Battistini A, Rosi A, Segoni S, Lagomarsino D, Catani F, Casagli N (2017) Validation of landslide hazard models using a semantic engine on online news. Appl Geogr 82:59–65. https://doi.org/10.1016/j.apgeog.2017.03.003
Article
Google Scholar
Berti M, Martina MLV, Franceschini S, Pignone S, Simoni A, Pizziolo M (2012) Probabilistic rainfall thresholds for landslide occurrence using a Bayesian approach. J Geophys Res 117:F04006. https://doi.org/10.1029/2012JF002367
Article
Google Scholar
Bogaard T, Greco R (2018) Invited perspectives: hydrological perspectives on precipitation intensity–duration thresholds for landslide initiation: proposing hydro-meteorological thresholds. Nat Hazards Earth Syst Sci 18:31–39. https://doi.org/10.5194/nhess-18-31-2018
Article
Google Scholar
Breznitz S (1984) The false alarm effect. Cry wolf: The psychology of false alarms. Lawrence Erlbaum, New Jersey, pp 9–16
Google Scholar
Brunetti MT, Perruccacci S, Rossi M, Luciani S, Valigi D, Guzzetti F (2010) Rainfall thresholds for the possible occurrence of landslides in Italy. Nat Hazards Earth Syst Sci 10:447–458. https://doi.org/10.5194/nhess-10-447-2010
Article
Google Scholar
Brunetti MT, Melillo M, Peruccacci S, Ciabatta L, Brocca L (2018) How far are we from the use of satellite rainfall products in landslide forecasting? Remote Sens Environ 210:65–75. https://doi.org/10.1016/j.rse.2018.03.016
Article
Google Scholar
Chae B-G, Park H-J, Catani F, Simoni A, Berti M (2017) Landslide prediction, monitoring and early warning: a concise review of state-of-the-art. Geosci J 21:1033–1070. https://doi.org/10.1007/s12303-017-0034-4
Article
Google Scholar
De Vita P, Reichenbach P, Bathurst JC, Borga M, Crozier GM, Glade T, Guzzetti F, Hansen A, Wasowski J (1998) Rainfall-triggered landslides: a reference list. Environ Geol 35(219–23):3. https://doi.org/10.1007/s002540050308
Article
Google Scholar
Der Kiureghian A, Ditlevsen O (2009) Aleatory or epistemic? Does it matter? Struct Saf 31(2):105–112. https://doi.org/10.1016/j.strusafe.2008.06.020
Article
Google Scholar
Destro E, Marra F, Nikolopoulos EI, Zoccatelli D, Creutin JD, Borga M (2017) Spatial estimation of debris flows-triggering rainfall and its dependence on rainfall return period. Geomorphology 278:269–279. https://doi.org/10.1016/j.geomorph.2016.11.019
Article
Google Scholar
Dikshit A, Satyam N (2019) Probabilistic rainfall thresholds in Chibo, India: estimation and validation using monitoring system. J Mt Sci 16(4):999. https://doi.org/10.1007/s11629-018-5189-6
Article
Google Scholar
Fawcett T (2006) An introduction to ROC analysis. Pattern Recogn Lett 27:861–874
Article
Google Scholar
Frattini P, Crosta G, Sosio R (2009) Approaches for defining thresholds and return periods for rainfall-triggered shallow landslides. Hydrol Proc 23(10):1444–1460. https://doi.org/10.1002/hyp.7269
Article
Google Scholar
Froude MJ, Petley DN (2018) Global fatal landslide occurrence from 2004 to 2016. Nat Hazards Earth Syst Sci 18:2161–2181. https://doi.org/10.5194/nhess-18-2161-2018
Article
Google Scholar
Galanti Y, Barsanti M, Cevasco A, D’Amato Avanzi G, Giannecchini R (2018) Comparison of statistical methods and multi-time validation for the determination of the shallow landslide rainfall thresholds. Landslides 15:937–952. https://doi.org/10.1007/s10346-017-0919-3
Article
Google Scholar
Gariano SL, Guzzetti F (2016) Landslides in a changing climate. Earth Sci Rev 162:227–252. https://doi.org/10.1016/j.earscirev.2016.08.011
Article
Google Scholar
Gariano SL, Brunetti MT, Iovine G, Melillo M, Peruccacci S, Terranova O, Vennari C, Guzzetti F (2015a) Calibration and validation of rainfall thresholds for shallow landslide forecasting in Sicily, southern Italy. Geomorphology 228:653–665. https://doi.org/10.1016/j.geomorph.2014.10.019
Article
Google Scholar
Gariano SL, Petrucci O, Guzzetti F (2015b) Changes in the occurrence of rainfall-induced landslides in Calabria, southern Italy, in the 20th century. Nat Hazards Earth Syst Sci 15:2313–2330. https://doi.org/10.5194/nhess-15-2313-2015
Article
Google Scholar
Gariano SL, Sarkar R, Dikshit A, Dorji K, Brunetti MT, Peruccacci S, Melillo M (2019) Automatic calculation of rainfall thresholds for landslide occurrence in Chukha Dzongkhag. Bhutan. Bull Eng Geol Environ 78(6):4325–4332. https://doi.org/10.1007/s10064-018-1415-2
Article
Google Scholar
Greco R, Pagano L (2017) Basic features of the predictive tools of early warning systems for water-related natural hazards: examples for shallow landslides. Nat Hazards Earth Syst Sci 17:2213–2227. https://doi.org/10.5194/nhess-17-2213-2017
Article
Google Scholar
Guzzetti F, Peruccacci S, Rossi M, Stark CP (2007) Rainfall thresholds for the initiation of landslides in central and southern Europe. Meteorol Atmos Phys 98:239–267. https://doi.org/10.1007/s00703-007-0262-7
Article
Google Scholar
Guzzetti F, Peruccacci S, Rossi M, Stark CP (2008) The rainfall intensity–duration control of shallow landslides and debris flows: an update. Landslides 5(1):3–17. https://doi.org/10.1007/s10346-007-0112-1
Article
Google Scholar
Guzzetti F, Gariano SL, Peruccacci S, Brunetti MT, Marchesini I, Rossi M, Melillo M (2020) Geographical landslide early warning systems. Earth-Science Reviews 200:102973. https://doi.org/10.1016/j.earscirev.2019.102973
Article
Google Scholar
Haque U, da Silva PF, Devoli G, Pilz J, Zhao B, Khaloua A, Wilopo W, Andersen P, Lu P, Lee J, Yamamoto T, Keellings D, Wu J-H, Glass GE (2019) The human cost of global warming: deadly landslides and their triggers (1995–2014). Sci Tot Environ 682:673–684. https://doi.org/10.1016/j.scitotenv.2019.03.415
Article
Google Scholar
Iadanza C, Trigila A, Napolitano F (2016) Identification and characterization of rainfall events responsible for triggering of debris flows and shallow landslides. J Hydrol 541:230–245. https://doi.org/10.1016/j.jhydrol.2016.01.018
Article
Google Scholar
Intrieri E, Gigli G, Casagli N, Nadim F (2013) Brief communication “Landslide Early Warning System: toolbox and general concepts”. Nat Hazards Earth Syst Sci 13:85–90. https://doi.org/10.5194/nhess-13-85-2013
Article
Google Scholar
Jaiswal P, van Westen CJ (2013) Use of quantitative landslide hazard and risk information for local disaster risk reduction along a transportation corridor: a case study from Nilgiri district, India. Nat Hazards 65:887–913. https://doi.org/10.1007/s11069-012-0404-1
Article
Google Scholar
Jemec M, Komac M (2013) Rainfall patterns for shallow landsliding in perialpine Slovenia. Nat Hazards 67(3):1011–1023. https://doi.org/10.1007/s11069-011-9882-9
Article
Google Scholar
Lagomarsino D, Segoni S, Rosi A, Rossi G, Battistini A, Catani F, Casagli N (2015) Quantitative comparison between two different methodologies to define rainfall thresholds for landslide forecasting. Nat Hazards Earth Syst Sci 15:2413–2423. https://doi.org/10.5194/nhess-15-2413-2015
Article
Google Scholar
Lainas S, Sabatakakis N, Koukis G (2016) Rainfall thresholds for possible landslide initiation in wildfire-affected areas of western Greece. Bull Eng Geol Environ 75(3):883–896. https://doi.org/10.1007/s10064-015-0762-5
Article
Google Scholar
Marra F (2019) Rainfall thresholds for landslide occurrence: systematic underestimation using coarse temporal resolution data. Nat Hazards 95(3):883–890. https://doi.org/10.1007/s11069-018-3508-4
Article
Google Scholar
Marra F, Nikolopoulos EI, Creutin JD, Borga M (2014) Radar rainfall estimation for the identification of debris-flow occurrence thresholds. J Hydrol 519:1607–1619. https://doi.org/10.1016/j.jhydrol.2014.09.039
Article
Google Scholar
Marra F, Nikolopoulos EI, Creutin JD, Borga M (2016) Space–time organization of debris flows-triggering rainfall and its effect on the identification of the rainfall threshold relationship. J Hydrol 541:246–255. https://doi.org/10.1016/j.jhydrol.2015.10.010
Article
Google Scholar
Marra F, Destro E, Nikolopoulos EI, Zoccatelli D, Creutin JD, Guzzetti F, Borga M (2017) Impact of rainfall spatial aggregation on the identification of debris flow occurrence thresholds. Hydrol Earth Syst Sci 21:4525–4532. https://doi.org/10.5194/hess-21-4525-2017
Article
Google Scholar
Melillo M, Brunetti MT, Peruccacci S, Gariano SL, Guzzetti F (2015) An algorithm for the objective reconstruction of rainfall events responsible for landslides. Landslides 12(2):311–320. https://doi.org/10.1007/s10346-014-0471-3
Article
Google Scholar
Melillo M, Brunetti MT, Peruccacci S, Gariano SL, Guzzetti F (2016) Rainfall thresholds for the possible landslide occurrence in Sicily (Southern Italy) based on the automatic reconstruction of rainfall events. Landslides 13(1):165–172. https://doi.org/10.1007/s10346-015-0630-1
Article
Google Scholar
Melillo M, Brunetti MT, Peruccacci S, Gariano SL, Roccati A, Guzzetti F (2018) A tool for the automatic calculation of rainfall thresholds for landslide occurrence. Environ Modell Softw 105:230–243. https://doi.org/10.1016/j.envsoft.2018.03.024
Article
Google Scholar
Nikolopoulos EI, Crema S, Marchi L, Marra F, Guzzetti F, Borga M (2014) Impact of uncertainty in rainfall estimation on the identification of rainfall thresholds for debris flow occurrence. Geomorphology 221:286–297. https://doi.org/10.1016/j.geomorph.2014.06.015
Article
Google Scholar
Nikolopoulos EI, Borga M, Creutin JD, Marra F (2015) Estimation of debris flow triggering rainfall: influence of rain gauge density and interpolation methods. Geomorphology 243:40–50. https://doi.org/10.1016/j.geomorph.2015.04.028
Article
Google Scholar
Palenzuela JA, Jiménez-Perálvarez JD, Chacón J (2016) Assessing critical rainfall thresholds for landslide triggering by generating additional information from a reduced database: an approach with examples from the Betic Cordillera (Spain). Nat Hazards 84:185–212. https://doi.org/10.1007/s11069-016-2416-8
Article
Google Scholar
Peres DJ, Cancelliere A (2014) Derivation and evaluation of landslide-triggering thresholds bya Monte Carlo approach. Hydrol Earth Syst Sci 18:4913–4931. https://doi.org/10.5194/hess-18-4913-2014
Article
Google Scholar
Peres DJ, Cancelliere A, Greco R, Bogaard TA (2018) Influence of uncertain identification of triggering rainfall on the assessment of landslide early warning thresholds. Nat Hazards Earth Syst Sci 18:633–646. https://doi.org/10.5194/nhess-18-633-2018
Article
Google Scholar
Peruccacci S, Brunetti MT, Luciani S, Vennari C, Guzzetti F (2012) Lithological and seasonal control of rainfall thresholds for the possible initiation of landslides in central Italy. Geomorphology 139–140:79–90. https://doi.org/10.1016/j.geomorph.2011.10.005
Article
Google Scholar
Peruccacci S, Brunetti MT, Gariano SL, Melillo M, Rossi M, Guzzetti F (2017) Rainfall thresholds for possible landslide occurrence in Italy. Geomorphology 290:39–57. https://doi.org/10.1016/j.geomorph.2017.03.031
Article
Google Scholar
Piciullo L, Gariano SL, Melillo M, Brunetti MT, Peruccacci S, Guzzetti F, Calvello M (2017) Definition and performance of a threshold-based regional early warning model for rainfall-induced landslides. Landslides 14:995–1008. https://doi.org/10.1007/s10346-016-0750-2
Article
Google Scholar
Piciullo L, Calvello M, Cepeda JM (2018) Territorial early warning systems for rainfall-induced landslides. Earth-Sci Rev 179:228–247. https://doi.org/10.1016/j.earscirev.2018.02.013
Article
Google Scholar
Rossi M, Luciani S, Valigi D, Kirschbaum D, Brunetti MT, Peruccacci S, Guzzetti F (2017) Statistical approaches for the definition of landslide rainfall thresholds and their uncertainty using rain gauge and satellite data. Geomorphology 285:16–27. https://doi.org/10.1016/j.geomorph.2017.02.001
Article
Google Scholar
Segoni S, Rossi G, Rosi A, Catani F (2014) Landslides triggered by rainfall: a semiautomated procedure to define consistent intensity-duration thresholds. Comput Geosci 3063:123–131. https://doi.org/10.1016/j.cageo.2013.10.009
Article
Google Scholar
Segoni S, Piciullo L, Gariano SL (2018a) A review of the recent literature on rainfall thresholds for landslide occurrence. Landslides 15:1483–1501. https://doi.org/10.1007/s10346-018-0966-4
Article
Google Scholar
Segoni S, Piciullo L, Gariano SL (2018b) Preface: landslide early warning systems: monitoring systems, rainfall thresholds, warning models, performance evaluation and risk perception. Nat Hazards Earth Syst Sci 18:3179–3186. https://doi.org/10.5194/nhess-18-3179-2018
Article
Google Scholar
Sengupta A, Gupta S, Anbarasu K (2010) Rainfall thresholds for the initiation of landslide at Lanta Khola in north Sikkim, India. Nat Hazards 52:31–42. https://doi.org/10.1007/s11069-009-9352-9
Article
Google Scholar
Soto J, Palenzuela JA, Galve JP, Luque JA, Azañón JM, Tamay J, Irigaray C (2019) Estimation of empirical rainfall thresholds for landslide triggering using partial duration series and their relation with climatic cycles. An application in southern Ecuador. Bull Eng Geol Environ 78:1971–1987. https://doi.org/10.1007/s10064-017-1216-z
Article
Google Scholar
Staley DM, Kean JW, Cannon SH, Schmidt KM, Laber JL (2013) Objective definition of rainfall intensity–duration thresholds for the initiation of post-fire debris flows in southern California. Landslides 10:547–562. https://doi.org/10.1007/s10346-012-0341-9
Article
Google Scholar
Tien Bui D, Pradhan B, Lofman O, Revhaug I, Dick ØB (2013) Regional prediction of landslide hazard using probability analysis of intense rainfall in the Hoa Binh province. Vietnam. Nat Hazards 66:707–730. https://doi.org/10.1007/s11069-012-0510-0
Article
Google Scholar
Vaz T, Zêzere JL, Pereira S, Oliveira SC, Garcia RAC, Quaresma I (2018) Regional rainfall thresholds for landslide occurrence using a centenary database. Nat Hazards Earth Syst Sci 18:1037–1054. https://doi.org/10.5194/nhess-18-1037-2018
Article
Google Scholar
Vessia G, Pisano L, Vennari C, Rossi M, Parise M (2016) Mimic expert judgement through automated procedure for selecting rainfall events responsible for shallow landslide: a statistical approach to validation. Comput Geosci 86:146–153. https://doi.org/10.1016/j.cageo.2015.10.015
Article
Google Scholar
Zêzere JL, Vaz T, Pereira S, Oliveira SC, Marques R, Garcia RAC (2015) Rainfall thresholds for landslide activity in Portugal: a state of the art. Environ Earth Sci 73(6):2917–2936. https://doi.org/10.1007/s12665-014-3672-0
Article
Google Scholar