Skip to main content

Advertisement

Log in

Projection of lightning over South/South East Asia using CMIP5 models

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

Product of Bowen ratio with the sum of precipitation rate and evaporation rate has been used as proxy to evaluate the seasonal and annual spatial distributions of lightning flash rate over South/Southeast Asian region (60–120° E, 0–40° N) with 9 models from the Coupled Model Inter-comparison Project-Phase 5 (CMIP5). The model-simulated mean LFR with each model is positively correlated with the satellite-observed LFR on both seasonal and annual scales. The satellite-observed LFR is correlated with the ensemble mean LFR of the models with a correlation coefficient of 0.93 over the region. The model-simulated LFR has also been used for projection of lightning in the late twenty-first century. Overall, the projected LFR over whole study area shows a 6.75% increase during the (2079–2088) period in high radiative forcing scenario (RCP8.5) as compared to the historic period of (1996–2005). Rise in LFR is also identified using another projected period (2051–2060) and a lower radiative forcing scenario condition (RCP4.5), though lesser in magnitude, as expected. For the projected period (2051–60) in the RCP8.5 case, LFR over the domain shows an increase of 4.3%; whereas for a lower future scenario condition (RCP4.5), it indicates a rise by 5.36% at the end of the twenty-first century. Moreover, results indicate an increase in extreme events of severe convective storms with intense lightning in mountainous dry regions at the end of the twenty-first century. It is suggested that the proxy used here is favourable for projection of LFR in this region and perhaps for the whole tropical area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Albrecht RI, DE GoodmanSJ B, Blakeslee RJ, Christian HJ (2016) Where are the lightning hotspots on earth? Bull Amer Meteor Soc 97:2051–2068. https://doi.org/10.1175/BAMS-D-14-00193.1

    Article  Google Scholar 

  • Bala SS, Kamra AK (1991) Change in precipitation drag due to thunderstorm electrification. Atmos Res 26:377–387

    Article  Google Scholar 

  • Berg P, Moseley C, Haerter JO (2013) Strong increase in convective precipitation in response to higher temperatures. Nature Geosci 6:181–185

    Article  Google Scholar 

  • Cecil DJ, Buechler DE, Blakeslee RJ (2015) TRMM LIS climatology of thunderstorm occurrence and conditional lightning flash rates. J Clim 28:6536–6547

    Article  Google Scholar 

  • Chandra S, Siingh D, Victor NJ, Kamra AK (2021) Lightning activity over South / Southeast Asia: modulation by thermodynamics of lower atmosphere. Atmos Res 250:105378. https://doi.org/10.1016/j.atmosres.2020.105378

    Article  Google Scholar 

  • Clark SK, Ward DS, Mahowald NM (2017) Parameterization-based uncertainty in future lightning flash density. Geophy Res Lett 44(6):2893–2901

    Article  Google Scholar 

  • Diffenbaugh NS, Scherer M, Trapp RJ (2013) Robust increases in severe thunderstorm environments in response to greenhouse forcing. Proc Natl Acad Sci 110(41):16361–16366

    Article  Google Scholar 

  • Dwivedi AK, Chandra S, Kumar M, Kumar S, Kiran Kumar NVP (2014) Atmospheric surface layer responses to the extreme lightning day in plateau region in India. J Atmos Solar-Terrestrial Phys 120:143–149. https://doi.org/10.1016/j.jastp.2014.08.003

    Article  Google Scholar 

  • Etten-Bohm M, Yang J, Schumacher C, Jun M (2021) Evaluating the relationship between lightning and the large-scale environment and its use for lightning prediction in global climate models. J Geophys Res. https://doi.org/10.1029/2020JD033990

    Article  Google Scholar 

  • Finney DL, Doherty RM, Wild O, Huntrieser H, Pumphrey HC, Blyth AM (2014) Using cloud ice flux to parametrise large-scale lightning. Atmos Chem Phys 14:12665–12682. https://doi.org/10.5194/acp-14-12665-2014

    Article  Google Scholar 

  • Finney DL, Doherty RM, Wild O, Stevenson DS, MacKenzie IA, Blyth AM (2018) A projected decrease in lightning under climate change. Nat Clim Change 8(3):210–213. https://doi.org/10.1038/s41558-018-0072-6

    Article  Google Scholar 

  • Houze RA Jr, Wilton DC, Smull BF (2007) Monsoon convection in the Himalayan region as seen by the TRMM precipitation radar. Quart J R Meteorol Soc 133(627):1389–1411

    Google Scholar 

  • Hurwitz MM, Calvo N, Garfinkel CI, ButlerAH IS, Cagnazzo C, Manzini E, Peña-Ortiz C (2014) Extra-tropical atmospheric response to ENSO in the CMIP5 models. Clim Dyn 43(12):3367–3376

    Article  Google Scholar 

  • Jeevanjee N, Romps DM (2018) Mean precipitation change from a deepening troposphere. Proc Natl Acad Sci 115(45):11465–11470. https://doi.org/10.1073/pnas.1720683115

    Article  Google Scholar 

  • Jourdain NC, Gupta AS, Taschetto AS, Ummenhofer CC, Moise AF, Ashok K (2013) The Indo-Australian monsoon and its relationship to ENSO and IOD in reanalysis data and the CMIP3/CMIP5 simulations. Clim Dyn 41(11–12):3073–3102

    Article  Google Scholar 

  • Kamra AK (1970) Effect of electric field on charge separation by the falling precipitation mechanism in thunderclouds. J Atmos Sci 27(8):1182–1185

    Article  Google Scholar 

  • Kamra AK (1975) The role of electrical forces in charge separation by falling precipitation in thunderclouds. J Atmos Sci 32(1):143–157

    Article  Google Scholar 

  • Kamra AK (1982b) Possible effect of the cloud electrification on the downdraft in thunderstorms. Geophys Res Lett 9:235–238

    Article  Google Scholar 

  • Kamra AK, Pinki RK (2021) Regional variability in lightning activity over South Asia. Int J Clim 41(1):625–646

    Article  Google Scholar 

  • Kamra AK, Bhalwankar RV, Sathe AB (1993) Onset of disintegration and corona in water drops falling at terminal velocity in horizontal electric fields. J Geophys Res 98:12901–12912

    Article  Google Scholar 

  • Kamra AK (1982a) Changes in concentrations of cloud and precipitation particles in the highly electrified regions of thundercloud.J Geophys Res 87:11215–11221

  • Kandalgaonkar SS, Tinmaker MIR, Kulkarni JR, Nath ASHA, Kulkarni MK, Trimbake HK (2005) Spatio-temporal variability of lightning activity over the Indian region. J Geophys Res Atmos. https://doi.org/10.1029/2004JD005631

    Article  Google Scholar 

  • Krause A, Kloster S, Wilkenskjeld S, Paeth H (2014) The sensitivity of global wildfires to simulated past, present, and future lightning frequency. J Geophys Res Biogeos 119(3):312–322

    Article  Google Scholar 

  • Kunkel KE, Karl TR, Brooks H, Kossin J, Lawrimore JH, Arndt D, Bosart L, Changnon D, Cutter SL, Doesken N, Emanuel K (2013) Monitoring and understanding trends in extreme storms: State of knowledge. Bull Am Meteorol Soc 94(4):499–514

    Article  Google Scholar 

  • Lambert FH, Webb MJ (2008) Dependency of global mean precipitation on surface temperature. Geophys Res Lett. https://doi.org/10.1029/2008GL034838

    Article  Google Scholar 

  • Liu N, Liu C, ChenB Zipser E (2020) What are the favorable large-scale environments for the highest-flash-rate thunderstorms on Earth? J Atmos Sci 77:1583–1612

    Article  Google Scholar 

  • Orville RE, Huffines G, Nielsen-Gammon J, Zhang R, Ely B, Steiger S, Phillips S, Allen S, Read W (2001) Enhancement of cloud-to-ground lightning over Houston. Texas Geophys Res Lett 28(13):2597–2600

    Article  Google Scholar 

  • Oulkar S, Siingh D, Saha U, Kamra AK (2019) Distribution of lightning in relation to topography and vegetation cover over the dry and moist regions in the Himalayas. J Earth Sys Sci 128:180. https://doi.org/10.1007/s12040-019-1203-9

    Article  Google Scholar 

  • Penki RK, Kamra AK (2013) The lightning activity associated with the dry and moist convections in the Himalayan regions. J Geophys Res Atmos 118:6246–6258. https://doi.org/10.1002/jgrd.50499

    Article  Google Scholar 

  • Price C, Rind D (1994) Possible implications of global climate change on global lightning distributions and frequencies. J Geophys Res 99:10823–10831. https://doi.org/10.1029/94JD00019

    Article  Google Scholar 

  • Qie X, Wu X, Yuan T, Bian J, Lu D (2014) Comprehensive pattern of deep convective systems over the Tibetan Plateau-South Asian monsoon region based on TRMM data. J Clim 27(17):6612–6626

    Article  Google Scholar 

  • Qie K, Qie X, Tian W (2021) Increasing trend of lightning activity in the South Asia region. Sci Bull 66:78–84. https://doi.org/10.1016/j.scib.2020.08.033

    Article  Google Scholar 

  • Ramesh Kumar P, Kamra AK (2012) Spatiotemporal variability of lightning activity in the Himalayan foothills. J Geophys Res. https://doi.org/10.1029/2012JD018246

    Article  Google Scholar 

  • Ranalkar MR, Chaudhari HS (2009) Seasonal variation of lightning activity over the Indian subcontinent. Meteorol Atmos Phys 104(1):125–134

    Article  Google Scholar 

  • Riahi K, Rao S, Krey V, Cho C, Chirkov V, Fischer G, Kindermann G, Nakicenovic N, Rafaj P (2011) RCP 8.5 a scenario of comparatively high greenhouse gas emissions. Clim Change 109(1):33–57

    Article  Google Scholar 

  • Romps DM, Seeley JT, Vollaro D, Molinari J (2014) Projected increase in lightning strikes in the United States due to global warming. Science 346:851–854

    Article  Google Scholar 

  • Romps DM, Charn AB, Holzworth RH, Lawrence WE, Molinari J, Vollaro D (2018) CAPE times P explains lightning over land but not the land-ocean contrast. Geophys Res Lett 12(623–12):630. https://doi.org/10.1029/2018GL080267

    Article  Google Scholar 

  • Roy I (2017) Indian summer monsoon and El Niño southern oscillation in CMIP5 models: a few areas of agreement and disagreement. Atmos 8:154. https://doi.org/10.3390/atmos8080154

    Article  Google Scholar 

  • Roy I (2018) CMIP5 project and some results. In: Roy I (ed) Climate variability and sunspot activity. Springer, Cham. https://doi.org/10.1007/978-3-319-77107-6_14

    Chapter  Google Scholar 

  • Roy I, Tedeschi RG (2016) Influence of ENSO on regional ISM precipitation—local atmospheric influences or remote influence from Pacific. Atmosphere 7:25. https://doi.org/10.3390/atmos7020025

    Article  Google Scholar 

  • Roy I, Tedeschi RG, Collins M (2017) ENSO teleconnections to the Indian summer monsoon in observations and models. Int J Clim 37:1794–1813. https://doi.org/10.1002/joc.4811

    Article  Google Scholar 

  • Roy I, Gagnon AS, Siingh D (2019a) Evaluating ENSO teleconnections using observations and CMIP5 models. Theor Appl Climatol 136:1085. https://doi.org/10.1007/s00704-018-2536-z

    Article  Google Scholar 

  • Roy I, Tedeschi RG, Collins M (2019b) ENSO teleconnections to the Indian summer monsoon under changing climate. Int J Clim 39:3031–3042

    Article  Google Scholar 

  • Saha U, Siingh D, Kamra AK, Galanaki E, Maitra A, Singh RP, Singh AK, Chakraborty S, Singh R (2017) On the association of lightning activity and projected change in climate over the Indian sub-continent. Atmos Res 183:173–190

    Article  Google Scholar 

  • Saha K, Damase NP, Banik T, Paul B, Sharma S, De BK, Guha A (2019) Satellite based observation of lightning climatology over Nepal. J Earth Syst Sci 128:221. https://doi.org/10.1007/s12040-019-1239-x

    Article  Google Scholar 

  • Seeley JT, Romps DM (2015) The effect of global warming on severe thunderstorms in the United States. J Clim 28(6):2443–2458

    Article  Google Scholar 

  • Siingh D, Gopalakrishnan V, Singh RP, Kamra AK, Singh S, Pant V, Singh R, Singh AK (2007) The atmospheric global electric circuit: an overview. Atmos Res 84:91–110

    Article  Google Scholar 

  • Siingh D, Singh RP, Singh Ashok K, Kulkarni MN, Gautam AS, Singh AK (2011) Solar activity, lightning and climate. Sur Geophys 32:659–703. https://doi.org/10.1007/s10712-011-9127-1

    Article  Google Scholar 

  • Siingh D, Ramesh Kumar P, Kulkarni MN, Singh RP, Singh AK (2013) Lightning, convective rain and solar activity—over the South/Southeast Asia. Atoms Res 120–121:99–111. https://doi.org/10.1016/j.atmosres.2012.07.026

    Article  Google Scholar 

  • Siingh D, Buchunde PS, Singh RP, Nath A, Kumar S, Ghodpage RN (2014) Lightning and convective rain study at different parts of India. Atoms Res 137:35–48

    Article  Google Scholar 

  • Siingh D, Buchunde PS, Gandhi H, Singh R, Singh S, Patil MN, Singh RP (2015) Lightning and convective rain over Indian peninsula and Indo-China peninsula. Adv Space Res 55:1085–1103. https://doi.org/10.1016/j.asr.2014.11.014

    Article  Google Scholar 

  • Stolz DC, Rutledge SA, Pierce JR (2015) Simultaneous influences of thermodynamics and aerosols on deep convection and lightning in the tropics. J Geophy Res Atmos 120(12):6207–6231

    Article  Google Scholar 

  • Stolz DC, Rutledge SA, Pierce JR, Van den Heever SC (2017) A global lightning parameterization based on statistical relationships among environmental factors, aerosols, and convective clouds in the TRMM climatology. J Geophy Res Atmos 122(14):7461–7492

    Article  Google Scholar 

  • Stolzenburg M, Rust WD, Smull BF, Marshall TC (1998) Electrical structure in thunderstorm convective regions: 1. Mesoscale convective systems. J Geophy Res Atmos 103(D12):14059–14078

    Article  Google Scholar 

  • Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Amer Meteor Soc 93:485–498

    Article  Google Scholar 

  • Tippett MK, Lepore C, Koshak WJ, Chronis T, Vant-Hull B (2019) Performance of a simple reanalysis proxy for US cloud-to-ground lightning. Int J Clim 39(10):3932–3946

    Article  Google Scholar 

  • Tost H, Jöckel P, Lelieveld J (2007) Lightning and convection parameterisations—uncertainties in global modeling. Atmos Chem Phys 7(17):4553–4568

    Article  Google Scholar 

  • Toumi R, Qie X (2004) Seasonal variation of lightning on the Tibetan Plateau: a Spring anomaly? Geophys Res Lett. https://doi.org/10.1029/2003GL018930

    Article  Google Scholar 

  • Trapp RJ, Diffenbaugh NS, Brooks HE, Baldwin ME, Robinson ED, Pal JS (2007a) Changes in severe thunderstorm environment frequency during the 21st century caused by anthropogenically enhanced global radiative forcing. Proc Natl Acad Sci 104(50):19719–19723

    Article  Google Scholar 

  • Trapp RJ, Halvorson BA, Diffenbaugh NS (2007) Telescoping, multi model approaches to evaluate extreme convective weather under future climates. J Geophys Res Atmos. https://doi.org/10.1029/2006JD008345

    Article  Google Scholar 

  • Tyagi B, Krishna VN, Satyanarayana ANV (2011) Study of thermodynamic indices in forecasting pre-monsoon thunderstorms over Kolkata during STORM pilot phase 2006–2008. Nat Hazards 56:681–698. https://doi.org/10.1007/s11069-010-9582-x

    Article  Google Scholar 

  • Tyagi B, Satyanarayana ANV, Vissa NK (2013) Thermodynamical structure of atmosphere during pre-monsoon thunderstorm season over Kharagpur as revealed by STORM Data. Pure Appl Geophys 170:675–687. https://doi.org/10.1007/s00024-012-0566-5

    Article  Google Scholar 

  • Vonnegut B (1963) Some facts and speculations concerning the origin and role of thunderstorm electricity. Meteorol Monogrs 27:224–241

    Google Scholar 

  • Williams ER, Weber ME, Orville RE (1989) The relationship between lightning type and convective state of thunder clouds. J Geophys Res 94:13213–13220

    Article  Google Scholar 

  • Williams ER, Rutledge SA, Geotis SG, Renno N, Rasmussen E, Rickenbach T (1992) A radar and electrical study of tropical “hot towers.” J Atmos Sci 49:1386–1395

    Article  Google Scholar 

  • Williams ER, Rosenfeld D, Madden N, Gerlach J, Gears N, Atkinson L, Dunnemann N, Frostrom G, Antonio M, Biazon B, Camargo R, Franca H, Gomes A, Lima M, Machado R, Manhaes S, Nachtigall L, Piva H, Quintiliano W, Machado L, Artaxo P, Roberts G, Renno N, Blakeslee R, Bailey J, Boccippio D, Betts A, Wolff D, Roy B, Halverson J, Rickenbach T, Fuentes J, Avelino E (2002) Contrasting convective regimes over the Amazon: implications for cloud electrification. J Geophys Res 107(D20):8082. https://doi.org/10.1029/2001JD000380

    Article  Google Scholar 

  • Wu XK, Qie XS, Yuan T (2013) Regional distribution and diurnal variation of deep convective systems over the Asian monsoon region. Sci China Earth Sci 56:843–854. https://doi.org/10.1007/s11430-012-4551-8

    Article  Google Scholar 

  • Wu XK, Qie XS, Yuan T, Li J (2016) Meteorological regimes of the most intense convective systems along the southern Himalayan front. J Clim 29:4383–4393. https://doi.org/10.1175/JCLI-D-14-00835.1

    Article  Google Scholar 

  • Zipser EJ, Lutz KR (1994) The vertical profile of radar reflectivity of convective cells: A strong indicator of storm intensity and lightning probability? Mon Weat Rev 122(8):1751–1759

    Article  Google Scholar 

  • Zipser EJ, Cecil DJ, Liu C, Nesbitt SW, Yorty DP (2006) Where are the most intense thunderstorms on Earth? Bull Am Meteorol Soc 87(8):1057–1072

    Article  Google Scholar 

Download references

Acknowledgements

Indian Institute of Tropical Meteorology, Pune, is funded by Ministry of Earth Sciences (MoES), Government of India. Authors acknowledge the World Climate Research Programme’s Working Group on Coupled Modelling, which is responsible for CMIP, and we thank the climate modelling groups (their respective models are listed in Table 2 of this paper) for producing and making available their model output. The authors are thankful to NASA and ECMWF for providing the LIS-OTD data through their websites https://ghrc.nsstc.nasa.gov/lightning/data/data_lis_otd-climatology and https://cds.climate.copernicus.eu/. AKK acknowledges Indian National Science Academy for the support under INSA Emeritus Scientist Programme. Authors are thankful to learned referees for their remarks and suggestions.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

SC, DS and AKK are responsible for inception and, execution of project and preparation of the draft of the manuscript. SC and PK analyzed and simulate the CMIP5 data and prepared the final figures. IR contributes towards the CMIP5 model for the projection of LFR. SC, DS and JV contributed towards the analysis and interpretation of the study. AKK prepared final draft of manuscript. All authors contributed to the discussion of the results.

Corresponding author

Correspondence to Devendraa Siingh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chandra, S., Kumar, P., Siingh, D. et al. Projection of lightning over South/South East Asia using CMIP5 models. Nat Hazards 114, 57–75 (2022). https://doi.org/10.1007/s11069-022-05379-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-022-05379-8

Keywords

Navigation