Natural Hazards

, Volume 97, Issue 3, pp 1297–1325 | Cite as

Seismic hazard at a triple plate junction: the state of Chiapas (México)

  • A. G. Rodríguez-Lomelí
  • J. García-MayordomoEmail author
Original Paper


The state of Chiapas (SE México) conforms a territory of complex tectonics and high seismic activity. The interaction among the Cocos, North American and Caribbean tectonic plates, as well as the active crustal deformation inside Chiapas, determines a variety of seismogenic sources of distinct characteristics and particular strong ground motion attenuation. This situation makes the assessment of seismic hazard in the region a challenging task. In this work, we follow the methodology of probabilistic seismic hazard analysis, starting from the compilation of an earthquake catalogue, and the definition of seismogenic source-zones based on the particular seismotectonics of the region: plate-subduction-related sources (interface and intraslab zones), active crustal deformation zones and the shear zone between the North American and Caribbean plates formed by the Motagua, Polochic and Ixcán faults. The latter source is modelled in two different configurations: one single source-zone and three distinct ones. We select three ground motion prediction equations (GMPEs) recommended for South and Central America, plus two Mexican ones. We combine the GMPEs with the source-zone models in a logic tree scheme and produce hazard maps in terms of peak ground acceleration and spectral acceleration for the 500-, 1000- and 2500-year return periods, as well as uniform hazard spectra for the towns of Tuxtla Gutiérrez, Tapachula and San Cristóbal. We obtain higher values in comparison with previous seismic hazard studies and particularly much higher than the output of the Prodisis v.2.3 software for seismic design in México. Our results are consistent with those of neighbouring Guatemala obtained in a recent study for Central America.


Earthquake hazard Seismogenic source-zones Interface Intraslab PSHA Chiapas 



The master’s thesis of the first author conducted at the Geology Faculty of Universidad Complutense de Madrid (UCM, Spain) provided the basis for this research. We are grateful to fruitful discussions with Dr. Ramón Capote from UCM at initial stages of this work. Drs. Ramón Zúñiga and Mario Ordaz from Universidad Autónoma de México are also acknowledged for providing us with a copy of the Mexican seismic catalogue and CRISIS software, respectively. Figures showing maps have been produced using GMT software (Wessel and Smith 1998). We thank José A. Álvarez-Gómez and an anonymous reviewer for their thoughtful comments and suggestions which led to a better version of the manuscript.


  1. Álvarez-Gómez JA, Aniel-Quiroga Í, Gutiérrez-Gutiérrez OQ, Larreynaga J, González M, Castro M, Gavidia F, Aguirre-Ayerbe I, González-Riancho P, Carreño E (2013) Tsunami hazard assessment in El Salvador, Central America, from seismic sources through flooding numerical models. Nat Hazards Earth Syst Sci 13(11):2927–2939CrossRefGoogle Scholar
  2. Ambraseys NN, Adams RD (1996) Large-magnitude Central American earthquakes, 1898–1994. Geophys J Int 127:665–692CrossRefGoogle Scholar
  3. Ambraseys NN, Adams RD (2001) Seismicity of Central America: a descriptive catalogue, 1898–1995. Imperial College Press, LondonGoogle Scholar
  4. Andreani L, Gloaguen R (2015) Geomorphic analysis of transient landscapes from the Sierra Madre de Chiapas and Maya Mountains (northern Central America): implications for the North American-Caribbean-Cocos plate boundary. Earth Surf Dyn 3(3):941–1003CrossRefGoogle Scholar
  5. Andreani L, Pichon XL, Rangin C, Martínez-Reyes J (2008) The southern Mexico block: main boundaries and new estimation for its Quaternary motion. Bull Soc Geol France 179(2):209–223CrossRefGoogle Scholar
  6. Arango MC, Strasser FO, Bommer JJ, Cepeda JM, Boroschek R, Hernandez DA, Tavera H (2012) An evaluation of the applicability of current ground-motion models to the South and Central America subduction zones. Bull Seismol Soc Am 102:143–168CrossRefGoogle Scholar
  7. Arroyo D, García D, Ordaz M, Mora MA, Sing SK (2010) Strong Ground-motion relations for Mexican interplate earthquakes. J Seismol 14:769–785CrossRefGoogle Scholar
  8. Authemayou C, Brocard G, Teyssier C, Simon-Labric T, Guttiérrez A, Chiquín EN, Morán S (2011) The Caribbean-North America-Cocos Triple Junction and the dynamics of the Polochic-Motagua fault systems: pull-up and zipper models. Tectonics. Google Scholar
  9. Authemayou C, Brocard G, Teyssier C, Suski B, Cosenza B, Morán-Ical S, González-Véliz CW, Aguilar-Hengstenberg MA, Holliger K (2012) Quaternary seismo-tectonic activity of the Polochic Fault, Guatemala. J Geophys Res. Google Scholar
  10. Beauval C, Yepes H, Palacios P, Segovia M, Alvarado A, Font Y, Aguilar J, Troncoso L, Vaca S (2013) An earthquake catalog for seismic hazard assessment in Ecuador. Bull Seismol Soc Am 103:773–786CrossRefGoogle Scholar
  11. Benito MB, Lindholm C, Camacho E, Climent Á, Marroquín G, Molina E, Rojas W, Escobar JJ, Talavera E, Alvarado GE, Torres Y (2012) A new evaluation of seismic hazard for the Central America region. Bull Seismol Soc Am 102:504–523CrossRefGoogle Scholar
  12. Bravo H, Rebollar CJ, Uribe A, Jimenez O (2004) Geometry and state of stress of the Wadati-Benioff zone in the Gulf of Tehuantepec, Mexico. J Geophys Res. Google Scholar
  13. Burbach GV, Frohlich C, Pennington WD, Matumoto T (1984) Seismicity and tectonics of the subducted Cocos plate. J Geophys Res 89(B9):7719–7735CrossRefGoogle Scholar
  14. Burkart B (1978) Offset across the Polochic fault of Guatemala and Chiapas, Mexico. Geol 6:328–332CrossRefGoogle Scholar
  15. Burkart B, Scotese CR (1990) The Orizaba fault zone: link between the Mexican Volcanic Belt and strike-slip faults of Northern Central America. EOS Trans AGU 71:1559CrossRefGoogle Scholar
  16. Burkart B, Self S (1985) Extension and rotation of crustal blocks in northern Central America and effect on the volcanic arc. Geology 13:22–26CrossRefGoogle Scholar
  17. Canora C, Villamor P, Martínez Díaz JJ, Berryman KR, Álvarez Gómez JA, Capote R, Hernández W (2012) Paleoseismic analysis of the San Vicente segment of the El Salvador Fault Zone, El Salvador, Central America. Geol Acta 10(2):103–123Google Scholar
  18. Carr MJ, Stoiber RE (1977) Geologic setting of some destructive earthquakes in Central America. Geol Soc Am Bull 88:151–156CrossRefGoogle Scholar
  19. CFE (Comisión Federal de Electricidad) (2008) Manual de Obras Civiles: Diseño por sismo: México. Instituto de Investigaciones Eléctricas, Cuernavaca, p 325Google Scholar
  20. Chen K, Feng W, Liu Z, Song YT (2018) 2017 Mw 8.1 Tehuantepec earthquake: deep slip and rupture directivity enhance ground shaking but weaken the tsunami. Seismol Res Lett 89(4):1314–1322CrossRefGoogle Scholar
  21. Chiou BJ, Youngs RR (2008) An NGA model for the average horizontal component of peak ground motion and response spectra. Earthq Spectra 24:173–215CrossRefGoogle Scholar
  22. Cornell A (1968) Engineering seismic risk analysis. Bull Seismol Soc Am 58:1583–1606Google Scholar
  23. Damon P, Montesinos E (1978) Late Cenozoic volcanism and metallogenesis over an active Benioff zone in Chiapas, Mexico. Ariz Geol Soc Dig 11:155–168Google Scholar
  24. DeMets C (2001) A new estimate for present-day Cocos-Caribbean plate motion: implications for slip along the Central America Volcanic Arc. Geophys Res Lett 28:4043–4046CrossRefGoogle Scholar
  25. DeMets C, Gordon RG, Argus DF, Stein S (1990) Current plate motions. Geophys J Int 101:425–478CrossRefGoogle Scholar
  26. Douglas J, Akkar S, Ameri G, Bard PY, Bindi D, Bommer JJ, Bora SS, Cotton F, Derras B, Hermkes M, Kuehn NM, Luzi L, Massa M, Pacor F, Riggelsen C, Sandikkaya MA, Scherbaum F, Stafforf PJ, Traversa P (2014) Comparisons among the five ground-motion models developed using RESORCE for the prediction of response spectral accelerations due to earthquakes in Europe and the Middle East. Bull Earthq Eng 12:341–358CrossRefGoogle Scholar
  27. Dziewonski AM, Chou TA, Woodhouse JH (1981) Determination of earthquake source parameters from waveform data for studies of global and regional seismicity. J Geophys Res 86(B4):2825–2852CrossRefGoogle Scholar
  28. Ekström G, Nettles M, Dziewonski AM (2012) The global CMT project 2004–2010: centroid-moment tensors for 13,017 earthquakes. Phys Earth Planet Int 200:1–9CrossRefGoogle Scholar
  29. Figueroa A (1973) Sismicidad en Chiapas. Universidad Nacional Autónoma de México, Instituto de Ingeniería 316:5–50Google Scholar
  30. Franco A, Molina E, Lyon-Caen H, Vergne J, Monfret T, Nercessian A, Cortez S, Flores O, Monterosso D, Requenna J (2009) Seismicity and crustal structure of the Polochic-Motagua fault system area (Guatemala). Seismol Res Lett 80:977–984CrossRefGoogle Scholar
  31. Franco A, Lasserre C, Lyon-Caen H, Kostoglodov V, Molina E, Guzmán-Speziale M, Monterosso D, Robles V, Figueroa C, Amaya W, Barrier E, Chiquin L, Moran S, Flores O, Romero J, Santiago JA, Manea M, Manea VC (2012) Fault kinematics in northern Central America and coupling along the subduction interface of the Cocos Plate, from GPS data in Chiapas (Mexico), Guatemala and El Salvador. Geophys J Int 189:1223–1236CrossRefGoogle Scholar
  32. García D, Singh SK, Herráiz M, Pacheco JF, Ordaz M (2004) Inslab earthquakes of Central Mexico: Q, source spectra, and stress drop. Bull Seismol Soc Am 94(3):789–802CrossRefGoogle Scholar
  33. García D, Singh SK, Herráiz M, Ordaz M, Pacheco JF (2005) Inslab earthquakes of central Mexico: peak ground-motion parameters and response spectra. Bull Seismol Soc Am 95:2272–2282CrossRefGoogle Scholar
  34. García-Acosta V, Suárez G (1996) Los sismos en la historia de México. Universidad Nacional Autónoma de México, Centro de Investigaciones y Estudios Superiores en Antropología Social y El Fondo de Cultura Económica, México, p 719Google Scholar
  35. Gusman AR, Mulia IE, Satake K (2018) Optimum sea surface displacement and fault slip distribution of the 2017 Tehuantepec earthquake (Mw 8.2) in Mexico estimated from tsunami waveforms. Geophys Res Lett 45:646–653CrossRefGoogle Scholar
  36. Guzmán-Speziale M (2010) Beyond the Motagua and Polochic faults: active strike-slip faulting along the western North American-Caribbean plate boundary zone. Tectonophysics 496:17–27CrossRefGoogle Scholar
  37. Guzmán-Speziale M, Meneses-Rocha JJ (2000) The North American-Caribbean plate boundary west of the Motagua-Polochic fault system: a fault jog in Southeastern Mexico. J S Am Earth Sci 13:459–468CrossRefGoogle Scholar
  38. Guzmán-Speziale M, Molina-Garza RS (2012) The Tonalá fault in southeastern Mexico: Evidence that the Central America forearc sliver is not being detached? Fall Meet AGU, San Francisco, Calif, 3-7 Dec Abstr T33H-08 ISC 2014 International Seismological Centre, On-line Bulletin,, Thatcham, United Kingdom, Accessed Jan 2014
  39. Guzmán-Speziale M, Pennington WD, Matumoto T (1989) The triple junction of the North American, Cocos, and Caribbean plates: seismicity and tectonics. Tectonics 8:981–997CrossRefGoogle Scholar
  40. Guzmán-Speziale M, Valdés-González C, Molina E, Gómez JM (2005) Seismic activity along the Central America volcanic arc: is it related to subduction of the Cocos plate? Tectonophysics 400:241–254CrossRefGoogle Scholar
  41. Havskov J, Singh SK, Novelo D (1982) Geometry of the benioff zone in the Tehuantepec area in southern Mexico. Geofis Int 21:325–330Google Scholar
  42. Heidarzadeh M, Ishibe T, Harada T (2018) Constraining the source of the Mw 8.1 Chiapas, Mexico Earthquake of 8 September 2017 using Teleseismic and Tsunami observations. Pure Appl Geophys 175(6):1925–1938CrossRefGoogle Scholar
  43. Lyon-Caen H, Barrier E, Lasserre C, Franco A, Arzu I, Chiquin L, Chiquin M, Duquesnoy T, Flores O, Galicia O, Luna J, Molina E, Porras O, Requena J, Robles V, Romero R, Wolf R (2006) Kinematics of the North American–Caribbean-Cocos plates in Central America from new GPS measurements across the Polochic-Motagua fault system. Geophys Res Lett 33:L19309CrossRefGoogle Scholar
  44. Manea VC, Manea M, Ferrari L (2013) A geodynamical perspective on the subduction of Cocos and Rivera plates beneath Mexico and Central America. Tectonophysics 609:56–81CrossRefGoogle Scholar
  45. Marzocchi W, Taroni M, Selva J (2015) Accounting for epistemic uncertainty in PSHA: logic tree and ensemble modeling. Bull Seismol Soc Am 105:2151–2159CrossRefGoogle Scholar
  46. McGuire RK (1976) FORTRAN computer program for seismic risk analysis. USGS 76-67Google Scholar
  47. Meneses-Rocha JJ (2001) Tectonic evolution of the Ixtapa graben, an example of a strike-slip basin of southeastern Mexico: implications for regional petroleum system. Memoirs Am Assoc Petroleum Geol 75:183–216Google Scholar
  48. Molina-Garza RS, Geissman JW, Wawrzyniec TF, Peña Alonso TA, Iriondo A, Weber B, Aranda-Gómez J (2015) Geology of the Coastal Chiapas (Mexico) Miocene Plutons and the Tonalá Shear Zone: syntectonic emplacement and rapid exhumation during sinistral transpression. Lithosphere 7(3):257–274CrossRefGoogle Scholar
  49. Movarec D (1983) Study of the Concordia fault system near Jericó, Chiapas, Mexico. University of Texas, Arlington, Master of Science in Geology Thesis, p 148Google Scholar
  50. Muñoz Lumbier M (1935) Geografía sísmica: con aplicaciones a la República Mexicana, contribución a la carta mundial de calamidades. Talleres Gráficos de la Nación, México, p 126Google Scholar
  51. Okuwaki R, Yagi Y (2017) Rupture process during the Mw 8.1 2017 Chiapas Mexico earthquake: shallow intraplate normal faulting by slab bending. Geophys Res Lett 44:11,816–11,823CrossRefGoogle Scholar
  52. Ordaz M, Aguilar A, Arboleda J (2007) CRISIS 2007: program for computing seismic hazard. Instituto de Ingeniería, Universidad Nacional Autónoma de México, Ciudad de MéxicoGoogle Scholar
  53. Ordoñez E (1936) Principal physiographic provinces of Mexico. AAPG Bull 20:1277–1307Google Scholar
  54. Pacheco JF, Sykes LR (1992) Seismic moment catalog of large shallow earthquakes, 1900 to 1989. Bull Seismol Soc Am 82:1306–1349Google Scholar
  55. Padilla y Sánchez RJ (2007) Evolución geológica del sureste mexicano desde el Mesozoico al presente en el contexto regional del Golfo de México. Boletín de la Sociedad Geológica Mexicana 59:19–42CrossRefGoogle Scholar
  56. Pantoja-Alor J, Rincón-Orta C, Fries C, Silver LT, Solorio-Murguía J (1974) Contribuciones a la geocronología de Chiapas. Asociación de Petroleras Mexicanas Boletín 26:205–223Google Scholar
  57. Pardo M, Suárez G (1995) Shape of the subducted Rivera and Cocos plate in southern Mexico: seismic and tectonic implications. J Geophys Res 100(B7):12357–12373CrossRefGoogle Scholar
  58. Plafker G (1976) Tectonic aspects of the Guatemala earthquake of 4 February 1976. Science 193:1201–1208CrossRefGoogle Scholar
  59. Ramírez-Herrera T, Corona N, Ruiz-Angulo A, Melgar D, Zavala-Hidalo J (2018) The 8 September 2017 Tsunami triggered by the Mw 8.2 intraplate earthquake, Chiapas, Mexico. Pure Appl Geophys 175:25–34CrossRefGoogle Scholar
  60. Ratschbacher L, Franz L, Min M, Bachmann R, Martens U, Stanek K, Stübner K, Nelson BK, Herrmann U, Weber B, López-Martínez M, Jonckheere R, Sperner B, Tichomirowa M, McWilliams MO, Gordon M, Meschede M, Bock P (2009) The North American-Caribbean plate boundary in Mexico-Guatemala-Honduras. Geol Soc Lond Spec Publ 328:219–293CrossRefGoogle Scholar
  61. Reasenberg P (1985) Second-order moment of central California seismicity, 1969–1982. J Geophys Res 90(B7):5479–5495CrossRefGoogle Scholar
  62. Rebollar CJ, Quintanar L, Yamamoto J, Uribe A (1999a) Source process of the Chiapas, Mexico, Intermediate-depth earthquake (M w = 7.2) of 21 October 1995. Bull Seismol Soc Am 89:348–358Google Scholar
  63. Rebollar CJ, Espindola VH, Uribe A, Mendoza A, Vertti AP (1999b) Distributions of stresses and geometry of the Wadati-Benioff zone under Chiapas, Mexico. Geofis Int 38:95–106Google Scholar
  64. Sahakian VJ, Melgar D, Quintanar L, Ramírez-Guzmán L, Pérez-Campos X, Baltay A (2018) Ground Motions from the 7 and 19 September 2017 Tehuantepec and Puebla-Morelos, Mexico. Earthquakes. Bull Seismol Soc Am 108(6):3300–3312Google Scholar
  65. Salvador A (1991) The Gulf of Mexico Basin. In: Bartolini C, Buffler RT, Cantu-Chapa A (eds) The geology of North America, AAPG memoir, pp 389–444Google Scholar
  66. Sánchez-Montes de Oca R (1979) Geología petrolera de la Sierra de Chiapas. Boletín de la Asociación Mexicana de Geólogos Petroleros 31:67–97Google Scholar
  67. Sedlock RL, Ortega-Gutiérrez F, Speed RC (1993) Tectonostratigraphic terranes and tectonic evolution of Mexico. Geol Soc Am Special Papers 278:1–153CrossRefGoogle Scholar
  68. Shedlock KM (1999) Seismic hazard map of North and Central America and the Caribbean. Ann Geofis 42:977–997Google Scholar
  69. Shedlock KM, Giardini D, Grünthal G, Zhang P (2000) The GSHAP global seismic hazard map. Seismol Res Lett 71:679–689CrossRefGoogle Scholar
  70. Singh SK, Ordaz M, Alcántara L, Shapiro N, Kostoglodov V, Pacheco JF, Alcocer S, Gutiérrez C, Quaas R, Mikumo T, Ovando E (2000) The Oaxaca earthquake of 30 September 1999 (M w = 7.5): a normal‐faulting event in the subducted Cocos Plate. Seismol Res Lett 71(1):67–78CrossRefGoogle Scholar
  71. SSN (Servicio Sismológico Nacional) (2017) Reporte especial sobre el sismo de Tehuantepec (2017-09-07 23:49 M 82) Servicio Sismológico Nacional, UNAM 1-11. Last Accessed Sept 2017Google Scholar
  72. Stepp JC (1972) Analysis of completeness of the earthquake sample in the Puget Sound area and its effect on statistical estimates of earthquake hazard. Proc of the 1st Int Conf on Microzonazion. Seattle 2:897–910Google Scholar
  73. Stewart JP, Midorikawa S, Graves RW, Khodaverdi K, Kishida T, Miura H, Bozorgnia Y, Campbell W (2013) Implications of the Mw 90 Tohoku-Oki Earthquake for Ground Motion Scaling with Source, Path, and Site Parameters. Earthq Spectra 29:1–21CrossRefGoogle Scholar
  74. Stewart JP, Douglas J, Javanbarg M, Abrahamson NA, Bozorgnia Y, Boore DM, Campbell K, Delavaud E, Erdik M, Stafford PJ (2015) Selection of Ground Motion Prediction Equations for the Global Earthquake Model. Earthq Spectra 31:19–45CrossRefGoogle Scholar
  75. Strasser FO, Arango MC, Bommer JJ (2010) Scaling of the source dimensions of interface and intraslab subduction-zone earthquakes with moment magnitude. Seismol Res Lett 81:941–950CrossRefGoogle Scholar
  76. Tanner JG, Shedlock KM (2004) Seismic hazard maps of Mexico, the Caribbean, and central and South America. Tectonophysics 390:159–175CrossRefGoogle Scholar
  77. Wadge G, Burke K (1983) Neogene Caribbean plate rotation and associated Central American tectonic evolution. Tectonics 2:633–643CrossRefGoogle Scholar
  78. Wawrzyniec T, Molina-Garza RS, Geissman J, Iriondo A (2005) A newly discovered, relic, transcurrent plate boundary—The Tonala shear zone and paleomagnetic evaluation of the western Maya block, SW Mexico. Geol Soc Am Abstr 37(7):68Google Scholar
  79. Wells D, Coppersmith KJ (1994) New empirical relationships among magnitude, rupture length, rupture width, rupture area and surface displacement. Bull Seismol Soc Am 84:974–1002Google Scholar
  80. Wessel P, Smith WHF (1998) New improved version of Generic Mapping Tools released. EOS Trans AGU 79:579CrossRefGoogle Scholar
  81. White RA (1984) Catalog of historic seismicity in the vicinity of the Chixoy-Polochic and Motagua faults, Guatemala. USGS Final Report USGS-OFR-84-88:26Google Scholar
  82. White RA (1985) The Guatemala earthquake of 1816 on the Chixoy-Polochic Fault. Bull Seismol Soc Am 75:455–473Google Scholar
  83. White RA, Harlow DH (1993) Destructive upper-crustal earthquakes of Central America since 1900. Bull Seismol Soc Am 83:1115–1142Google Scholar
  84. White RA, Ligorria JP, Cifuentes IL (2004) Seismic history of the Middle America subduction zone along El Salvador, Guatemala, and Chiapas, Mexico: 1526–2000. Geol Soc Am Special Pap 375:379–396Google Scholar
  85. Wiemer S (2001) A software package to analyze seismicity: ZMAP. Seismol Res Lett 72:373–382CrossRefGoogle Scholar
  86. Witt C, Rangin C, Andreani L, Olaez N, Martinez J (2011) The transpressive left-lateral Sierra Madre de Chiapas and its buried front in the Tabasco plain (southern Mexico). J Geol Soc 169:143–155CrossRefGoogle Scholar
  87. Ye L, Lay T, Bai Y, Cheung KF, Kanamori H (2017) The 2017 Mw 8.2 Chiapas, Mexico, earthquake: energetic slab detachment. Geophys Res Lett 44:11,824–11,832CrossRefGoogle Scholar
  88. Youngs RR, Chiou SJ, Silva WJ, Humphrey JR (1997) Strong ground motion attenuation relationship for subduction zone earthquakes. Seismol Res Lett 86:58–73CrossRefGoogle Scholar
  89. Zhao JX, Zhang J, Asano A, Ohno Y, Oouchi T, Takahashi T, Ogawa H, Irikura K, Thio HK, Somerville PG, Fukushima Y, Fukushima Y (2006) Attenuation relations of strong ground motion in Japan using site classification based on predominant period. Bull Seismol Soc Am 96:898–913CrossRefGoogle Scholar
  90. Zúñiga FR, Suárez O, Ordaz M, García-Acosta V (1997) México, Proyecto: Peligro sísmico en Latinoamérica y el Caribe. Instituto Panamericano de Geografía e Historia and Centro Internacional de Investigaciones para el desarrollo Ottawa, Canadá Proyecto 89-0190, vol 2, p 82Google Scholar
  91. Zúñiga FR, Reyes MA, Valdés C (2000) A general overview of the catalog of recent seismicity compiled by the Mexican Seismological Survey. Geofis Int 39:161–170Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Facultad de Ciencias GeológicasUniversidad Complutense de MadridMadridSpain
  2. 2.Instituto Geológico y Minero de EspañaMadridSpain

Personalised recommendations