 1987. Geophysical fluid dynamics, 2nd ed. New York: Springer.

    Book  Google Scholar 

  • Piola, AR, SI Romero, and U Zajaczkovski. 2008. Space–time variability of the Plata plume inferred from ocean color. Continental Shelf Research 28(13): 1556–1567. https://doi.org/10.1016/j.csr.2007.02.013.

    Article  Google Scholar 

  • Proudman, J. 1955a. The propagation of tide and surge in an estuary. Proceedings of the Royal Society of London A 231: 8–24. https://doi.org/10.1098/rspa.1955.0153.

    Article  Google Scholar 

  • Pugh, D. 2004. Changing sea levels, effects of tides, weather and climate. Cambridge: Cambridge University Press.

    Google Scholar 

  • Re, M, and AN Menéndez. 2011. Modelación hidro-sedimentológica del Río de la plat. dinámica de sedimentos bajo condiciones hidrometeorológicas normales. Proyecto Freplata-FFEM INA-LHA 07-296-11.

  • Re, M, M Sabarots Gerbec, and AN Menéndez. 2010. Modelación hidro-sedimentológica del Río de la plata. implementación del modelo sedimentológico. Proyecto Freplata-FFEM INA-LHA 06-296-10.

  • Ribeiro, RB, AFP Sampaio, MS Ruiz, JC Leitão, and PC Leitão. 2018. First approach of a storm surge early warning system for Santos Region. Climate change in santos brazil: projections, impacts and adaptation options, 135–157. Springer International Publishing. https://doi.org/10.1007/978-3-319-96535-2_7.

  • Robertson, A, and CR Mechoso. 1998. Inter-annual and decadal cycles in river flows of southeastern South America. Journal of Climate 11: 2570–2581.

    Article  Google Scholar 

  • Romero, SI. 2008. Estimaciones satelitales de clorofila y los frentes oceánicos del atlántico sudoccidental. PhD thesis, Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales.

  • Rossiter, JR. 1961. Interaction between tide and surge in the Thames. Geophysical Journal 6: 29–53. https://doi.org/10.1111/j.1365-246X.1961.tb02960.x.

    Article  Google Scholar 

  • Santoro, P, M Fernández, M Fossati, G Cazes, R Terra, and I Piedra-Cueva. 2011. Pre-operational forecasting of sea level height for the Río de la Plata. Applied Mathematical Modelling 35(5): 2462–2478. https://doi.org/10.1016/j.apm.2010.11.065.

    Article  Google Scholar 

  • Sassi, MG, and AJF Hoitink. 2013. River flow controls on tides and tide-mean water level profiles in a tidal freshwater river. Journal of Geophysical Research: Oceans 118(9): 4139–4151. https://doi.org/10.1002/jgrc.20297.

    Article  Google Scholar 

  • Savenije, HHG, M Toffolon, J Haas, and EJM Veling. 2008. Analytical description of tidal dynamics in convergent estuaries. Journal of Geophysical Research 113(C10). https://doi.org/10.1029/2007jc004408.

  • Schreiber, T, and A Schmitz. 1996. Improved surrogate data for nonlinearity tests. Physical Review Letters 77: 635–638. https://doi.org/10.1103/PhysRevLett.77.635.

    Article  CAS  Google Scholar 

  • SHN. 1986. Mar Argentino, de Río de la Plata al Cabo de Hornos, Carta Náutica 50. Servicio de Hidrografía Naval, Armada Argentina 4 ed.

  • SHN. 1992. Acceso al Río de la Plata, Carta Náutica H1. Servicio de Hidrografía Naval, Armada Argentina 5 ed.

  • SHN. 1993. El Rincón, Golfo San Matías y Nuevo, Carta Náutica H2. Servicio de Hidrografía Naval, Armada Argentina 4 ed.

  • SHN. 1999a. Río de la Plata Exterior, Carta Náutica H113,. Servicio de Hidrografía Naval, Armada Argentina 2 ed.

  • SHN. 1999b. Río de la Plata Medio y Superior, Carta Náutica H116. Servicio de Hidrografía Naval, Armada Argentina 4 ed.

  • Simionato, CG, M N Nuṅez, and M Engel. 2001. The salinity front of the Río de la Plata - A numerical case study for winter and summer conditions. Geophysical Research Letters 28(13): 2641–2644. https://doi.org/10.1029/2000gl012478.

    Article  Google Scholar 

  • Simionato, CG, WC Dragani, VL Meccia, and M N Nuñez. 2004a. A numerical study of the barotropic circulation of the Río de la Plata Estuary: sensitivity to bathymetry, the earth’s rotation and low frequency wind variability. Estuarine, Coastal and Shelf Science 61(2): 261–273.

    Article  Google Scholar 

  • Simionato, CG, WC Dragani, M N Nuñez, and M Engel. 2004b. A set of 3-D nested models for tidal propagation from the Argentinian Continental Shelf to the Río de la Plata Estuary: I. M2. Journal of Coastal Research 20(3): 893–912.

    Article  Google Scholar 

  • Simionato, CG, VL Meccia, WC Dragani, and M N Nuñez. 2005. Barotropic tide and baroclinic waves observations in the Río de la Plata Estuary. Journal of Geophysical Research C06008. https://doi.org/10.1029/2004JC002842.

  • Simionato, CG, VL Meccia, WC Dragani, R Guerrero, and MN Nuñez. 2006a. Río de la Plata estuary response to wind variability in synoptic to intraseasonal scales: Barotropic response. Journal of Geophysical Research: Oceans 111(C9). https://doi.org/10.1029/2005JC003297. https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2005JC003297.

  • Simionato, CG, VL Meccia, WC Dragani, and M N Nuñez. 2006b. On the use of the NCEP/NCAR surface winds for modelling barotropic circulation in the Río de la Plata Estuary. Estuar Coast Shelf S 70: 195–206.

    Article  Google Scholar 

  • Simionato, CG, VL Meccia, R Guerrero, WC Dragani, and M Nuṅez. 2007. Río de la Plata estuary response to wind variability in synoptic to intraseasonal scales: 2. Currents’ vertical structure and its implications for the salt wedge structure. Journal of Geophysical Research 112(C7). https://doi.org/10.1029/2006jc003815.

  • Sinha, P, Y Rao, S Dube, A Rao, and A Chatterjee. 1996. Numerical investigation of tide-surge interaction in Hooghly Estuary, India. Marine Geodesy 19: 235–255. https://doi.org/10.1080/01490419609388082.

    Article  Google Scholar 

  • Smith, S. 1999. The scientist and engineer’s guide to digital signal processing. San Diego: California Technical Pub.

    Google Scholar 

  • Spicer, P. 2019. Tide and storm surge dynamics in estuaries of variable morphology. Master’s thesis, University of Maine. https://digitalcommons.library.umaine.edu/etd/2993.

  • Trèves, F. 1967. Topological vector spaces, distributions and kernels. Amsterdam: Elsevier.

    Google Scholar 

  • Wankang, Y, Y Baoshu, F Xingru, Y Dezhou, G Guandong, and C Haiying. 2019. The effect of nonlinear factors on tide-surge interaction: A case study of typhoon Rammasun in Tieshan Bay, China. Estuarine, Coastal and Shelf Science 219: 420–428. https://doi.org/10.1016/j.ecss.2019.01.024. http://www.sciencedirect.com/science/article/pii/S0272771418305560.

    Article  Google Scholar 

  • Wilks, D. 2011. Statistical methods in the atmospheric sciences. International geophysics. Elsevier. https://books.google.com.ar/books?id=IJuCVtQ0ySIC.

  • WMO. 2011. World Meteorological Organization - Guide to storm surge forecasting. Cambridge: Cambridge University Press. http://hdl.handle.net/11329/393.

    Google Scholar 

  • Wolf, J. 1978. Interaction of tide and surge in a semi-infinite uniform channel, with application to surge propagation down the east coast of Britain. Applied Mathematical Modelling 2: 245–253.

    Article  Google Scholar 

  • Wolf, J. 1981. Surge-tide interaction in the north sea and river thames. Floods due to high winds and tides, 75–94. New York, Elsevier.

  • Zhang, F, J Sun, B Lin, and G Huang. 2018. Seasonal hydrodynamic interactions between tidal waves and river flows in the Yangtze Estuary. Journal of Marine Systems 186: 17–28. https://doi.org/10.1016/j.jmarsys.2018.05.005.

    Article  Google Scholar 

  • Zhang, WZ, F Shi, HS Hong, SP Shang, and JT Kirby. 2010. Tide-surge interaction intensified by the Taiwan Strait. Journal of Geophysical Research 115. https://doi.org/10.1029/2009JC005762.

Download references

Acknowledgments

Matías G. Dinápoli participation was possible thanks to ANPCyT and CONICET PhD fellowships. The authors are grateful to the Instituto Nacional del Agua and the Servicio de Hidrografía Naval for sharing the continental discharge and water level data, respectively. Finally, the authors are also grateful to Reviewer 2 for his or her careful reading of the manuscript and constructive comments and suggestions, which contributed to a significant improvement of this work.

Funding

This study was funded by the National Agency for Scientific and Technological Research of Argentina (ANPCyT) PICT 2014-2672 Project, the Programa de Investigación y Desarrollo para la Defensa del MINDEF (PIDDEF) 14-14 Project, and the UBACYT 20020150100118BA directed by Claudia G. Simionato.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matías G. Dinápoli.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Arnoldo Valle-Levinson

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dinápoli, M.G., Simionato, C.G. & Moreira, D. Nonlinear Interaction Between the Tide and the Storm Surge with the Current due to the River Flow in the Río de la Plata. Estuaries and Coasts 44, 939–959 (2021). https://doi.org/10.1007/s12237-020-00844-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-020-00844-8

Keywords

Navigation