Skip to main content

Advertisement

Log in

Slope-scale landslide susceptibility assessment based on coupled models of frequency ratio and multiple regression analysis with limited historical hazards data

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

Conducting a precise landslide susceptibility assessment at the slope scale is challenging due to complex parameters and limited historical hazards data. This paper proposes a susceptibility assessment model based on the frequency ratio (FR) coupled with multiple regression analysis to solve these problems. Assessment factors were identified through field surveys and remote sensing interpretation. We utilized multiple methods, such as logistic regression (LR), partial least squares regression (PLSR), ridge regression (RR), stepwise regression (SR), and discriminant analysis (DA), and established five coupled models (FR-LR, FR-PLSR, FR-RR, FR-SR, and FR-DA). The reliability of the susceptibility assessment results was systematically verified. The results showed the following: (1) for the distribution of the susceptibility index, FR-PLSR, FR-RR, and FR-DA are close to the standard normal distribution; (2) for the prediction accuracy, the AUC indexes of the five models are relatively large, ranging from 0.86 to 0.87; and (3) for the susceptibility zoning reliability, FR-PLSR and FR-RR showed better performance, with a relatively smaller area proportion and larger susceptibility intensity for high susceptibility regions. Finally, the coupled models FR-PLSR and FR-RR were recommended. The areas of slope units categorized as high-, medium-, low-, and extra low-susceptibility are 16.14 km2, 73.85 km2, 98.96 km2, and 39.49 km2, respectively, accounting for 7.06%, 32.33%, 43.32%, and 17.29% of the study area. This work enriches the theoretical understanding of the susceptibility assessment models with limited historical hazards data and provides an effective coupled model for high-accuracy landslide assessment and prevention at the slope scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

Download references

Funding

This research was supported by the National Natural Science Foundation of China (No. 42172309).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Xu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 50 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, J., Yan, T., Hu, J. et al. Slope-scale landslide susceptibility assessment based on coupled models of frequency ratio and multiple regression analysis with limited historical hazards data. Nat Hazards 120, 1–23 (2024). https://doi.org/10.1007/s11069-023-06176-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-023-06176-7

Keywords

Navigation