Skip to main content
Log in

From the geodynamic aspect to earthquake potential hazard analysis of Liwa city and its surrounding

  • Research Letter
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

The Liwa area is near the active shear fault of the Sumatra Fault Zone (SFZ), with a right lateral mechanism where the Kumering segment crosses this area. The geodynamic simulation results based on the pre-seismic modeling using the slip rate input of a recent study, Liwa, and its surroundings show a comparatively high compression level. The seismic moment rate estimation based on the present-day surface strain data shows alignment and consistency with the pre-seismic modeling result and the previous correlation dimension (DC) analysis. The high DC indicated that the Kumering segment indicates a relatively high-stress level. The finding also aligns with the suggestion based on the previous result that more frequent large strike-slip earthquakes occur since the recent study found that the slip is faster than the previous one. And it is consistent with the historical records; Liwa has a minimum of 3 times experienced destructive earthquakes, which occurred in 1908, 1933, and 1994. Although based on a deterministic hazard analysis point of view, the zone around the SFZ will experience the most significant ground shaking since it is close to the source. However, the Probabilistic Seismic Hazard Analysis (PSHA) studied around the southern part of Sumatra Island, especially in areas close to the coast boundary, shows that the shaking caused by the source of the subduction and intermediate depth is more frequent than that of the SFZ source. As the city of Liwa is located near the Kumering Segment and relatively close to the shoreline, evaluating the Seismic Hazard Function (SHF) by integrating megathrust, SFZ, and medium depth sources is necessary. The amplification analysis in the previous study using Liwa’s HVSR method showed the most considerable amplification value. Thus, this study intends to evaluate the potential for earthquake hazards based on the probability of integrated sources of megathrust, SFZ, and intermediate depth to deep and deterministic based on SFZ sources around the city of Liwa. The earthquake intensity (MMI) estimation at the surface based on the probabilistic to deterministic point of view is in the range of VI to XI. Therefore, it has the potential to reach the maximum MMI scale. The result of this study might be very beneficial in better understanding the future seismic hazard study and mitigation analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Data availability

The author declares that the materials and data used in this manuscript will be made available promptly to the Editorial Board Members and Referees upon request. The data can be found at: https://www.mdpi.com/article/10.3390/geohazards3020012/s1 (Triyoso et al. 2022a). Earthquake Catalog Data based on the PUSGEN2017 Catalog. It has been public domain data.

References

  • Atkinson GM, Boore DM (2006) Earthquake ground-motion prediction equations for Eastern North America. Bull Seismol Soc Am 96(6):2181–2205

    Article  Google Scholar 

  • Baroux E, Avouac JP, Bellier O, Sebrier M (1998) Slip-partitioning and fore-arc deformation at the Sunda Trench Indonesia. Terra Nova 10(3):139–144

    Article  Google Scholar 

  • Bellier O, Sébrier M (1995) Is the slip rate variation on the Great Sumatran Fault accommodated by fore-arc stretching? Geophys Res Lett 22(15):1969–1972

    Article  Google Scholar 

  • Bellier O, Bellon H, Sébrier M, Maury RC (1999) K-Ar age of the ranau tuffs: implications for the ranau caldera emplacement and slip-partitioning in sumatra (Indonesia). Tectonophysics 312(2–4):347–359

    Article  Google Scholar 

  • Bender B (1983) Maximum likelihood estimation of b values for magnitude grouped data. Bull Seism Soc Am 73:831–851

    Article  Google Scholar 

  • Bowden DC, Tsai VC (2017) Earthquake ground motion amplification for surface waves. Geophys Res Lett 44:121–127

    Article  Google Scholar 

  • Bradley KE, Feng L, Hill EM, Natawidjaja DH, Sieh K (2017) Implications of the diffuse deformation of the Indian Ocean lithosphere for slip partitioning of oblique plate convergence in Sumatra. J Geophys Res Solid Earth 122:572–591

    Article  Google Scholar 

  • Burton PW, Hall TR (2014) Segmentation of the Sumatran fault. Geophys Res Lett 41:4149–4158

    Article  Google Scholar 

  • Chlieh M, Avouac J, Hjorleifsdottir V, Song TA, Ji C, Sieh K et al (2007) Coseismic slip and afterslip of the great Mw 915 Sumatra-Andaman Earthquake of 2004. Bull Seismol Soc Am 97:S152–S173

    Article  Google Scholar 

  • Cornel CA (1968) Engineering seismic risk analysis. Bull Seismol Soc Am 58(5):1583–1606

    Article  Google Scholar 

  • DeMets C, Gordon RG, Argus DF, Stein S (1990) Current plate motions. J Geophys Res 101:425–478

    Google Scholar 

  • Diament M et al (1992) Mentawai fault zone off Sumatra: A new key to the geodynamics of western Indonesia. Geology 20:259–262

    Article  Google Scholar 

  • El-Fiky GSA, Kato T, Oware EN (1999) Crustal deformation and interplate coupling in the Shikoku district, Japan, as seen from continuous GPS observation. Tectonophysics 314:387–399. https://doi.org/10.1016/s0040-1951(99)00226-7

    Article  Google Scholar 

  • Field EH, Jackson DD, Dolan JF (1999) A mutually consistent seismic-hazard source model for Southern California. Bull Seismol Soc Am 89:559–578

    Article  Google Scholar 

  • Fitch TJ (1972) Plate convergence, transcurrent faults, and internal deformation adjacent to Southeast Asia and western Pacific. J Geophys Res 77:4432–4460

    Article  Google Scholar 

  • Frankel A (1995) Mapping seismic hazard in the Central and Eastern United States. Seism Res Lett 66(4):8–21

    Article  Google Scholar 

  • Fukushima Y, Tanaka H (1992) The revision of A new attenuation relation for peak horizontal acceleration of strong earthquake ground motion in Japan, Abstracts The Seismological Society of Japan, 1992, Fall Meeting, B18 (in Japanese).

  • Grandori G, Guagenti E, Petrini V (1984) On the use of renewal process in seismic hazard analysis. In: Proceedings of the 8th world conference on earthquake engineering, 1, San Francisco, pp 287–294.

  • Gutenberg B, Richter CF (1944) Frequency of earthquake in California. Bull Seism Soc Am 34:185–188

    Article  Google Scholar 

  • Katili JA, Hehuwat F (1967) On the occurrence of large transcurrent faults in Sumatra, Indonesia. J Geosci Osaka City Univ 10:5–17

    Google Scholar 

  • Konca AO, Avouac JP, Sladen A, Meltzner AJ, Sieh K, Fang P, Li Z, Galetzka J, Chlieh M, Natawidjaja DH (2008) Partial rupture of a locked patch of the Sumatra megathrust during the 2007 earthquake sequence. Nature 456(7222):631–635. https://doi.org/10.1038/nature0757

    Article  Google Scholar 

  • Malod J-A, Kemal BM (1996) The Sumatra margin: Oblique subduction and lateral displacement of the accretionary prism. Geol Soc Spec Publ 106:19–28

    Article  Google Scholar 

  • Malod J-A, Karta K, Beslier MO, Zen MT Jr (1995) From normal to oblique subduction: tectonic relationships between Java and Sumatra. J Asian Earth Sci 12:85–93

    Article  Google Scholar 

  • Matsu’ura M, Sato T (1989) A dislocation model for the earthquake cycle at convergent plate boundaries. Geophys J Int 96:23–32

    Article  Google Scholar 

  • McCaffrey R (1991) Slip vectors and stretching of the Sumatran forearc. Geology 19:881–884

    Article  Google Scholar 

  • McCaffrey R, Zwick PC, Bock Y, Prawirodirdjo L, Genrich JF, Stevens CW, Subarya C (2000) Strain partitioning during oblique plate convergence in northern Sumatra: geodetic and seismologic constraints and numerical modeling. J Geophys Res Solid Earth 105(B12):28363–28376

    Article  Google Scholar 

  • McGuire RK (1976) FORTRAN computer program for seismic risk analysis. Open file report 67—76, U.S. Geological Survey. p 90.

  • Molnar P (1979) Earthquake recurrence intervals and plate tectonic. Bull Seismol Soc Am 69:115–133

    Article  Google Scholar 

  • Moritz H (1978) Least-squares collocation. Rev Geophys 16:421–443. https://doi.org/10.1029/rg016i003p00421

    Article  Google Scholar 

  • Moritz H (1980) Advanced physical geodesy. Herbert Wichmann Verlag, Karlsruhe, p 500

    Google Scholar 

  • Mucciarelli M, Gallipoli MR (2004) The HVSR Technique from Microtremor to Strong Motion: Empirical and Statistical Consideration. In: 13th World Conference on Earthquake Engineering Canada

  • Natawidjaja DH, Triyoso W (2007) The Sumatran Fault Zone—From Source To Hazard. J Earthq Tsunami 1(01):21–47

    Article  Google Scholar 

  • Natawidjaja DH, Sieh K, Chlieh M, Galetzka J, Suwargadi BW, Cheng H, Edwards RL, Avouac JP, Ward SN (2006) Source parameters of the great Sumatran megathrust earthquakes of 1797 and 1833 inferred from coral microatolls. Journal Geophys Res Solid Earth. https://doi.org/10.1029/2005JN004025

    Article  Google Scholar 

  • Natawidjaja DH, Bradley K, Daryono MR, Aribowo S, Herrin J (2017) Late Quaternary eruption of the Ranau Caldera and new geological slip rates of the Sumatran Fault Zone in Southern Sumatra Indonesia. Geosci Lett 4(1):1–15. https://doi.org/10.1186/s40562-017-0087-2

    Article  Google Scholar 

  • Natawidjaja DH, Sieh K (1994) Slip-rate along the Sumatra transcurrent fault and its tectonic significance.In: Paper presented at Conference on Tectonic Evolution of Southeast Asia, Geol. Soc. of London, London, 1994.

  • Natawidjaja DH (2018) Updating active fault maps and slip rates along the Sumatran Fault Zone, Indonesia. In: IOP. Conference Ser. Earth Environ. Sci. 118–012001

  • Okada Y (1985) Surface deformation due to shear and tensile faults in a halfspace. Bull Seismol Soc Am 75(4):1135–1154

    Article  Google Scholar 

  • Okada Y (1992) Internal deformation due to shear and tensile faults in a halfspace. Bull Seismol Soc Am 82(2):1018–1040

    Article  Google Scholar 

  • Petersen M, Harmsen S, Mueller C, Haller K, Dewey J, Luco N, Crone A, Lidke D, Rukstales K (2007) Documentation for the Southeast Asia seismic hazard maps. Administrative Report, U.S. Geological Survey

  • Prawirodirdjo L, Bock Y, Genrich JF, Puntodewo SSO, Rais J, Subarya C, Sutisna DS (2000) One century of tectonic deformation along the Sumatran fault from triangulation and Global Positioning System surveys. J Geophys Res Solid Earth 105(B12):28343–28361

    Article  Google Scholar 

  • Prawirodirdjo L, McCaffrey R, Chadwell CD, Bock Y, Subarya C (2010) Geodetic observations of an earthquake cycle at the Sumatra subduction zone: role of interseismic strain segmentation. J Geophys Res Solid Earth 115:B03414

    Article  Google Scholar 

  • Pubellier M, Rangin C, Cadet JP, Tjashuri I, Butterlin J, Muller C, L’ıˆle de Nias, un e´ difice polyphase´ sur la bordure interne de la fosse de la Sonde (Archipel de Mentawai, Indone´sie), C.R. Acad. Sci. Paris, Ser. II, 315, 1019 – 1026, 1992.

  • Samuel MA, Harbury NA (1996) The Mentawai fault zone and deformation of the Sumatran forearc in the Nias area. Geolog Soc London Spec Publ 106(1):337–351

    Article  Google Scholar 

  • Savage JC (1983) A dislocation model of strain accumulation and release at a subduction zone. J Geophys Res 88(B6):4984–4996. https://doi.org/10.1029/JB088iB06p04984

    Article  Google Scholar 

  • Savage JC, Simpson RW (1997) Surface strain accumulation and the seismic moment tensor. Bull Seismol Soc Am 87:1345–1353

    Article  Google Scholar 

  • Schloter NH, Gaedicke C, Roeser HA, Schreckenberger B, Meyer H, Reichert C, Prexl A (2002) Tectonic features of the southern Sumatra-western Java forearc of Indonesia. Tectonics. https://doi.org/10.1029/2001TC901048

    Article  Google Scholar 

  • Shearer P, Burgmann R (2010) Lessons learned from the 2004 Sumatra-Andaman Megathrust Rupture. Annu Rev Earth Planet Sci 38:103–131

    Article  Google Scholar 

  • Sieh K, Natawidjaja D (2000) Neotectonics of the Sumatran Fault, Indonesia. J Geophys Res Solid Earth 105(B12):28295–28326

    Article  Google Scholar 

  • Sk S, Khana PK, Mohanty SP (2019) Stress reconstruction and lithosphere dynamics along the Sumatra subduction margin. J Asian Earth Sci 170(2019):174–187

    Google Scholar 

  • Sukmono S, Zen MT, Kadir W, Hendrajaya L, Santoso D, Dubois J (1996) Fractal geometry of the Sumatra active fault system and its geodynamical applications. J Geodyn 22(1–2):1–9

    Article  Google Scholar 

  • Tim Pusat Studi Gempa Nasional-2017 (The 2017 PuSGen) (2017) Peta Sumber dan Bahaya Gempa Indonesia Tahun 2017. Jakarta: Kementrian Pekerjaan Umum dan Perumahan Rakyat (In Indonesian)

  • Triyoso W, Suwondo A, Naibaho ZYX (2021) Earthquake potential hazard analysis of palembang city, Sumatra Island. Indonesian J Geosci 8(1):1-9. https://doi.org/10.17014/ijog.8.1.1-9

    Article  Google Scholar 

  • Susilo Meilano I, Abidin HZ, Sapie B, Efendi J, Wijanarto AB (2016) Preliminary Results of Indonesian Strain Map Based on Geodetic Measuremnts. In: AIP Conf. Proc. 1730, 040004

  • Suwondo A (2020) Analisa Fungsi Seismik Hazard dan Amplifikasi di Pulau Sumatra, Master Thesis, Bandung Institute of Technology (ITB), Bandung, Indonesia (in Indonesian)

  • Triyoso W, Sahara DP (2021) Seismic hazard function mapping using estimated horizontal crustal strain Off West Coast Northern Sumatra. Front Earth Sci 9:558923. https://doi.org/10.3389/feart.2021.558923

    Article  Google Scholar 

  • Triyoso W, Shimazaki K (2012) Testing various seismic potential models for hazard estimation against a historical earthquake catalog in Japan. Earth Planets Space 64:673–681

    Article  Google Scholar 

  • Triyoso W, Suwondo A, Yudistira T, Sahara DP (2020) Seismic Hazard Function (SHF) study of coastal sources of Sumatra Island: SHF evaluation of Padang and Bengkulu cities. Geosci Lett 7(1):1–7

    Article  Google Scholar 

  • Triyoso W, Suwondo A, Naibaho ZYX (2021) Earthquake potential hazard analysis of Palembang City Sumatra Island Indonesian. J Geosci 8(1):1–9. https://doi.org/10.17014/ijog.8.1.1-9

    Article  Google Scholar 

  • Triyoso W, Sahara DP, Sarsito DA, Natawidjaja DH, Sukmono S (2022) Correlation dimension in Sumatra Island Based on active fault, earthquake data, and estimated horizontal crustal strain to evaluate seismic hazard functions (SHF). GeoHazards 3(2):227–241. https://doi.org/10.3390/geohazards3020012

    Article  Google Scholar 

  • Triyoso W, Kongko W, Prasetya GS, Sarsito DA, Sukmono S (2022) Correlation of the stress reconstruction, correlation dimension (DC), and maximum shear strain (SHmax) rate loading along the sumatra subduction margin, The 4th Southeast Asian conference on geophysics 2022 (SEACG), 9-10 August 2022

  • Wald DJ, Quitoriano V, Heaton TH, Kanamori H (1999) Relationships between Peak Ground Acceleration, Peak Ground Velocity, and Modified Mercalli Intensity in California. Earthq Spectra 15(3):557–564

    Article  Google Scholar 

  • Ward SN (1994) A multidisciplinary approach to seismic hazard in Southern California. Bull Seismol Soc Am 84:1293–1309

    Article  Google Scholar 

  • WGCEP ( Working Group California Earthquake Probabilities) (1995) Seismic hazard in California: probable earthquakes, 1994 to 2024. Bull Seismol Soc Am 85:379–439

    Google Scholar 

  • Widiwijayanti C, Déverchère J, Louat R, Sébrier M, Harjono H, Diament M, Hidayat D (1996) Aftershock sequence of the 1994, Mw 68, Liwa earthquake (Indonesia): Seismic rupture process in a volcanic arc. Geophys Res Lett 23(21):3051–3054

    Article  Google Scholar 

  • Wiemer S (2001) A software package to analyze seismicity: ZMAP. Seismol Res Lett 72(2):373–382

    Article  Google Scholar 

  • Youngs RR, Chiou BS-J, Silva WJ, Humphrey JR (1997) Strong ground motion attenuation relationships for subduction zone earthquakes. Seism Res Lett 68:58–73

    Article  Google Scholar 

  • Yudhicara Muslim D, Sudradjat A, Natawidjaja DH, Siahaan R (2014) Identifying an active Sumatra Fault Segment in Liwa Region using a Morphotectonic Approach. In: 5th International INQUA Meeting on Paleoseismology, Active Tectonics and Archeoseismology (PATA), 21–27 September 2014, Busan, Korea.

  • Zhao JX, Dowrick DJ, McVerry DH (1997) Attenuation of peak ground acceleration in New Zealand earthquakes. Bull n z Natl Soc Earthq Eng 30:133–158. https://doi.org/10.5459/bnzsee.30.2.133-158

    Article  Google Scholar 

  • Zhao JX, Zhang J, Asano A, Ohno Y, Oouchi T, Takahashi T, Ogawa H, Irikura K, Thio HK, Somerville P, Fukushima Y, Fukushima Y (2006) Attenuation relations of strong ground motion in Japan using site classification based on predominant period. Bull Seismol Soc Am 96:898–913

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the Global Geophysics Group and the Faculty of Mining and Petroleum Engineering, Bandung Institute of Technology, for their help in publishing this paper.

Funding

Funding was partially supported by the Institute of Research and Community Services (LPPM), Bandung Institute of Technology (ITB), Indonesia.

Author information

Authors and Affiliations

Authors

Contributions

WT developed the method, analyzed it, and prepared the figures and the manuscript. AS provided the HVSR result and analysis helped in the manuscript preparation and discussion.

Corresponding author

Correspondence to Wahyu Triyoso.

Ethics declarations

Conflict of interest

All of the authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Triyoso, W., Suwondo, A. From the geodynamic aspect to earthquake potential hazard analysis of Liwa city and its surrounding. Nat Hazards 116, 1329–1344 (2023). https://doi.org/10.1007/s11069-022-05705-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-022-05705-0

Keywords

Navigation