Skip to main content

Advertisement

Log in

Pixel-based classification method for earthquake-induced landslide mapping using remotely sensed imagery, geospatial data and temporal change information

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

A series of earthquakes occurred in Kumamoto, Japan, in April 2016, which caused numerous landslides. In this study, high-resolution pre-event and post-event optical imagery, plus bi-temporal Synthetic Aperture Radar (SAR) data are paired with geospatial data to train a pixel-based machine learning classification algorithm using logistic regression to identify landslides occurred because of the Kumamoto earthquakes. The geospatial data used include a categorical variable (surficial geology), and six continuous variables including elevation, slope, aspect, curvature, annual precipitation, and landslide probability derived by the USGS preferred geospatial model which incorporates ground shaking in the input parameters. Grayscale index change and vegetation index change are also calculated from the optical imagery and used as input variables, in addition to temporal differences in HH (horizontally transmitted and horizontally received polarization) and HV (horizontally transmitted and vertically received polarization) amplitudes of SAR data. A detailed human-drawn landslide occurrence inventory was used as ground-truth for model development and testing. The selection of optimal features was done using a supervised feature ranking method based on the Receiver Operating Characteristic (ROC) curve. To weigh the benefit of combining different types of imagery, temporal change information and geospatial environmental indicators for landslide mapping after earthquakes, five different combinations of features were tested, and the results showed that adding data of selected geospatial parameters (landslide probability, slope, curvature, precipitation, and geology) plus selected change indices (grayscale index change, vegetation index change, and HV amplitude difference of SAR data) to the imagery (post event optical) lead to the highest classification accuracy of 86.5% on class-balanced independent testing data. A comparative analysis was conducted to evaluate the performance of the proposed method with five other commonly used machine learning classification methods, and the results have shown the superiority of the logistic regression method, followed by support vector machines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Ado M, Amitab K, Maji AK, Jasińska E, Gono R, Leonowicz Z, Jasiński M (2022) Landslide susceptibility mapping using machine learning: a literature survey. Remote Sens 14:3029. https://doi.org/10.3390/rs14133029

    Article  Google Scholar 

  • Aimaiti Y, Liu W, Yamazaki F, Maruyama Y (2019) Earthquake-induced landslide mapping for the 2018 Hokkaido Eastern Iburi earthquake using PALSAR-2 data. Remote Sens 11:2351. https://doi.org/10.3390/rs11202351

    Article  Google Scholar 

  • Allstadt KE, Thompson EM, Jibson RW et al (2022) The US geological survey ground failure product: near-real-time estimates of earthquake-triggered landslides and liquefaction. Earthq Spectra 38(1):5–36. https://doi.org/10.1177/87552930211032685

    Article  Google Scholar 

  • Asadi A, Baise LG, Sanon C, Koch M, Chatterjee S, Moaveni B (2023) Semi-supervised learning method for the augmentation of an incomplete image-based inventory of earthquake-induced soil liquefaction surface effects. Remote Sens 15(19):4883. https://doi.org/10.3390/rs15194883

    Article  Google Scholar 

  • Bai Y, Adriano B, Mas E, Koshimura S (2017) Machine learning based building damage mapping from the ALOS-2/PALSAR-2 SAR imagery: case study of 2016 Kumamoto earthquake. J Disaster Res 12:646–655

    Article  Google Scholar 

  • Bhuyan K, Tanyaş H, Nava L et al (2023) (2023) Generating multi-temporal landslide inventories through a general deep transfer learning strategy using HR EO data. Sci Rep 13:162. https://doi.org/10.1038/s41598-022-27352-y

    Article  CAS  Google Scholar 

  • Breiman L, Friedman JH, Olshen RA, Stone CJ (1984) Classification and regression trees. Chapman & Hall, Boca Raton

    Google Scholar 

  • Burger W, Burge MJ (2010) Principles of digital image processing core algorithms. Springer Science & Business Media, Cham, pp 110–111

    Google Scholar 

  • Cabinet office of Japan. Summary of damage situation in the kumamoto earthquake sequence. 2016; (In Japanese). Available online: http://www.bousai.go.jp/updates/h280414jishin/index.html.

  • Carrara A, Cardinali M, Guzzetti F (1992) Uncertainty in assessing landslide hazard and risk. ITC J 2:172–183

    Google Scholar 

  • Chen C-W, Chen H, Wei L-W, Lin G-W, Iida T, Yamada R (2017a) Evaluating the susceptibility of landslide landforms in Japan using slope stability analysis: a case study of the 2016 Kumamoto earthquake. Landslides 14:1793–1801. https://doi.org/10.1007/s10346-017-0872-1

    Article  Google Scholar 

  • Chen F, Yu B, Xu C, Li B (2017b) Landslide detection using probability regression, a case study of Wenchuan, Northwest of Chengdu. Appl Geogr 89:32–40

    Article  Google Scholar 

  • Chen CW, Sato M, Yamada R, Iida T, Matsuda M, Chen H (2022) Modeling of earthquake-induced landslide distributions based on the active fault parameters. Eng Geol 303:106640

    Article  Google Scholar 

  • Christianini N, Shawe-Taylor J (2000) An introduction to support vector machines and other kernel-based learning methods. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Cover T, Hart P (1967) Nearest neighbor pattern classification. IEEE Trans Inf Theory 13(1):21–27. https://doi.org/10.1109/TIT.1967.1053964

    Article  Google Scholar 

  • Cruden DM, Varnes DJ (1996) Landslides: investigation and mitigation. Chapter 3: landslide types and processes. Transp Res Board Special Rep 247:36–75

    Google Scholar 

  • Dai FC, Xu C, Yao X, Xu L, Tu XB, Gong QM (2011) Spatial distribution of landslides triggered by the 2008 Ms 8.0 Wenchuan earthquake, China. J Asian Earth Sci 40:883–895. https://doi.org/10.1016/j.jseaes.2010.04.010

    Article  Google Scholar 

  • DigitalGlobe GeoEye-1 sensor documentation: https://gbdxdocs.digitalglobe.com/docs/geoeye-1.

  • Dou J, Yunus AP, Bui DT, Merghadi A, Sahana M, Zhu Z, Chen C-W, Han Z, Pham BT (2020) Improved landslide assessment using support vector machine with bagging, boosting, and stacking ensemble machine learning framework in a mountainous watershed, Japan. Landslides 17(3):641–658

    Article  Google Scholar 

  • Fang Z, Wang Y, Peng L, Hong H (2020) Integration of convolutional neural network and conventional machine learning classifiers for landslide susceptibility mapping. Comput Geosci 139:104470

    Article  Google Scholar 

  • Fanos AM, Pradhan B, Mansor S, Yusoff ZM, Abdullah AF (2018) A hybrid model using machine learning methods and GIS for potential rockfall source identification from airborne laser scanning data. Landslides 15(9):1833–1850

    Article  Google Scholar 

  • Fawcett T (2004) ROC graphs: notes and practical considerations for researchers. Mach Learn 31(1):1–38

    Google Scholar 

  • Fick SE, Hijmans RJ (2017) WorldClim 2: new 1km spatial resolution climate surfaces for global land areas. Int J Climatol 37(12):4302–4315

    Article  Google Scholar 

  • Fiorucci F, Cardinali M, Carlà R, Rossi M, Mondini A, Santurri L, Ardizzone F, Guzzetti F (2011) Seasonal landslide mapping and estimation of landslide mobilization rates using aerial and satellite images. Geomorphology 129(1–2):59–70

    Article  Google Scholar 

  • Galli M, Ardizzone F, Cardinali M, Guzzetti F, Reichenbach P (2008) Comparing landslide inventory maps. Geomorphology 94(3–4):268–289. https://doi.org/10.1016/j.geomorph.2006.09.023

    Article  Google Scholar 

  • GDEM-003, 2018, NASA/METI/AIST/Japan Space systems, and U.S./Japan ASTER Science Team. ASTER Global Digital Elevation Model V003. 2018, distributed by NASA EOSDIS Land Processes DAAC, https://doi.org/10.5067/ASTER/ASTGTM.003.

  • GEER Report, 2016; Geotechnical Aspects of the 2016 MW 6.2, MW 6.0, and MW 7.0 Kumamoto Earthquakes GEER Association; geerassociation.org; Kumamoto Earthquakes, Version 1.0, July 2016. Kayen R, Dashti S, Kokusho T, Hazarika H, Franke K, Oettle N, Wham B, Calderon JR, Briggs D, Guillies S, Cheng K, Tanoue Y, Takematsu K, Matsumoto D, Morinaga T, Furuichi H, Kitano Y, Tajiri M, Chaudhary B, Nishimura K, Chu C (2016) Geotechnical aspects of the 2016 Mw 6.2, Mw 6.0, and Mw 7.0 Kumamoto earthquakes. Geotechnical Extreme Events Reconnaissance Association, Version 1.0, July 2016. https://pubs.er.usgs.gov/publication/70185571.

  • Geological Survey of Japan (2015); Seamless digital geological map of Japan by the Geological Survey of Japan (2015): https://gbank.gsj.jp/seamless/.

  • GSI (2016a) “平成28年熊本地震に関する情報”. Geospatial Information Authority of Japan, http://www.gsi.go.jp/BOUSAI/H27-kumamoto-earthquake-index.html.

  • GSI (2016b) – in Japanese: https://maps.gsi.go.jp/development/ichiran.html#fukkyukizu

  • Godt JW, Sener B, Verdin KL, Wald DJ, Earle PS, Harp EL, Jibson RW, (2008) Rapid assessment of earthquake-induced landsliding. In: Proceedings of the first world landslide forum, United Nations University, Tokyo, Japan, (pp. 392–395)

  • Guzzetti F, Mondini AC, Cardinali M, Fiorucci F, Santangelo M, Chang KT (2012) Landslide inventory maps: New tools for an old problem. Earth-Sci Rev 112(12):42–66. https://doi.org/10.1016/j.earscirev.2012.02.001

    Article  Google Scholar 

  • Guzzetti F, (2006) Ph.D. dissertation on Landslide Hazard and Risk Assessment, at the Mathematisch-Naturwissenschaftlichen Fakultät der Rheinischen Friedrich-Wilhelms-Universität University of Bonn, Bonn, Germany, defended on Jul 2006.

  • Hacıefendioğlu K, Demir G, Başağa HB (2021) (2021) Landslide detection using visualization techniques for deep convolutional neural network models. Nat Hazards 109:329–350. https://doi.org/10.1007/s11069-021-04838-y

    Article  Google Scholar 

  • Harp EL, Jibson RL, (1995) Inventory of landslides triggered by the 1994 Northridge, California earthquake. U.S. Geological Survey Open File Report, (pp. 95–213)

  • Hastie T, Tibshirani R, Friedman J (2009) The elements of statistical learning: data mining, inference, and prediction, 2nd edn. Springer, New York. https://doi.org/10.1007/978-0-387-84858-7

    Book  Google Scholar 

  • Haykin S (2008) Neural networks and learning machines, 3rd edn. Pearson Education India

    Google Scholar 

  • He P, Wen Y, Caijun Xu, Chen Y (2016) Complete three-dimensional near-field surface displacements from imaging geodesy techniques applied to the 2016 Kumamoto earthquake. Remote Sens Environ 232:111321. https://doi.org/10.1016/j.rse.2019.111321

    Article  Google Scholar 

  • He Q, Wang M, Liu K (2021) Rapidly assessing earthquake-induced landslide susceptibility on a global scale using random forest. Geomorphology 391:107889. https://doi.org/10.1016/j.geomorph.2021.107889

    Article  Google Scholar 

  • Hong Y, Adler R, Huffman G (2007) Use of satellite remote sensing data in the mapping of global landslide susceptibility. Nat Hazards 43:245–256. https://doi.org/10.1007/s11069-006-9104-z

    Article  Google Scholar 

  • Imanian A, Tangestani MH, Asadi A (2019) Application of radar and optical satellite imagery data in landslide potential mapping of sheshpeer sub-catchment in Iran. Int Arch Photogram Remote Sens Spatial Inf Sci 42:547–552

    Article  Google Scholar 

  • Jaboyedoff M, Oppikofer T, Abellan A, Derron M-H, Loye A, Metzger R, Pedrazzini A (2012) Use of LiDAR in landslide investigations: a review. Nat Hazards 61(1):5–28. https://doi.org/10.1007/s11069-010-9634-2

    Article  Google Scholar 

  • James G, Witten D, Hastie T, Tibshirani R (2013) An introduction to statistical learning with applications in R. Springer, New York. https://doi.org/10.1007/978-1-4614-7138-7

    Book  Google Scholar 

  • JAXA, 2016, Japanese Aerospace Exploration Agency: https://satpf.jp/spf_atl/article/view/273?lang=en

  • Ji Y, Sumantyo JTS, Chua MY, Waqar MM (2018) Earthquake/tsunami damage level mapping of urban areas using full polarimetric SAR data. IEEE J Sel Topics Appl Earth Observ Remote Sens 11(7):2296–2309

    Article  Google Scholar 

  • Kalantar B, Pradhan B, Naghibi SA, Motevalli A, Mansor S (2018) Assessment of the effects of training data selection on the landslide susceptibility mapping: a comparison between support vector machine (SVM), logistic regression (LR) and artificial neural networks (ANN). Geomat Nat Hazard Risk 9(1):49–69. https://doi.org/10.1080/19475705.2017.1407368

    Article  Google Scholar 

  • Kazmi W, Garcia-Ruiz FJ, Nielsen J, Rasmussen J, Andersen HJ (2015) Detecting creeping thistle in sugar beet fields using vegetation indices. Comput Electron Agric 112:10–19. https://doi.org/10.1016/j.compag.2015.01.008

    Article  Google Scholar 

  • Kim JS, Kim KH (2018) Analysis of 2016 Minamiaso landslides using remote sensing and geographic information system. J Appl Remote Sens 12(3):036001. https://doi.org/10.1117/1.JRS.12.036001

    Article  Google Scholar 

  • Kiyota T, Ikeda T, Konagai K, Shiga M (2017) Geotechnical damage caused by the 2016 Kumamoto Earthquake, Japan. Int J Geoeng Case Hist 4(2):78–95. https://doi.org/10.4417/IJGCH-04-02-01

    Article  Google Scholar 

  • Konishi T, Suga Y, (2018) Landslide detection using polarimetric ALOS-2/PALSAR-2 data: a case study of 2016 Kumamoto earthquake in Japan, In: Proc. SPIE 10788, Active and Passive Microwave Remote Sensing for Environmental Monitoring II, 107880P (9 Oct 2018); https://doi.org/10.1117/12.2324030.

  • Koyanagi K, Gomi T, Sidle RC (2020) Characteristics of landslides in forests and grasslands triggered by the 2016 Kumamoto earthquake. Earth Surf Process Landf 45(4):893–904. https://doi.org/10.1002/esp.4781

    Article  Google Scholar 

  • Kumar D, Thakur M, Dubey CS, Shukla DP (2017) Landslide susceptibility mapping & prediction using support vector machine for Mandakini River Basin, Garhwal Himalaya, India. Geomorphology 295:115–125. https://doi.org/10.1016/j.geomorph.2017.06.013

    Article  Google Scholar 

  • Kurtz C, Stumpf A, Malet J-P, Gançarski P, Puissant A, Passat N (2014) Hierarchical extraction of landslides from multiresolution remotely sensed optical images. ISPRS J Photogramm Remote Sens 87:122–136. https://doi.org/10.1016/j.isprsjprs.2013.11.003

    Article  Google Scholar 

  • Li H, He Y, Xu Q et al (2022) (2022) Detection and segmentation of loess landslides via satellite images: a two-phase framework. Landslides 19:673–686. https://doi.org/10.1007/s10346-021-01789-0

    Article  Google Scholar 

  • Liu W, Yamazaki F, Maruyama Y (2019) Detection of earthquake-induced landslides during the 2018 Kumamoto earthquake using multitemporal airborne Lidar data. Remote Sens 11(19):2292. https://doi.org/10.3390/rs11192292

    Article  Google Scholar 

  • Liu Z, Gilbert G, Cepeda JM, Lysdahl AOK, Piciullo L, Hefre H, Lacasse S (2021) Modelling of shallow landslides with machine learning algorithms. Geosci Front 12(1):385–393

    Article  CAS  Google Scholar 

  • Lopes A, Touzi R, Nezry E (1990) Adaptive speckle filters and scene heterogeneity. IEEE Trans Geosci Remote Sens 28(6):992–1000

    Article  Google Scholar 

  • Malamud BD, Turcotte DL, Guzzetti F, Reichenbach P (2004) Landslide inventories and their statistical properties. Earth Surf Proc Landf 29(6):687–711

    Article  Google Scholar 

  • Manning CD, Raghavan P, Schütze M (2008) Introduction to information retrieval. Cambridge University Press, New York

    Book  Google Scholar 

  • Meyer GE, Mehta T, Kocher MF, Mortensen DA, Samal A (1998) Textural imaging and discriminant analysis for distinguishing weeds for spot spraying. Trans ASAE 41:1189–1197

    Article  Google Scholar 

  • Mohan A, Singh AK, Kumar B, Dwivedi R (2021) Review on remote sensing methods for landslide detection using machine and deep learning. Trans Emerg Telecommun Technol 32:e3998. https://doi.org/10.1002/ett.3998

    Article  Google Scholar 

  • Moosavi V, Talebi A, Shirmohammadi B (2014) Producing a landslide inventory map using pixel-based and object-oriented approaches optimized by Taguchi method. Geomorphology 204:646–656

    Article  Google Scholar 

  • Motohka T, Isoguchi O, Sakashita M, Shimada M, (2018) ALOS-2 PALSAR-2 Cal/Val Updates, In: JAXA/EORC Joint PI Meeting of Global Environment Observation Mission FY2017, Jan 24, 2018

  • Nadim F, Kjekstad O, Peduzzi P et al (2006) Global landslide and avalanche hotspots. Landslides 3:159–173. https://doi.org/10.1007/s10346-006-0036-1

    Article  Google Scholar 

  • Nava L, Bhuyan K, Meena SR, Monserrat O, Catani F (2022) Rapid mapping of landslides on SAR data by attention U-Net. Remote Sens 14:1449. https://doi.org/10.3390/rs14061449

    Article  Google Scholar 

  • NIED (2016a) Distribution map of mass movement by the 2016 Kumamoto earthquake, edited by National Research Institute for Earth Science and Disaster of Japan (in Japanese), National Research Institute for Earth Science and Disaster Resilience (NIED). Retrieved from: http://www.bosai.go.jp/mizu/dosha.html.

  • National Research Institute for Earth Science and Disaster Prevention, NIED (2016b) Rupture process of the Mj7.3, April 16, mainshock of the 2016 Kumamoto earthquake obtained from strong-motion data, http://www.kyoshin.bosai.go.jp/kyoshin/topics/Kumamoto_20160416/inversion/index_en.html

  • Nowicki MA, Wald DJ, Hamburger MW, Hearne M, Thompson EM (2014) Development of a globally applicable model for near real-time prediction of seismically induced landslides. Eng Geol 173:54–65

    Article  Google Scholar 

  • Nowicki Jessee MA, Hamburger MW, Allstadt K, Wald DJ, Robeson SM, Tanyas H, Hearne M, Thompson EM (2018) A global empirical model for near-real-time assessment of seismically induced landslides. J Geophys Res Earth Surf 123(8):1835–1859. https://doi.org/10.1029/2017JF004494

    Article  Google Scholar 

  • Parise M, Jibson RW (2000) A seismic landslide susceptibility rating of geologic units based on analysis of characteristics of landslides triggered by the 17 January, 1994 Northridge, California eaarthquake. Eng Geol 58(3–4):251–270. https://doi.org/10.1016/S0013-7952(00)00038-7

    Article  Google Scholar 

  • Parker RN, Rosser NJ, Hales TC (2017) Spatial prediction of earthquake-induced landslide probability. Nat Hazards Earth Syst Sci Discuss [preprint]. https://doi.org/10.5194/nhess-2017-193

    Article  Google Scholar 

  • Prakash N, Manconi A, Loew S (2021) A new strategy to map landslides with a generalized convolutional neural network. Sci Rep 11:9722. https://doi.org/10.1038/s41598-021-89015-8

    Article  CAS  Google Scholar 

  • Rashidian V, Baise LG, Koch M (2020) Using high resolution optical imagery to detect earthquake-induced liquefaction: The 2011 Christchurch earthquake. Remote Sens 12:377. https://doi.org/10.3390/rs12030377

    Article  Google Scholar 

  • Reichenbach P, Busca C, Mondini AC, Rossi M (2014) The influence of land use change on landslide susceptibility zonation: the Briga catchment test site (Messina, Italy). Environ Manag 54:1372–1384. https://doi.org/10.1007/s00267-014-0357-0

    Article  CAS  Google Scholar 

  • Rojas R (1996) Neural networks: a systematic introduction. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-61068-4

    Book  Google Scholar 

  • Rokach L, Maimon O (2008) Data mining with decision trees: theory and applications. World Scientific Pub Co Inc

    Google Scholar 

  • Sánchez-Sastre LF, Alte da Veiga NM, Ruiz-Potosme NM, Carrión-Prieto P, Marcos-Robles JL, Navas-Gracia LM, Martín-Ramos P (2020) Assessment of RGB vegetation indices to estimate chlorophyll content in sugar beet leaves in the final cultivation stage. AgriEngineering 2(1):128–149. https://doi.org/10.3390/agriengineering2010009

    Article  CAS  Google Scholar 

  • Santangelo M, Cardinali M, Rossi M, Mondini AC, Guzzetti F (2010) Remote landslide mapping using a laser rangefinder binocular and GPS. Nat Hazard 10:2539–2546. https://doi.org/10.5194/nhess-10-2539-2010

    Article  Google Scholar 

  • Shimada M, Isoguchi O, Tadono T, Isono K (2009) PALSAR radiometric and geometric calibration. IEEE Trans Geosci Remote Sens 47(12):3915–3932

    Article  Google Scholar 

  • Shinoda M, Miyata Y, Kurokawa U, Kondo K (2019) Regional landslide susceptibility following the 2016 Kumamoto earthquake using back-calculated geomaterial strength parameters. Landslides 16:1497–1516

    Article  Google Scholar 

  • Shirahama Y, Yoshimi M, Awata Y, Maruyama T, Azuma T, Miyashita Y et al (2016) Characteristics of the surface ruptures associated with the 2016 Kumamoto earthquake sequence, central Kyushu, Japan. Earth Planets Space 68:1–12. https://doi.org/10.1186/s40623-016-0559-1

    Article  Google Scholar 

  • Sidle RC, Kamai T, Trandafir AC (2005) Evaluating landslide damage during the 2004 Chuetsu earthquake, Niigata Japan. Eos, Trans Am Geophys Union 86:133–136. https://doi.org/10.1029/2005EO130001

    Article  Google Scholar 

  • Sidle RC, Gomi T, Akasaka M, Koyanagi K (2018) Ecosystem changes following the 2016 Kumamoto earthquakes in Japan: future perspectives. Ambio 42:721–734. https://doi.org/10.1007/s13280-017-1005-8

    Article  CAS  Google Scholar 

  • Song K, Wang F, Dai Z, Iio A, Osaka O, Sakata S (2019) Geological characteristics of landslides triggered by the 2016 Kumamoto earthquake in Mt. Aso volcano, Japan. Bull Eng Geol Env 78:167–176. https://doi.org/10.1007/s10064-017-1097-1

    Article  Google Scholar 

  • Sreelakshmi S, Vinod Chandra SS, Shaji E (2022) 2022, Landslide identification using machine learning techniques: Review, motivation, and future prospects. Earth Sci Inform 15:2063–2090. https://doi.org/10.1007/s12145-022-00889-2

    Article  Google Scholar 

  • Stanley T, Kirschbaum DB (2017) A heuristic approach to global landslide susceptibility mapping. Nat Hazards 87:145–164. https://doi.org/10.1007/s11069-017-2757-y

    Article  Google Scholar 

  • Stanley TA, Kirschbaum DB, Benz G, Emberson RA, Amatya PM, Medwedeff W, Clark MK (2021) Data-driven landslide nowcasting at the global scale. Front Earth Sci 9:640043. https://doi.org/10.3389/feart.2021.640043

    Article  Google Scholar 

  • Subasi A (2020) Chapter 3 machine learning techniques. In: Subasi A (ed) Practical machine learning for data analysis using python. Academic Press, pp 91–202. https://doi.org/10.1016/B978-0-12-821379-7.00003-5

    Chapter  Google Scholar 

  • Tang G, Fang Z, Wang Y (2023) Global landslide susceptibility prediction based on the automated machine learning (AutoML) framework. Geocarto Int 38(1):2236576

    Article  Google Scholar 

  • Tanyas H, Rossi M, Alvioli M, van Westen CJ, Marchesini I (2019) A global slope unit-based method for the near real-time prediction of earthquake-induced landslides. Geomorphology 327:126–146. https://doi.org/10.1016/j.geomorph.2018.10.022

    Article  Google Scholar 

  • Tehrani FS, Santinelli G, Herrera Herrera M (2021) Multi-regional landslide detection using combined unsupervised and supervised machine learning. Geomat Nat Hazards Risk 12(1):1015–1038

    Article  Google Scholar 

  • Theodoridis S, Koutroumbas K (1999) Pattern recognition. Academic Press, San Diego, pp 341–342

    Google Scholar 

  • Thirugnanam H (2023) Deep learning in landslide studies: a review. Prog Landslide Res Technol 1(2):247–255. https://doi.org/10.1007/978-3-031-18471-0_20

    Article  Google Scholar 

  • Uemoto J, Moriyama T, Nadai A et al (2019) Landslide detection based on height and amplitude differences using pre- and post-event airborne X-band SAR data. Nat Hazards 95:485–503. https://doi.org/10.1007/s11069-018-3492-8

    Article  Google Scholar 

  • Ullo SL, Mohan A, Sebastianelli A, Ahamed SE, Kumar B, Dwivedi R, Sinha GR (2021) A new mask R-CNN-based method for improved landslide detection. IEEE J Sel Top Appl Earth Observ Remote Sens 14:3799–3810

    Article  Google Scholar 

  • Vapnik V (1995) The nature of statistical learning theory. Springer, New York

    Book  Google Scholar 

  • Water and Disaster Management Bureau (2016) Overview of sediment related disasters triggered by the 2016 Kumamoto earthquake. Available: http://www.mlit.go.jp/river/sabo/jirei/h28dosha/160914_gaiyou_sokuhou.pdf (in Japanese).

  • Xie P, Wen H, Ma C, Baise LG, Zhang J (2018) Application and comparison of logistic regression model and neural network model in earthquake-induced landslides susceptibility mapping at mountainous region, China. Geomatics Nat Hazards Risk 9(1):501–523. https://doi.org/10.1080/19475705.2018.1451399

    Article  Google Scholar 

  • Xie W, Li X, Jian W, Yang Y, Liu H, Robledo LF, Nie W (2021) A novel hybrid method for landslide susceptibility mapping-based geodetector and machine learning cluster: a case of Xiaojin county, China. ISPRS Int J Geo Inf 10:93

    Article  Google Scholar 

  • Xu C, Ma S, Tan Z, Xie C, Toda S, Huang X (2018) Landslides triggered by the 2016 Mj 7.3 Kumamoto, Japan, earthquake. Landslides 15:551–564. https://doi.org/10.1007/s10346-017-0929-1

    Article  Google Scholar 

  • Xu Q, Ouyang C, Jiang T et al (2022) MFFENet and ADANet: a robust deep transfer learning method and its application in high precision and fast cross-scene recognition of earthquake-induced landslides. Landslides 19:1617–1647. https://doi.org/10.1007/s10346-022-01847-1

    Article  Google Scholar 

  • Yamaguchi Y (2012) Disaster monitoring by fully polarimetric SAR data acquired with ALOS-PALSAR. Proc IEEE 100(10):2851–2860

    Article  Google Scholar 

  • Yamao M, Sidle RC, Gomi T, Imaizumi F (2016) Characteristics of landslides in unwelded pyroclastic flow deposits, southern Kyushu, Japan. Nat Hazards Earth Syst Sci 16(2):617–627

    Article  Google Scholar 

  • Yamazaki F, Kubo K, Tanabe R, Liu W, (2017) Damage assessment and 3d modeling by UAV flights after the 2016 Kumamoto, Japan earthquake, In: 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, TX, USA, 2017, (pp. 3182-3185), https://doi.org/10.1109/IGARSS.2017.8127673

  • Yamazaki F, Yuuki S, Wen L, (2018) Extraction of landslides in the 2016 Kumamoto earthquake using multi-temporal Lidar data, In: Proc. SPIE 10790, Earth Resources and Environmental Remote Sensing/GIS Applications IX, 107900H, https://doi.org/10.1117/12.2325091.

  • Yao J, Yao X, Liu X (2022) Landslide detection and mapping based on SBAS-InSAR and PS-InSAR: a case study in Gongjue county, Tibet. China Remote Sens 14(19):4728

    Article  Google Scholar 

  • Yu B, Chen F, Muhammad S, Li B, Wang L, Wu M (2017) A simple but effective landslide detection method based on image saliency. Photogramm Eng Remote Sens 83(5):351–363

    Article  Google Scholar 

  • Zhang X, Weikang Yu, Pun M-O, Shi W (2023) Cross-domain landslide mapping from large-scale remote sensing images using prototype-guided domain-aware progressive representation learning. ISPRS J Photogram Remote Sens 197:1–17. https://doi.org/10.1016/j.isprsjprs.2023.01.018

    Article  Google Scholar 

  • Zhong C, Liu Y, Gao P, Chen W, Li H, Hou Y, Nuremanguli T, Ma H (2020) Landslide mapping with remote sensing: challenges and opportunities. Int J Remote Sens 41(4):1555–1581. https://doi.org/10.1080/01431161.2019.1672904

    Article  Google Scholar 

Download references

Acknowledgements

The support of National Geospatial Intelligence Agency (NGIA) for this research through the NGIA Academic Research Program Grant #HM0476-20-1-0006 (NGIA NURI Project: Benchmark data development to classify damage for natural disaster relief efforts) is greatly appreciated. The authors are also thankful for the support of U.S. Geological Survey (USGS) through research grant #G22AS00006–Proposal 2022-0047 (Innovative data-driven frameworks for geospatial ground failure models). The authors would also like to acknowledge the GSI, JAXA, Geological Survey of Japan and NIED organization of Japan for publishing their GIS datasets of landslide inventories, aerial imagery, and satellite SAR datasets related to the Kumamoto 2016 earthquake, plus the geology map of the study area. All other organizations which provided data resources are greatly appreciated, including DigitalGlobe (MAXAR) for the satellite imagery used in this study, NASA/METI and their collaborators for providing the digital elevation products, USGS for the Ground Failure products (https://earthquake.usgs.gov/data/ground-failure/), and WorldClim database (https://www.worldclim.org/data/index.html) for the historical precipitation data.

Funding

The support of National Geospatial Intelligence Agency (NGIA) for this research through the NGIA Academic Research Program Grant #HM0476-20–1-0006 (NGIA NURI Project: Benchmark data development to classify damage for natural disaster relief efforts) is greatly appreciated. The authors are also thankful for the support of U.S. Geological Survey (USGS) through research grant #G22AS00006 – Proposal 2022–0047 (Innovative data-driven frameworks for geospatial ground failure models).

Author information

Authors and Affiliations

Authors

Contributions

AA contributed to Dataset preparation, literature review, framework design, methodology development, computer programming, model validation, manuscript writing, visualizations. LGB contributed to Conceptualization and idea development, model review, manuscript writing, manuscript review, project management, supervision. MK contributed to Dataset preparation, model review, manuscript review, supervision. BM contributed to Model review, model evaluation, manuscript review, supervision. SC contributed to Model review, methodology development, manuscript review, supervision. YA contributed to Dataset preparation, methodology development, manuscript review.

Corresponding author

Correspondence to Adel Asadi.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose. The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asadi, A., Baise, L.G., Koch, M. et al. Pixel-based classification method for earthquake-induced landslide mapping using remotely sensed imagery, geospatial data and temporal change information. Nat Hazards 120, 5163–5200 (2024). https://doi.org/10.1007/s11069-023-06399-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-023-06399-8

Keywords

Navigation