Skip to main content

Advertisement

Log in

Displacement prediction method of rainfall-induced landslide considering multiple influencing factors

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

Predicting rainfall-induced landslide displacement is one of the important means of disaster prevention and mitigation. Considering the Tanjiawan landslide in the Three Gorges Reservoir area as the research object, the daily rainfall and soil moisture content as influencing factors, complementary ensemble empirical mode decomposition (CEEMD) was used to decompose the time series of displacement and influencing factors, followed by K-means clustering to determine the periodic displacement, random displacement, trend displacement, and their corresponding influencing factor components after decomposition. The Grey System theory was used to test the correlation between the influencing factor and decomposition displacement, and the least squares support vector machine based on particle swarm optimization (PSO-LSSVM) and the least square method were used to predict the decomposition displacement. The results showed that after decomposition and clustering, the grey relational degree between the influencing factor and the decomposition displacement is up to 0.91, which showed that the selection of the displacement decomposition and the influencing factor is reliable. A coefficient of determination of 1.00 indicated that the quadratic least squares function model can predict the trend displacement well, and the root mean squared error value of the PSO-LSSVM model predicting displacement did not exceed 21.62 mm. At the same time, compared with the prediction results without considering water content as the influencing factor, the results show that the prediction effect considering water content as the influencing factor is very reliable, and the model in this study can achieve the displacement prediction of rainfall-type landslides satisfactorily.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

Download references

Acknowledgements

This work was supported by National Natural Science Foundation Key Projects of China (No. U21A2031) and China Postdoctoral Science Foundation (2021M701969). A part of the data for the manuscript was collected with the assistance of the Yichang Geological Environment Monitoring and Protection Station.

Funding

Funding was provided by National Natural Science Foundation Key Projects of China (No. U21A2031) and China Postdoctoral Science Foundation (2021M701969).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaohu Huang.

Ethics declarations

Conflict of interest

The authors declare there is no conflict of interest regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Chen, Y., Huang, X. et al. Displacement prediction method of rainfall-induced landslide considering multiple influencing factors. Nat Hazards 115, 1051–1069 (2023). https://doi.org/10.1007/s11069-022-05620-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-022-05620-4

Keywords

Navigation