Skip to main content

Advertisement

Log in

Natural hazards and disasters around the Caspian Sea

  • Review Article
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

At a time, when the five riparian countries have renewed consultation with each other about the future of the Caspian Sea, it is appropriate to propose a state of the art of the potential natural threats to the regional environment. We present a critical review of geological, meteorological–climatological and hydrological hazards and disasters illustrated by many examples from within the Caspian drainage basin. Our work is set in the frame of an analysis of the factors contributing to the scale of the disasters. A brief overview of the mitigation measures in place and their future development is also included underlining the current limited warning systems (especially transboundary) despite improvements. While analysing past disasters is an essential source of information on which to base new mitigation, current and future conditions have poor or even no analogue in the past. Even though it clearly turns out that earthquakes are certainly the most deadly hazard, Caspian Sea level changes are by far causing the largest economical impact and affect the largest area and thus population. This review has also highlighted the need to create a Caspian database of natural hazards and disasters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

(Source: S.A.G. Leroy)

Fig. 4

(Source: S.A.G. Leroy)

Fig. 5

(Source: S.A.G. Leroy)

Fig. 6

(Source: S.A.G. Leroy)

Fig. 7

(Source: S.A.G. Leroy)

Fig. 8

(Source: archive of the Institute of Geology, Dagestan Branch of the Russian Academy of Sciences. Courtesy of I. Idrisov). Lower Photo. A collapse along the Gimry—Buinaksk road (Dagestan) on 26 May 2021. (Source: courtesy of Sh. Muduev)

Fig. 9
Fig. 10

(Source: S.A.G. Leroy)

Fig. 11

(Source: Meteo 2021). Wind: strong wind > 20 m/s. Rain: heavy rain, rainfall greater than or equal to 50 mm in the past 12 h. Glaze (freezing rain): a coating of clear and smooth ice, formed on exposed surfaces by the freezing of supercooled drops of rain, drizzle, fog. Glaze breaks tree branches, tears wires, can bring down suspension bridge structures and is one of the most hazardous types of winter precipitation. Heat: heatwave, the maximum air temperature reaches or exceeds the dangerous value established for the given territory (> 30 °C). Drought: during the growing season of agricultural crops, the absence of effective precipitation (more than 5 mm per day) for a period of at least 30 consecutive days at a maximum air temperature above 30 °C

Fig. 12

(Source: courtesy of D. Kravchenko)

Fig. 13

(Source: R. Gracheva)

Fig. 14

(Source: S.A.G. Leroy)

Fig. 15

(Source: Meteo 2021). The area between Chechnya and North Ossetia, i.e. Ingushetia, is unfilled because of insufficient data. List of events in the caption to Fig. 11

Fig. 16

Similar content being viewed by others

Notes

  1. A list of settlements of the Russian Federation located in seismically active zones characterized by seismic intensity 6 or more points on the MSK-64 scale for average ground conditions and three levels of seismic hazard (probabilities of exceeding the calculated intensity for 50 years, equal to 10, 5, 1% for OSR-2016-A, OSR-2016-B, OSR-2016-C cards, respectively) can be found on http://seismos-u.ifz.ru/personal/localities.htm.

References

  • ADRC (2019) Information on disaster risk reduction of the member countries: Azerbaijan. https://www.adrc.asia/nationinformation.php?NationCode=31&Lang=en&NationNum=34. Accessed 6 Nov 2021

  • Agrobiznes (2021) https://agbz.ru/news/iyulskaya-zasukha-2021-goda-chego-zhdat/. Accessed 11 Nov 2021 (in Russian)

  • Aglarov MA (2016) Once again about the agricultural terraces of Dagestan. Herald Daghestan Sci Center 62:30–53 (in Russian)

    Google Scholar 

  • Agrakhan reserve (2021) http://dagzapoved.ru. Accessed 11 Nov 2021 (in Russian)

  • Alekseevsky NI, Korotaev VN, Mikhailov VN (2000) Dynamics of the sea edge of the Volga delta and the channel regime of its deltaic streams during fluctuations in the Caspian level. Soil Eros Channel Process 11:273–286

    Google Scholar 

  • Aligadzhiev MM, Osmanov MM, Amaeva FSh, Abdurakhmanova AA (2008) Kizlyar Bay as a monitoring object in new environmental conditions. South Russ Ecol Dev 2:32–36 (in Russian)

    Google Scholar 

  • Alizade EK, Tarihazer SA, Gamidova ZA (2014) Research of landslide hazard within the Azerbaijani part of the Greater Caucasus to identify the ecogeomorphological situation. Geopolit Geodyn Regions 1:266–273 (in Russian)

    Google Scholar 

  • Allen MB, Jones S, Ismail-Zadeh A, Simmons M, Anderson L (2009) Onset of subduction as the cause of rapid Pliocene-Quaternary subsidence in the South Caspian basin. Geology 30(9):775–778

    Article  Google Scholar 

  • Arazyan A (2020) Disaster profile of Armenia. Emerg Disaster Rep 7(4):3–48

    Google Scholar 

  • Arpe K, Leroy SAG (2007) The Caspian Sea Level forced by the atmospheric circulation, as observed and modelled. Quat Int 173–174:144–152. https://doi.org/10.1016/j.quaint.2007.03.008

    Article  Google Scholar 

  • Arpe K, Leroy SAG, Lahijani H, Khan V (2012) Impact of the European Russia drought in 2010 on the Caspian Sea level. Hydrol Earth Syst Sci 16:19–27

    Article  Google Scholar 

  • Arpe K, Leroy SAG, Wetterhall F, Khan V, Hagemann S, Lahijani H (2014) Prediction of the Caspian Sea Level using ECMWF seasonal forecast and reanalysis. Theor Appl Clim 117:41–60

    Article  Google Scholar 

  • Arpe K, Molavi-Arabshahi M, Leroy SAG (2020) Wind variability over the Caspian Sea, its impact on Caspian Sea level and the link with ENSO. Int J Clim 40:6039–6054. https://doi.org/10.1002/joc.6564

    Article  Google Scholar 

  • Aslan G et al (2021a) Transient motion of the largest landslide on earth, modulated by hydrological forces. Nat Sci Rep 11:10407. https://doi.org/10.1038/s41598-021-89899-6

    Article  Google Scholar 

  • Aslan G, De Michele M, Raucoules D, Renard F, Cakir Z (2021b) Dynamics of a giant slow landslide along the coast of the Aral Sea, Central Asia. In: IEEE International geoscience and remote sensing symposium IGARSS, pp 8384–8387

  • Astravolga (2020) https://astravolga.ru/zasuha-mozhet-pogubit-selskohozjajstvennye-kultury-v-astrahanskoj-oblasti/. Accessed 11 Nov 2021 (in Russian)

  • Az sputniknews (2021) https://az.sputniknews.ru/20210128/V-poselke-Bailovo-snova-soshel-opolzen-426083242.html. Accessed 12 Nov 2021 (in Russian)

  • Az sputniknews (2022) https://az.sputniknews.ru/20220319/evakuirovany-zhiteli-zatoplennykh-domov--v-masally-i-dzhalilabade---video-440326504.html. Accessed 18 Apr 2022 (in Russian)

  • Bahrainy H (1998) Urban Planning and design in a seismic-prone region (The case of Rasht in Northern Iran). J Urban Plan Dev 124(4):148–181

    Article  Google Scholar 

  • Baldina EA, de Leeuw J, Gorbunov AK, Labutina IA, Zhigogliad AF, Kooistra JF (1999) Vegetation change in the Astrakhanskiy Biosphere Reserve (Lower Volga Delta, Russia) in relation to Caspian Sea level fluctuation. Envir Conserv 26(3):169–178

    Article  Google Scholar 

  • Baloglanov EE, Abbasov OR, Akhundov RV (2018) Mud volcanoes of the world: classifications, activities and environmental hazard (informational-analytical review). Eur J Nat Hist 5:12–26

    Google Scholar 

  • Berberian M, Qorashi M, Jackson J, Priestley K, Wallace T (1992) The Rudbar-Tarom earthquake of 20 June 1990 in NW Persia—preliminary field and seismological observations and its tectonic significance. Bull Seismol Soc Am 82:1726–1755

    Google Scholar 

  • Berezovikov NN, Khalmenov SS (2020) A case of the death of the little bittern Ixobrychus minutus during a drought in the Caspian lowland. Russ J Ornithol 29:1192–1193 (in Russian)

    Google Scholar 

  • Bonini M, Tassi F, Feyzullayev AA, Aliyev CS, Capecchiacci F, Minissale A (2013) Deep gases discharged from mud volcanoes of Azerbaijan: new geochemical evidence. Mar Petrol Geol 43:450–463

    Article  Google Scholar 

  • Brakenridge GR (2010) Global active archive of large flood events. Dartmouth Flood Observatory, University of Colorado, USA. https://floodobservatory.colorado.edu/Archives/index.html. Accessed 6 Nov 2021

  • Brunet M-F, Korotaev M, Ershov AV, Nikishin AM (2003) The South Caspian Basin: a review of its evolution from subsidence modelling. Sed Geol 156:119–148

    Article  Google Scholar 

  • Carececo (2021) Regional strategy for drought risk management and mitigation in Central Asia for 2021–2030. https://carececo.org/en/main/activity/projects/droughtSDS/. Assessed 4 Apr 2022

  • Carnegie Moscow Center (2018) What the new status of the Caspian will change, 21 Aug 2018. https://carnegiemoscow.org/commentary/77078. Accessed 1 Nov 2021

  • Caspian (2021) International scientific forum “Caspian 2021: Ways of Sustainable Development”. https://caspian2021.mmco-expo.ru/. Accessed 1 Nov 2021

  • Cherenkova EA, Kononova NK, Muratova NR (2012) Summer drought 2010 in the European Russia. Geogr Environ Sustain 6(1):55–66

    Article  Google Scholar 

  • Cherenkova EA, Sidorova MV (2021) On the impact of insufficient atmospheric moistening on the low annual discharge of large rivers in European Russia. Water Resour 48:351–360. https://doi.org/10.1134/S0097807821030064

    Article  Google Scholar 

  • Chernomorets DA, Petrakov DA, Aleynikov AA, Bekkiev MY, Viskhadzhieva KS, Dokukin MD, Kalov RK, Kidyaeva VM, Krylenko VV, Krylenko IV, Krylenko IN, Rets EP, Savernyuk EA, Smirnov AM (2018) The outburst of Bashkara glacier lake (central Caucasus, Russia) on September 1, 2017. Kriosfera Zemli 2:61–70

    Google Scholar 

  • Chumakov D (2019) Prospects of Trans-Caspian gas pipeline. Mirovaia Ekonomika i Mezhdunarodnye Otnosheniia 63(8):47–54. https://doi.org/10.20542/0131-2227-2019-63-8-47-54

    Article  Google Scholar 

  • Convention (2018) Convention of the legal status of the Caspian Sea. http://en.kremlin.ru/supplement/5328. Accessed 1 Nov 2021

  • Crétaux J-F, Létolle R, Bergé-Nguyen M (2013) History of Aral Sea level variability and current scientific debates. Quat Int 110:99–113

    Google Scholar 

  • Degroot D et al (2021) Towards a rigorous understanding of societal responses to climate change. Nature 591:539–550

    Article  Google Scholar 

  • Diaconescu CC, Knapp JH (2000) Buried gas hydrates in the deepwater of the South Caspian Sea, Azerbaijan: implications for geo-hazards. En Expl Exploit 18(4):385–400

    Article  Google Scholar 

  • Diamond J (2005) Collapse: how societies choose to fail or succeed. Viking Press, New York

    Google Scholar 

  • DiCosmo N et al (2018) Environmental stress and steppe nomads: rethinking the history of the Uyghur Empire (744–840) with paleoclimate data. J Interdiscip Hist 4:439–463

    Article  Google Scholar 

  • Dimitrov LI (2002) Mud volcanoes—the most important pathway for degassing deeply buried sediments. Earth Sci Rev 59:49–76

    Article  Google Scholar 

  • Dotsenko SF, Kuzin IP, Levin BV, Solovieva O (2002) Tsunamis in the Caspian Sea: historical and regional seismicity and numerical modelling. In: Rabinovich AB, Rapatz W (eds) Local tsunami warning and mitigation, Petropavlovsk-Kamchatsky Tsunami Workshop, 10–15 Sept 2002, pp 23–31

  • Dundon LA, Abkowitz M (2021) Climate-induced managed retreat in the U.S.: a review of current research. Clim Risk Manag 33:100337

    Article  Google Scholar 

  • ESIMO (2021) Unified State Information System on the situation in the world ocean http://193.7.160.230/web/esimo/casp/wwf/wwf_casp.php. Accessed 1 Nov 2021 (in Russian)

  • Etiope G (2005) Chap. 4 Greenhouse effects of mud volcanism, Methane emission from mud volcanoes. In: Martinelli G, Panahi B (eds) Mud volcanoes, geodynamics and seismicity. Springer, The Netherlands, pp 141–146

  • Evans SG, Tutubalina OV, Drobyshev VN, Chernomorets SS, McDougall S, Tetrakov DA, Hungr O (2009) Catastrophic detachment and high-velocity long-runout flow of the Kolka Glacier, Caucasus Mountains, Russia in 2002. Geomorphology 105:314–321

    Article  Google Scholar 

  • Farzin S, Alizadeh Sanami F (2017) Modeling and analysing of hydrological regime trend of rivers (Case study: Gorganrood river, Tamar hydrometric stations). Iran Watershed Manag Sci Eng 11:37

    Google Scholar 

  • Framework Convention (2003) Framework convention for the protection of the marine environment of the Sea, 4 November 2003. https://tehranconvention.org/en/tc/text-convention. Accessed 1 Nov 2021

  • Gazeta ru (2021) https://www.gazeta.ru/social/2021/05/19/13599686.shtml. Accessed 30 May 2021 (in Russian)

  • Geophysical Survey (2021) Newsletter on the earthquake in Western Turkmenistan on December 6, 2000. http://www.gsras.ru/cgi-bin/new/info_quake.pl?mode=1&id=23. Accessed 9 Sept 2021 (in Russian)

  • Ghafarian P, Pegahfar N, Owlad E (2018) Multiscale analysis of lake-effect snow over the southwest coast of the Caspian Sea (31 January–5 February 2014). Weather 73(1):9–14

    Article  Google Scholar 

  • Ghafarian P, Tajbakhsh S (2019) Signature of the Climate Change in the South Caspian Basin and coastal area. Oceanol Res 47(5):12–25. https://doi.org/10.29006/1564-2291.JOR-2019.47(5).2

    Article  Google Scholar 

  • Ghassemi M, Garzanti E (2019) Geology and geomorphology of Turkmenistan: a review. Geopersia 9(1):125–140

    Google Scholar 

  • Ginzburg AI, Kostianoy AG, Sheremet NA (2005) Sea surface temperature. In: Kostianoy AG, Kosarev AN (eds) The Caspian Sea environment. Springer-Verlag, Berlin, Heidelberg New York, pp 59–81

    Chapter  Google Scholar 

  • Golitsyn GS (1995) The Caspian Sea level as a problem of diagnosis and prognosis of the regional climate change. Izv Russ Acad Sci Atmos Oceanic Phys Engl Trans 31:366–372

    Google Scholar 

  • Gorelits OV, Zemlyanov IV, Pavlovskii AE, Sapozhnikova AA, Postavik PV, Yagotintsev VN (2006) Catastrophic floods in the Terek Delta in 2001 and 2005. In: Extreme hydrological events in Aral and Caspian Sea region. The proceedings of international scientific conference Moscow, 19–20 Oct 2006, pp 163–167

  • Goudie AS (1978) Dust storms and their geomorphological implications. J Arid Envir 1:291–311

    Article  Google Scholar 

  • GOV.UK (2021) Implementing managed retreat as a strategic flood and coastal defence option. https://www.gov.uk/flood-and-coastal-erosion-risk-management-research-reports/implementing-managed-retreat-as-a-strategic-flood-and-coastal-defence-option. Accessed 4 Sept 2021

  • Haghani S, Leroy SAG (2016) Differential impact of long-shore currents on coastal geomorphology development in the context of rapid sea level changes: the case of the Old Sefidrud (Caspian Sea). Quat Int 408:78–92

    Article  Google Scholar 

  • Haghani S, Leroy SAG, Wesselingh FP, Rose NL (2016) Rapid evolution of a Ramsar site in response to human interference under rapid sea level change: a south Caspian Sea case study. Quat Int 408:93–112

    Article  Google Scholar 

  • Haghani S, Leroy SAG (2020) Recent avulsion history of Sefidrud, south west of the Caspian Sea. Quat Int 540:97–110

    Article  Google Scholar 

  • Haqqin AZ (2021) Title https://haqqin.az/news/214224, 4 July 2021. Accessed 28 Oct 2021 (in Russian)

  • Hajibigloo M, Sheikh V, Memarian H, Bairam Komaki C (2022) A comprehensive assessment and modelling of land use changes in a flood-prone watershed, Northeast of Iran. J Indian Soc Remote Sens. https://doi.org/10.1007/s12524-022-01513-y

    Article  Google Scholar 

  • Herzfeld E (1947) Zoroaster and his world. Princeton University Press, pp 411–851

    Google Scholar 

  • Hoell A, Eischeid J, Barlow M, McNally A (2020) Characteristics, precursors, and potential predictability of Amu Darya Drought in an Earth system model large ensemble. Clim Dyn. https://doi.org/10.1007/s00382-020-05381-5

    Article  Google Scholar 

  • Hollingsworth J, Fattahi M, Ri W, Talebian M, Bahroudi A, Bolourchi MJ, Jackson J, Copley A (2010) Oroclinal bending, distributed thrust and strike-slip faulting, and the accommodation of Arabia-Eurasia convergence in NE Iran since the Oligocene. Geophys J Int 181:1214–1246

    Google Scholar 

  • Hölzel N, Haub C, Ingelfinger MP, Otte A, Plipenko VN (2002) The return of the steppe- large -scale restoration of degraded land in southern Russia during the post-Soviet era. J Nat Conserv 10:75–85

    Article  Google Scholar 

  • Honardoust F, Ownegh M, Sheikh V (2011) Assessing desertification sensitivity in the northern part of Gorgan Plain, southeast of the Caspian Sea. Iran Res J Envir Sci 5(3):205–220

    Article  Google Scholar 

  • Hongisto M, Sofiev M (2004) Long-range transport of dust to the Baltic Sea region. In: Lirkov I et al (eds) LSSC 2003, LNCS 2907. Springer-Verlag, Berlin, Heidelberg, pp 303–311

  • Hydroweb (2021) Lake Caspian. http://hydroweb.theia-land.fr/hydroweb/view/L_caspian?lang=en. Accessed 27 Aug 2021

  • Ibrion M, Mokhtari M, Nadim F (2015) Earthquake disaster risk reduction in Iran: lessons and ‘“Lessons Learned”’ from three large earthquake disasters—Tabas 1978, Rudbar 1990, and Bam 2003. Int J Disaster Risk Sci 6:415–427

    Article  Google Scholar 

  • Idrisov IA, Mamaev SA, Ibaev JG (2013) Features of the distribution and development of large landslides in Dagestan. In: Proceedings of the institute of geology of the Dagestan scientific center of the Russian academy of sciences. Makhachkala, pp 96–100

  • IFRC (2021) The International Federation of Red Cross and Red Crescent Societies disaster preparedness. https://www.ifrc.org/disaster-preparedness. Accessed 10 Nov 2021

  • Ignatov EI, Ogorodov SA (1998) Morphodynamics of the Caspian Sea shores under conditions of fluctuations in its level. News Russ Geogr Soc 130(6):27–38 (in Russian)

    Google Scholar 

  • INIOAS (xxxx) What is hazard. http://www.inio.ac.ir/Default.aspx?tabid=1721. Accessed 5 Nov 2021

  • International Commission for the Protection of the Rhine (2020) New Rhine Atlas and international flood risk management plan Rhine published. https://www.iksr.org/en/press/press-releases/press-releases-individual-presentation?tx_news_pi1%5Baction%5D=detail&tx_news_pi1%5Bcontroller%5D=News&tx_news_pi1%5Bnews%5D=688&cHash=9d2d0097e7e3c4b3e92acff641055fc2. Accessed 9 Nov 2021

  • IPCC (2019) Summary for Policymakers. In: Pörtner H-O, Roberts DC, Masson-Delmotte V, Zhai P, Tignor M, Poloczanska E, Mintenbeck K, Nicolai M, Okem A, Petzold J, Rama B, Weyer N (eds) IPCC Special report on the ocean and cryosphere in a changing climate. https://www.ipcc.ch/site/assets/uploads/sites/3/2019/11/03_SROCC_SPM_FINAL.pdf

  • IPCC (2021) Summary for policymakers of the working group I contribution to the Sixth Assessment Report (AR6) https://www.ipcc.ch/report/ar6/wg1/. Accessed 4 Sept 2021

  • Issanova G, Abuduwaili J, Kaldubayev A, Semenov O, Dedova T (2015) Dust storms in Kazakhstan: frequency and division. J Geol Soc India 85:348–358

    Article  Google Scholar 

  • Ivanov Y, Kisyov A, Ranguelov B (2016) Kinematic models and early warning systems (earthquakes and tsunamis) for Azerbaijan (Baku case). Annual of the University of Mining and Geology “St. Ivan Rilski”, 59, I, Geology and Geophysics, pp 157–162

  • Ivkina N, Naurozbayeva Z, Kløve B (2017) Influence of climate change on the ice regime of the Caspian Sea. Central Asian J Water Res 3(2):12–23

    Google Scholar 

  • Izdebski A, Holmgren K, Weiberg E, Stocker SR et al (2016) Realising consilience. How better communication between archaeologists, historians and geoscientists can transform the study of past climate change in the Mediterranean. Quat Sci Rev 136:5–22

    Article  Google Scholar 

  • Jaafari A, Najafi A, Pourghasemi HR, Rezaeian J, Sattarian A (2014) GIS-based frequency ratio and index of entropy models for landslide susceptibility assessment in the Caspian forest, northern Iran. Int J Environ Sci Technol 11:909–926

    Article  Google Scholar 

  • Jackson J, Priestley K, Allen M, Berberian M (2002) Active tectonics of the South Caspian Basin. Geophys J Int 148:214–245

    Google Scholar 

  • Javidan N, Kavian A, Pourghasemi HR, Conoscenti C, Jafarian Z, Rodrigo-Comino J (2021) Evaluation of multi-hazard map produced using MaxEnt machine learning technique. Nat Sci Rep 11:6496. https://doi.org/10.1038/s41598-021-85862-7

    Article  Google Scholar 

  • Kakroodi AA, Kroonenberg SB, Goorabi A, Yamani M (2014) Shoreline response to rapid 20th century sea-level change along the Iranian Caspian coast. J Coast Res 30(6):1243–1250

    Article  Google Scholar 

  • Karryev BS (2009) Seismicity of the Kopetdag region. Ashgabat, Ylym (in Russian)

  • Kazancı N, Gulbabazadeh T, Leroy SAG, Ileri O (2004) Sedimentary and environmental characteristics of the Gilan-Mazenderan plain, northern Iran: influence of long- and short-term Caspian water level fluctuations on geomorphology. J Mar Syst 46(1–4):145–168. https://doi.org/10.1016/j.jmarsys.2003.12.002

    Article  Google Scholar 

  • Khain VE, Bogdanov NA (2003) International tectonic map of the Caspian Sea and its framing (scale 1: 2,500,000). Explanatory letter. Moscow. Nauchnyi mir publishing, p 120 (in Russian)

  • Kondratieva NV, Kesaonov VKH, Khuchunaeva LV (2018) Formation and distribution of mudflows in North Ossetia–Alania Conference: 5th international conference on Debris Flows. Tbilisi, Georgia

  • Koriche SA, Nandini-Weiss SD, Prange M, Singarayer JS, Arpe K, Cloke HL, Schulz M, Bakker P, Leroy SAG, Coe M (2021a) Impacts of variations in Caspian Sea surface area on catchment-scale and large-scale climate. JGR Atmos. https://doi.org/10.1029/2020JD034251

    Article  Google Scholar 

  • Koriche SA, Singarayer JS, Cloke HL (2021b) The fate of the Caspian Sea under projected climate change and water extraction during the 21st century. Environ Res Lett. https://doi.org/10.1088/1748-9326/ac1af5

    Article  Google Scholar 

  • Kornilova ED, Krylenko IN, Rets EP, Motovilov YG, Bogachenko EM, Krylenko IV, Petrakov DA (2021) Modeling of extreme hydrological events in the Baksan River Basin, the Central Caucasus. Russ Hydrol 8:24. https://doi.org/10.3390/hydrology8010024

    Article  Google Scholar 

  • Korotaev VN (2011) Geomorphology of the Volga delta and dynamics of channel branching. Moscow University Herald. Geography 2:103–109 (in Russian)

    Google Scholar 

  • Kosarev A (2005) Physico-Geographical conditions of the Caspian Sea. In: Kostianoy A, Kosarev A (eds) The Caspian Sea environment. Springer, pp 5–32

    Chapter  Google Scholar 

  • Kosarev AN, Yablonskaya EA (1994) The Caspian Sea. Academic Publishing, The Hague

    Google Scholar 

  • Kostianoy A, Kosarev A (2005) The Caspian Sea environment. Springer, Berlin, Heidelberg

    Book  Google Scholar 

  • Kouraev AV, Papa F, Buharizin PI, Cazenave A, Crétaux J-F, Dozortseva J, Remy F (2003) Ice cover variability in the Caspian and Aral seas from active and passive microwave satellite data. Polar Res 22(1):43–50

    Article  Google Scholar 

  • Kouraev AV, Crétaux J-F, Lebedev SA, Kostianoy AG, Ginzburg AI, Sheremet NA, Mamedov R, Zhakharova EA, Roblou L, Lyard F, Calmant S, Bergé-Nguyen M (2011) The Caspian Sea. In: Vignudelli S, Kostianoy AG, Cipollini P, Benveniste J (eds) Handbook on coastal altimetry. Springer Nature, Switzerland, pp 331–366

    Chapter  Google Scholar 

  • Krivonogov KS, Burr GS, Kuzmin YV, Gusskov SA, Kurmanbaev RK, Kenshinbay TI, Voyakin DA (2014) The fluctuating Aral Sea: a multidisciplinary-based history of the last two thousand years. Gondwana Res 26:284–300

    Article  Google Scholar 

  • Kroonenberg SB, Rusakov GV, Svitoch AA (1997) The wandering of the Volga delta: a response to rapid Caspian Sea-level change. Sed Geol 107:189–209

    Article  Google Scholar 

  • Kurtubadze M (2020) Population by number in the Caspian Sea region per cities and administrative units. https://www.grida.no/resources/13601. Accessed 28 Mar 2021

  • Lahijani HAK, Tavakoli V, Amini AH (2008) South Caspian river mouth configuration under human impact and sea level fluctuations. Envir Sci 5(2):65–86

    Google Scholar 

  • Lahijani H, Abbasian H, Naderi-Beni A, Leroy SAG, Haghani S, Habibi P, Hosseindust M, Shahkarami S, Yeganeh S, Zandi Z, Tavakoli V, Azizpour J, Sayed-Valizadeh M, Pourkerman M, Shah-Hosseini M (2019) Sediment distribution pattern of South Caspian Sea: possible hydroclimatic implications. Can J Earth Sci 56(6):637–653

    Article  Google Scholar 

  • Leontiev OK, Kosarev AN, Owen L (2021) Caspian Sea. Encyclopedia Britannica https://www.britannica.com/place/Caspian-Sea. Accessed 19 Apr 2022

  • Leroy SAG (2006) From natural hazard to environmental catastrophe, past and present. Quat Int 158–1:4–12

    Article  Google Scholar 

  • Leroy SAG (2022) Natural hazards, landscapes, and civilizations. In: Shroder JF (Editor-in-chief), James LA, Harden CP, Clague JJ (Volume eds). Treatise on Geomorphology, vol 13.12, Geomorphology of Human Disturbances, Climate Change, and Natural Hazards. San Diego: Academic Press. https://doi.org/10.1016/B978-0-12-818234-5.00003-1

  • Leroy SAG, Chalié F, Wesselingh F, Sanjani S, Lahijani HAK, Athersuch J, Struck U, Plunkett G, Reimer PJ, Habibi P, Kabiri K, Haghani S, Naderi Beni A, Arpe K (2018) Multiproxy indicators in a Pontocaspian system: a depth transect of surface sediment in the S-E Caspian Sea. Geol Belg 21(3–4):143–165. https://doi.org/10.20341/gb.2018.008

    Article  Google Scholar 

  • Leroy SAG, Gracheva R (2013) Historical events: historical natural hazards. In: Bobrowsky P (ed) Encyclopedia of natural hazards. Springer-Verlag, Heidelberg, pp 452–470

    Chapter  Google Scholar 

  • Leroy SAG, Lahijani H, Crétaux J-F, Aladin N, Plotnikov I (2020) Past and current changes in the largest lake of the world: the Caspian Sea. In: Mischke S (ed) Large Asian lakes in a changing world. Springer, pp 65–107

    Chapter  Google Scholar 

  • Leroy SAG, López-Merino L, Kozina N (2019) Caspian deep-water dinocyst records show a reversed meridional water gradient at 8.5–4.0 cal. ka BP. Quat Sci Rev 209:1–12. https://doi.org/10.1016/j.quascirev.2019.02.011

    Article  Google Scholar 

  • Leroy SAG, Marret F, Giralt S, Bulatov SA (2006) Natural and anthropogenic rapid changes in the Kara-Bogaz Gol over the last two centuries by palynological analyses. Quat Int 150:52–70. https://doi.org/10.1016/j.quaint.2006.01.007

    Article  Google Scholar 

  • Leroy SAG, Warny S, Lahijani H, Piovano EL, Fanetti D, Berger AR (2010) The role of geosciences in the mitigation of natural disasters: five case studies. In: Beer T (ed) Geophysical hazards: minimising risk, maximising awareness, Springer Science, in series International Year of Planet Earth, Chap 9, pp 115–147

  • Leroy SAG, Reimer PJ, Lahijani HK, Naderi Beni A, Sauer E, Chalié F, Arpe K, Demory F, Mertens K, Belkacem D, Kakroodi AA, Omrani Rekavandi H, Nokandeh J, Amini A (2022) Caspian Sea levels over the last 2200 years, with new data from the S-E corner. Geomorphology 403:108136

    Article  Google Scholar 

  • Ma X, Zhu J, Yan W, Zhao C (2021) Projections of desertification trends in Central Asia under global warming scenarios. Sci Tot Environ 781:146777

    Article  Google Scholar 

  • MacMahan JH, Thornton EB, Reniers AJ (2006) Rip current review. Coast Eng 53:191–208

    Article  Google Scholar 

  • Maksaev RR, Svitoch AA, Tkach NT (2020) Late Pleistocene sedimentation in the Northern Caspian Lowland during the Early Khvalynian transgression. Limnol Freshw Biol 4:531–532. https://doi.org/10.31951/2658-3518-2020-A-4-531

    Article  Google Scholar 

  • Mentaschi L, Vousdoukas MI, Pekel J-F, Voukouvalas E, Feyen L (2018) Global long-term observations of coastal erosion and accretion. Nat Sci Rep 8:12876

    Google Scholar 

  • Meteo (2021) http://meteo.ru/data/310-neblagopriyatnye-usloviya-pogody-nanjosshie-ekonomicheskie-poteri. Accessed 8 Apr 2022 (in Russian)

  • Mikhailov VN, Kravtsova VI, Magritskii DV (2003) Hydrological and morphological processes in the Kura River Delta. Water Res 30(5):495–508

    Article  Google Scholar 

  • Mikhailov VN, Magritskii DV, Kravtsova VI, Mikhailova MV, Isupova MV (2012) The response of river mouths to large-scale variations in sea level and river runoff: case study of rivers flowing into the Caspian Sea. Water Res 39(1):11–43

    Article  Google Scholar 

  • Mountain Law (2020) On the development and protection of mountain territories. https://www.fao.org/mountain-partnership/news/news-detail/es/c/1371079/. Accessed 1 Nov 2021

  • Mukhtarov F (2015) Climate change strikes oil & gas industry: tragedy in the Caspian Sea. https://www.hurriyetdailynews.com/climate-change-strikes-oil--gas-industry-tragedy-in-the-caspian-sea-92781. Accessed 6 Nov 2021

  • Mursaliev AO, Kukushkina AV (2018) Legal aspects of countering environmental threats in the Caspian Sea. Issues Russ Int Law 8(4A):213–221 (in Russian)

    Google Scholar 

  • Naderi Beni A, Lahijani H, Mousavi Harami R, Arpe K, Leroy SAG, Marriner N, Berberian M, Ponel VA, Djamali M, Mahboubi A, Reimer PJ (2013) Caspian sea level changes during the last millennium: historical and geological evidences from the south Caspian Sea. Clim past 9:1645–1665

    Article  Google Scholar 

  • Naderi Beni A, Lahijani H, Pourkerman M, Jokar R, Hosseindoust M, Marriner N, Andrieu-Ponel V, Kamkar A (2014) Caspian Sea level changes at the end of Little Ice Age and its impact on the avulsion of the Gorgan River: a multidisciplinary case study from the southwestern flank of the Caspian Sea. Méditerranée 122:145–155

    Article  Google Scholar 

  • National report (2019) Global climate and soil cover of Russia: desertification and land degradation, institutional, infrastructural, technological adaptation measures (agriculture and forestry). In: Edelgeriev RS-Kh (ed), vol 2. Moscow, Publishing House LLC MBA (in Russian)

  • NATO (2003) Information about floods in Azerbaijan. https://reliefweb.int/report/azerbaijan/information-about-floods-azerbaijan. Accessed 5 Nov 2021

  • Negah S, Mesakatree A-H, Hajjam S, Kamali A (2016) Investigation of the atmospheric mesoscale circulation patterns and their simulation with WRF-CHEM model of the dust storm occurrence over the southern coast of the Caspian Sea. Arab J Geosci 9:649

    Article  Google Scholar 

  • Nesterov ES, Popov SK, Lobov AL (2018) Statistical characteristics and modelling of storm surges in the North Caspian Sea. Russian Met Hydr 43(10):664–669

    Article  Google Scholar 

  • Neumann P, Bauer M, Haidn M, Keilig K, Menabde Z, Dumbadze D (2018) Geological and geotechnical findings of the catastrophic debris flow near Tskneti, Georgia, June 2015. Conference: 5th international conference on debris flows. Tbilisi, Georgia. In: Chernomorets SS, Gavardashvili GV (eds) Debris flows: disasters, risk, forecast, protection. Proceedings of the 5th International Conference. Tbilisi, Georgia, 1–5 Oct 2018. Tbilisi: Universal, pp 168–175. http://www.debrisflow.ru/en/df18/proceedings/. Accessed 9 Sept 2021

  • Nikonov A (2018) Ashgabat disaster of 1948. Lessons to remember. Priroda 11:52–59. https://doi.org/10.31857/S0032874X0002324-5 (in Russian)

    Article  Google Scholar 

  • NSIDC (2021) Nilas. https://nsidc.org/cryosphere/glossary/term/nilas. Accessed 1 Nov 2021

  • Ollivier V, Fontugne M, Lyonnet B, Chataigner C (2016) Base level changes, river avulsions and Holocene human settlement dynamics in the Caspian Sea area (middle Kura valley, South Caucasus). Quat Int 395:79–94

    Article  Google Scholar 

  • Omrani H, Raghimi M (2018) Origin of mud volcanoes in the south east Caspian Basin. Iran Mar Petrol Geol 96:615–626

    Article  Google Scholar 

  • Oppo D, Capozzi R, Nigarov A, Esenov P (2014) Mud volcanism and fluid geochemistry in the Cheleken peninsula, western Turkmenistan. Mar Petrol Geol 57:122–134

    Article  Google Scholar 

  • Orlovsky L, Orlovsky N, Durdyev A (2005) Dust storms in Turkmenistan. J Arid Environ 60:83–97

    Article  Google Scholar 

  • Overeem I, Kroonenberg SB, Veldkamp A, Groenesteijn K, Rusakov GV, Svitoch AA (2003) Small-scale stratigraphy in a large ramp delta: recent and Holocene sedimentation in the Volga delta, Caspian Sea. Sediment Geol 159:133–157

    Article  Google Scholar 

  • Ozyavas A, Khan SD, Casey JF (2010) A possible connection of Caspian Sea level fluctuations with meteorological factors and seismicity. Earth Planet Sci Lett 299:150–158

    Article  Google Scholar 

  • Panek T, Korup O, Minar J, Hradecky J (2016) Giant landslides and highstands of the Caspian Sea. Geology 44(11):939–942

    Article  Google Scholar 

  • Pavlova A, Myslenkov S, Arkhipkin V, Surkova G (2021) Storm surges and storm wind waves in the Caspian Sea in the present and future climate. Nat Hazards Earth Syst Sci Discuss. https://doi.org/10.5194/nhess-2021-244

  • Periáñez R, Cortes C (2019) A Modelling Study on Tsunami Propagation in the Caspian Sea. Pure Appl Geoph 176:3155–3166

    Article  Google Scholar 

  • Petrakov DA, Tutubalina OV, Aleinikov AA, Chernomorets SS, Evans SG, Kidyaeva VM, Krylenko IN, Norin SV, Shakhmina MS, Seynova IB (2012) Monitoring of Bashkara Glacier lakes (Central Caucasus, Russia) and modelling of their potential outburst. Nat Hazards 61:1293–1316

    Article  Google Scholar 

  • Petrakov DA, Aristov KA, Aleynikov AA, Boyko ES, Drobyshev VN, Kovalenko NV, Tutubalina OV, Chernomorets SS (2018) Rapid regeneration of the Kolka Glacier (Caucasus) after the 2002 glacial disaster. Kriosfera 22(1):51–62

    Google Scholar 

  • Prange M, Wilke T, Wesselingh FP (2020) The other side of sea level change. Comm Earth Environ. https://doi.org/10.1038/s43247-020-00075-6

    Article  Google Scholar 

  • Pravilova E (2009) River of empire: geopolitics, irrigation, and the Amu Darya in the Late XIXth century, Cahiers d’Asie centrale 17/18. http://asiecentrale.revues.org/1212. Accessed 27 Mar 2021

  • Ramazanov (2020) DGU scientist about the future of the Caspian Sea. http://dgu.ru/newsarchive/1-2010-10-26-10-20-47/8502-2020-08-29-05-57-27.html. Accessed 24 Oct 2021 (in Russian)

  • Ramsar (2014) The history of the Ramsar convention. https://www.ramsar.org/about/history-of-the-ramsar-convention. Accessed 27 Mar 2021

  • Rekacewicz P (2007) Desertification in the Caspian region. https://www.grida.no/resources/6114. Accessed 6 Nov 2021

  • Rekacewicz P (2012) Regional land degradation. https://www.grida.no/resources/5733. Accessed 6 Nov 2021

  • Rets EP, Dzhamalov RG, Kireeva MB, Frolova NL, Durmanov IN, Telegina AA, Telegina EA, Yu GV (2018) Recent trends of river runoff in the North Caucasus. Geogr Envir Sustain 11(3):61–70

    Article  Google Scholar 

  • Rets E, Kireeva M (2010) Hazardous hydrological processes in mountainous areas under the impact of recent climate change: case study of Terek River basin. In: Global change: facing risks and threats to water resources (Proc. of the Sixth World FRIEND Conference, Fez, Morocco, October 2010), vol 340. IAHS Publ, pp 1–10

  • RIAC (2014) Modern Russian–Iranian relations: challenges and opportunities: working paper. Ivanov IS (ed) RIAC. Moscow: Spetskniga, 2014. https://russiancouncil.ru/upload/WP14Russia-Iran-En.pdf

  • Riyahi B, Zanjani SHV (2008) Barotropic two dimensional numerical simulation for the prediction of storm surge and water circulation in Gorgan Gulf, Caspian Sea, Iran Pakistan. J Mar Sci 17(2):59–74

    Google Scholar 

  • Rosmoport (2008–2021) Icebreaking services in the Astrakhan seaport. https://www.rosmorport.com/filials/asf_serv_ice/. Accessed 5 Nov 2021

  • Sabet BS, Barani GhA (2011) Field investigation of rip currents along the coast ern coast of the Caspian Sea. Sci Iran 18(4):878–884

    Article  Google Scholar 

  • Salaree A, Okal EA (2015) Field survey and modelling of the Caspian Sea tsunami of 1990 June 20. Geophys J Int 201:621–639

    Article  Google Scholar 

  • Sauer EW, Omrani Rekavandi H, Wilkinson TJ, Nokandeh J et al (2013) Persia’s imperial power in late Antiquity. The Great Wall of Gorgan and frontier landscapes of Sasanian Iran. British Institute of Persian Studies. Archaeological Monographs series ii, Oxford

  • Sharifi F, Samadi SZ, Wilson CAME (2012) Causes and consequences of recent floods in the Golestan catchments and Caspian Sea regions of Iran. Nat Hazards 61:533–550

    Article  Google Scholar 

  • Shinkarenko SS (2019) Spatio-temporal dynamics of desertification in Black Lands. Curr Probl Remote Sens Earth Space 16(6):155–168 (in Russian)

    Google Scholar 

  • Shinkarenko SS (2021) Changes in spectral reflectance characteristics of the Northern Caspian zonal landscapes under pyrogenic influence. Curr Probl Remote Sens Earth Space 18(3):192–206 (in Russian)

    Google Scholar 

  • Situation Analysis (2021) Drought in central Asia, Almaty Kazakhstan (in Russian)

  • Slingerland R, Smith ND (2004) River avulsions and their deposits. Annu Rev Earth Plant Sci 32:257–285

    Article  Google Scholar 

  • So-E (2011) Caspian Sea: state of the environment 2011. https://www.grida.no/publications/132. Accessed 1 Nov 2021

  • Soroos M (2000) Environmental change and human security in the Caspian region: threats, vulnerability and response strategies. In: Ascher W, Miravitskaya N (eds) The Caspian Sea: a quest for environmental security. NATO Series, 2. Environment Security, vol. 67, pp 13–28

  • State Report (2018) State report on the status of population protection and territories of the Republic of Dagestan from emergency situations of natural and technogenic character in 2017. Makhachkala. http://minyustrd.ru/sostoyanie_zashchity_naseleniya_i_territoriy_ot_chrezvychaynykh_situatsiy. Accessed 11 Nov 2021 (in Russian)

  • Surkova GV, Arkhipkin VS, Kislov AV (2013) Atmospheric circulation and storm events in the Black Sea and Caspian Sea. Cent Eur J Geosci 5(4):548–559

    Google Scholar 

  • Svitoch AA (2014) The great Caspian Sea: structure and history. Moscow University Press, Moscow (in Russian)

    Google Scholar 

  • S&P Global (2021) https://www.spglobal.com/commodity-insights/en/market-insights/latest-news/oil/040921-kazakhstans-kashagan-oil-operator-battles-sea-level-drop-with-new-dredging-project. Accessed 18 Mar 2022

  • Tielidze LG, Wheate RD (2018) The Greater Caucasus glacier inventory (Russia, Georgia and Azerbaijan). Cryosphere 12:81–94

    Article  Google Scholar 

  • Tielidze LG, Kumladze RM, Wheate RD, Gamkrelidze M (2019) The Devdoraki Glacier catastrophes, Georgian Caucasus. Hung Geogr Bull 68(1):21–35

    Google Scholar 

  • Tourani M, Çaglayan A, Saber R, Isik V (2021) Example of the biggest flood disaster in Iranian history: Golestan Province (NE Iran). Geosci Soc Educ Environ. https://doi.org/10.5281/zenodo.4322617

  • Ulomov VI, Kuzin IP, Solov’eva ON, Polyakova TP, Medvedeva NS (2005) Seismogeodynamic migration processes in the central Caspian Sea and adjacent structures of the Caucasus and Kopet Dagh. Izvestiya Phys Solid Earth 41(2):104–113

    Google Scholar 

  • UNDP (2013) Updated transboundary diagnostic analysis for the Kura Ara(k)s River Basin. Lummens HJL, Matthews MM, UNDP/GEF, p 241. https://www.ge.undp.org/content/dam/georgia/docs/publications/UNDP_GE_EE_kura-aras_TDA_2013_rus.pdf. Accessed 4 Apr 2022 (in Russian)

  • UNDP (2018) Five approaches to build functional early warning systems. Bazzola N, Helander SEM, United Nations Development Programme Europe and Central Asia, p 67. https://www.eurasia.undp.org/content/rbec/en/home/library/environment_energy/five-approaches-to-build-functional-early-warning-systems.html. Accessed 27 Mar 2021

  • United Nations (2021) Climate change recognized as ‘threat multiplier’, UN Security Council debates its impact on peace. https://www.un.org/peacebuilding/fr/news/climate-change-recognized-‘threat-multiplier’-un-security-council-debates-its-impact-peace. Accessed 20 Apr 2022

  • USDA (2021) Lake Caspian Sea (0270) Heights variations from altimetry. https://ipad.fas.usda.gov/cropexplorer/global_reservoir/gr_regional_chart.aspx?regionid=stans&reservoir_name=Caspian_Sea&lakeid=000270. Accessed 3 Sept 2021

  • Van Gelder PHAJM, Molenaar WF, Bolgov MV, Krasnozhon GF (2004) Analysis of icing event occurrences in the northern Caspian Sea based on meteorological satellite data. In: Proceedings of OMAE04 23rd international conference on offshore mechanics and arctic engineering, 20–25 June 2004, Vancouver, British Columbia, Canada, pp 1–6

  • Vezzoli G, Garzanti E, Limonta M, Radeff G (2020) Focused erosion at the core of the Greater Caucasus: sediment generation and dispersal from Mt. Elbrus to the Caspian Sea. Earth Sci Rev. https://doi.org/10.1016/j.earscirev.2019.102987

    Article  Google Scholar 

  • Vie Publique (2021) Quelle prévention des risques naturels en France ? 31 August 2021. https://www.vie-publique.fr/eclairage/275917-quelle-prevention-des-risques-naturels-en-france. Accessed 3 Sept 2021

  • Vincent SJ, Somin ML, Carter A, Vezzoli G, Fox M, Vautravers B (2019) Testing models of Cenozoic exhumation in the Western Greater Caucasus. Tectonics. https://doi.org/10.1029/2018TC005451

    Article  Google Scholar 

  • VNIRO (2021) About possible reasons for the death of Caspian seals on the coast of Dagestan at the end 2020 year. http://www.vniro.ru/ru/novosti/novosti-za-2021-god/o-vozmozhnykh-prichinakh-gibeli-kaspijskikh-tyulenej-na-poberezh-e-dagestana-v-kontse-2020-goda. Accessed 14 Sept 2021 (in Russian)

  • VolcanoDiscovery (2021) Earthquakes Respublika Dagestan. https://www.volcanodiscovery.com/ru/region/8185/zemletryaseniya/respublika-dagestan/archive/2021.html. Accessed 27 Aug 2021 (in Russian)

  • Wang J et al (2018) Recent global decline in endorheic basin water Storages. Nat Geosci. https://doi.org/10.1038/s41561-018-0265-7

    Article  Google Scholar 

  • Wilson SC, Dolgova E, Trukanova I, Dmtrieva L, Crawford I, Baimukanov M, Goodman SJ (2017) Breeding behavior and pup development of the Caspian seal, Pusa Caspica. J Mammal 98(1):143–153

    Google Scholar 

  • Xinhuanet (2018) Hundreds evacuated as land cracks widen in upland Baku, Azerbaijan. http://www.xinhuanet.com/english/2018-01/25/c_136924977.htm. Accessed 28 Mar 2021

  • Yazdi P, Santoyo MA, Gaspar-Escribano JM (2018) Analysis of the 2012 Ahar-Varzeghan (Iran) seismic sequence: insights from statistical and stress transfer modeling. Global Planet Change 161:121–131

    Article  Google Scholar 

  • Yetirmishli GD, Abdullaeva RR, Ismailova SS, Kazymova SE (2011) Azerbaijan review of seismicity. Earthq Northern Eurasia 20:55–62 (in Russian)

    Google Scholar 

  • Yetirmishli GJ, Mammadli TY, Rzayev AG (2015) Features of Bayil landslide of Baku City in 2011. Seismoprogn Observ Territ Azerb 12(1):35–41

    Google Scholar 

  • Zolotokrylin AN, Titkova TB, Cherenkova EA (2020a) Characteristics of spring-summer drought in dry and wet periods in the south of European Russia. Arid Ecocyst 10(4):322–328

    Article  Google Scholar 

  • Zolotokrylin AN, Cherenkova EA, Titkova TB (2020b) Aridization of drylands in the European part of Russia: secular trends and links to droughts. Izvestiya Rossiiskoi Akademii Nauk Seriya Geograficheskaya 84(2):207–217. https://doi.org/10.31857/S258755662002017X (in Russian)

    Article  Google Scholar 

  • Zonn IS (1995) Desertification in Russia: problems and solutions (an example in the Republic of Kalmykia-Khallmg Tangch). Envir Monit Assess 37:347–363

    Article  Google Scholar 

  • Zonn IS, Kosarev AN, Glantz MH, Kostianoy AG (2010) The Caspian Sea encyclopedia. Springer Verlag, Berlin, Heidelberg

    Book  Google Scholar 

Download references

Acknowledgements

Some sections related to the North-West Caspian were prepared under a grant from the Ministry of Science and Higher Education of the Russian Federation (grant agreement no. 075-15-2020-928). We are grateful to V. Vinogradova (IGRAS, Russia) for help in collecting weather data. G. Aslan (BRGM, France) has kindly provided Figure 9. Our gratitude is going to K. Arpe and M. Eglème who commented constructively the manuscript before submission. We are grateful to the reviewers for their constructive comments.

Funding

The work has not received any specific funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suzanne A. G. Leroy.

Ethics declarations

Conflict of interest

The authors have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leroy, S.A.G., Gracheva, R. & Medvedev, A. Natural hazards and disasters around the Caspian Sea. Nat Hazards 114, 2435–2478 (2022). https://doi.org/10.1007/s11069-022-05522-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-022-05522-5

Keywords

Navigation