Skip to main content
Log in

Tsunami risk perception along the Tyrrhenian coasts of Southern Italy: the case of Marsili volcano

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

The Marsili volcano is the largest known seamount in Europe, located in the Marsili Basin (Aeolian Arc, Tyrrhenian Sea, Italy). The Marsili seamount shows a high probability to generate a volcanogenic tsunami in the near future, and the coasts of Southern Italy could be affected by this event. We conducted a qualitative risk perception analysis by distributing a questionnaire at the population from three different regions that are surrounded by the Tyrrhenian Sea. Data from questionnaires were analyzed in order to understand the tsunami risk perception of the population. Our data were compared with a probabilistic tsunami scenario due to a Marsili seamount flank collapse. Results underlined the need for a proposed campaign that aimed at informing the Southern Italy population about tsunami risk and the phenomena that can potentially generate a tsunami event.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

(modified by Italiano et al. 2014)

Fig. 2

(modified from Iezzi et al. 2014)

Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Anderson-Berry LJ (2003) Community vulnerability to tropical cyclones: Cairns, 1996–2000. Nat Hazards 30(2):209–232

    Article  Google Scholar 

  • Avvisati G, Sessa EB Colucci O, Marfè B, Marotta E, Nave R, Peluso R, Ricci T, Tomasone M (2019) Perception of risk for natural hazards in Campania Region (Southern Italy). Int J of Disa Risk Red 101164

  • Barberi F, Gasparini P, Innocenti F, Villari L (1973) Volcanism of the southern Tyrrhenian Sea and its geodynamic implications. J Geophys Res 78:5221–5232

    Article  Google Scholar 

  • Barberi F, Davis MS, Isaia R, Nave R, Ricci T (2008) Volcanic risk perception in the Vesuvius population. J Volc Geoth Res 172:244–258

    Article  Google Scholar 

  • Beccaluva L, Coltorti M, Galassi B, Macciotta G, Siena F (1994) The Cainozoic calcalkaline magmatism of the western mediterranean and its geodynamic significance. B Geofisic teor appl 36:293–308

    Google Scholar 

  • Bird DK (2009) The use of questionnaires for acquiring information on public perception of natural hazards and risk mitigation—a review of current knowledge and practice. Nat Hazard Earth Sys 9:1307–1325

    Article  Google Scholar 

  • Bowman L, White P (2012) Community perceptions of a disaster risk reduction intervention at Santa Ana (Ilamatepec) volcano. El Salvador. Environ Hazards 11(2):138–154

    Article  Google Scholar 

  • Brilly M, Polic M (2005) Public perception of flood risks, flood forecasting and mitigation. Nat Hazard Earth Sys 5(3):345–355

    Article  Google Scholar 

  • Calvello M, Papa MN, Pratschke J, Crescenzo MN (2015) Landslide risk perception: a case study in Southern Italy. Landslides. https://doi.org/10.1007/s10346-015-0572-7

    Google Scholar 

  • Caratori Tontini F, Cocchi L, Muccini F, Carmisciano C, Marani M, Bonatti E, Ligi M, Boschi E (2010) Potential-field modeling of collapse-prone submarine volcanoes in the Southern Tyrrhenian Sea (Italy). Geophys Res Lett 37:L03305

    Article  Google Scholar 

  • Chiocci FL, Romagnoli C, Tommasi P, Bosma A (2008) The Stromboli 2002 tsunamigenic submarine slide: characteristics and possible failure mechanisms. J Geophys Res 113:B10

    Article  Google Scholar 

  • CNR-IRPI (2013) Indagine sulla percezione del rischio degli eventi idrogeologici. Indagine DOXA per CNR PERUGIA S.13019c. http://geomorphology.irpi.cnr.it/publications/repository/public/others/indagine-percezione-rischio-idrogeologico. Accessed 24 June 2019

  • Davis MS, Ricci T, Mitchell LM (2005) Perceptions of risk for volcanic hazards at Vesuvio and Etna, Italy. Australas J Disaster Trauma Stud 1:21

    Google Scholar 

  • D’Alessandro A, D’Anna G, Luzio D, Mangano G (2009) The INGV’s new OBS/H: analysis of the signals recorded at the Marsili submarine Volcano. J Volcanol Geoth Res 183:17–29

    Article  Google Scholar 

  • D’Alessandro A, Mangano G, D’anna G (2012) Evidence of persistent seismo-volcanic activity at Marsili seamount. Ann Geophys 55(2):213–214

    Google Scholar 

  • Doglioni C, Innocenti F, Morellato C, Procaccianti D, Scrocca D (2004) On the Tyrrhenian sea opening. Mem Descr Carta Geol Ital LXIV:147–164

    Google Scholar 

  • Fabbri A, Ghisetti F, Vezzani L (1980) The Peloritani-Calabria range and the Gioia basin in the Calabrian arc (Southern Italy): relationships between land and marine data. Geolog Rom 19:131–150

    Google Scholar 

  • Federici B (2006) Analisi del rischio tsunami applicata ad un tratto della costa ligure. MondoGIS 57:53–57

    Google Scholar 

  • Finn CA, Sisson TW, Deszcz-Pan M (2001) Aerogeophysical measurements of collapse-prone hydrothermally altered zones at Mount Rainier Volcano. Nature 409:600–606

    Article  Google Scholar 

  • Gonzalez-Riancho P, Aliaga B, Hettiaranchchi S, Gonzalez M, Medina R (2015) A contribution to the selection of tsunami human vulnerability indicators: conclusions from tsunami impacts in Sri Lanka and Thailand (2004), Samoa (2009), Chile (2010) and Japan (2011). Nat Hazard Earth Sys 15:1493–1514

    Article  Google Scholar 

  • Gravina T, Figliozzi E, Mari N, De Luca Tupputi Schinosa F (2016) Landslide risk perception in Frosinone (Lazio, Central Italy). Landslides 14:1419–1429

    Article  Google Scholar 

  • Guzzetti F (2015) Forecasting natural hazards, performance of scientists, ethics, and the need for trasparency. Toxicol Environ Chem. https://doi.org/10.1080/02772248.2015.1030664

    Google Scholar 

  • Haynes K, Barclay J, Pidgeon N (2008) Whose reality counts? Factors affecting the perception of volcanic risk. J Volcanol Geoth Res 172(3):259–272

    Article  Google Scholar 

  • Iezzi G, Caso Ventura G, Vallefuoco M, Cavallo A, Behrens H, Mollo S, Paltrinieri D, Signanini P, Vetere F (2014) First documented deep submarine explosive eruptions at the Marsili Seamount (Tyrrhenian Sea, Italy): a case of historical volcanism in the Mediterranean Sea. Gondwana Res 25:764–774

    Article  Google Scholar 

  • Igarashi Y, Kong Yamamoto M, Mccreery CS (2011) Anatomy of historical tsunamis: lessons learned for tsunami warning. Pure appl Geophys 168:2043–2063

    Article  Google Scholar 

  • Italian Civil Defence website Tsunami Risk: are you ready? (2018) http://www.protezionecivile.gov.it/jcms/it/cosa_fare_maremoto.wp;jsessionid=C91180BA694F6FC5DFEC9620E9D1DF18.worker2?pagtab=3#pag-content. Accessed 30 June 2018

  • Italian Civil Defence website: Tidal Wave In Southern Tyrrhenian Sea project. http://www.protezionecivile.gov.it/media-comunicazione/dossier/dettaglio/-/asset_publisher/default/content/esercitazione-internazionale-twist-tidal-wave-in-southern-Tyrrhenian-sea. Accessed 29 May 2019

  • Italian Civil Defence: Io non Rischio Campaign (2019) http://iononrischio.protezionecivile.it/en/homepage/. Accessed 29 May 2019

  • Italiano F, De Santis A, Favali P, Rainone ML, Rusi S, Signanini P (2014) The Marsili Volcanic Seamount (Southern Tyrrhenian Sea): a Potential Offshore. Geotherm Resour Energ 7:4068–4086. https://doi.org/10.3390/en7074068

    Google Scholar 

  • Johnston D, Benton K (1998) Volcanic hazard perceptions in Inglewood New Zealand. Australas J Disaster Traum Stud 2

  • Johnston D, Paton D, Crawford GL, Ronan K, Houghton B, Burgelt P (2005) Measuring tsunami preparedness in Coastal Washington, United States. Nat Hazards 35:173–184

    Article  Google Scholar 

  • Lindell MK, Whitney DJ (2000) Correlates of household seismic hazard adjustment adoption. Risk Anal 20(1):13–26

    Article  Google Scholar 

  • Loreto MF, Brutto F, Muto F, Armigliato A, Pagnoni G, Sandron D, Tiberi L, Tinti S, Zgur F (2015) Seismic and tsunami hazard assessment of a coastal active fault constrained with the historical Calabria 1905 earthquake (SE Tyrrhenian Sea). Georisks in the Mediterranean and their Mitigation Malta 20–21(6/2015):110–117

    Google Scholar 

  • Lorito S, Piatanesi A, Romano F, Vinci S, Boschi E, (2008) The Messina Straits 1908 Tsunami: observation and causative source. Eos 89(53)

  • Lupton J, De Ronde C, Sprovieri M, Baker ET, Bruno PP, Italiano F, Walker S, Faure K, Leybourne M, Britten K, Greene R (2011) Active hydrothermal discharge on the submarine Aeolian Arc. J Geophys Res Solid Earth 116:B02102

    Google Scholar 

  • Marani MP, Gamberi F (2004) Distribution and nature of submarine volcanic landforms in the Tyrrhenian Sea: the arc vs the back-arc. Mem Descr Carta Geol Ital LXIV:109–126

    Google Scholar 

  • Marani M, Trua T (2002) Thermal constriction and slab tearing at the origin of a super-inflated spreading ridge: the Marsili Volcano (Tyrrhenian Sea). J Geophys Res 107:B22188

    Article  Google Scholar 

  • Mari N, Gravina T, (2015) A GIS methodology to study the impact of a possible tsunami along the Tyrrhenian coast of Calabria. Conference GIS Day Calabria Rende (Italy) 225–232

  • McGuirk PM, O’Neill P (2005) Using questionnaires in qualitative human geography. Qual Res M Human Geog 147–162

  • Newhall CG (2000) Volcano warnings. In: Sigurdsson H (ed) Encyclopaedia of volcanoes. Academic Press, San Diego, pp 1185–1197

    Google Scholar 

  • Paton D, Smith L, Daly M, Johnston D (2008) Risk perception and volcanic hazard mitigation: individual and social perspectives. J Volcanol Geoth Res 172(3):179–188

    Article  Google Scholar 

  • Patton MQ (1990) Qualitative evaluation and research model, 2nd edn. Sage Publication, Newbury Park

    Google Scholar 

  • Reid M (2004) Massive collapse of Volcano edifices triggered by hydrothermal pressurization. Geology 32:373–376

    Article  Google Scholar 

  • Ricci T, Barberi F, Davis MS, Isaia R, Nave R (2013) Volcanic risk perception in the Campi Flegrei area. J Volcanol Geoth Res 254:118–130

    Article  Google Scholar 

  • Rosenbaum G, Lister GS (2004) Neogene and Quaternary rollback evolution of the Tyrrhenian Sea, the Apennines, and the Sicilian Maghrebides. Tectonics 5:6. https://doi.org/10.1029/2003tc001518

    Google Scholar 

  • Sarantakos S (2012) Social research. Palgrave Macmillan, London

    Google Scholar 

  • Salvati P, Bianchi C, Fiorucci F, Giostrella P, Marchesini I, Guzzetti F (2014) Perception of flood and landslide risk in Italy: a preliminary analysis. Nat Hazard Earth Sys 14, pp. 2589–2603, doi: 10.5194/nhess-14-2589-2014

    Article  Google Scholar 

  • Savelli C, Gasparotto G (1994) Calc-alkaline magmatism and rifting of the deep-water volcano of Marsili (Aeolian back-arc, Tyrrhenian Sea). Marine Geology 119(1–2):137–157

    Article  Google Scholar 

  • Savelli C, Ligi M (2017) An updated reconstruction of basaltic crust emplacement in Tyrrhenian sea, Italy. Sci Rep 7(18024)

  • Smith K (2013) Environmental hazards: assessing risk and reducing disaster, 6th edn. Routledge, Abingdon, ISBN: 0415681065

  • Solana C, Kilburn C (2003) Public awareness of landslide hazards: the Barranco de Tirajana, Gran Canaria. Spain. Geomorphology 54(1):39–48

    Article  Google Scholar 

  • Trua T, Serri G, Marani M, Renzulli A, Gamberi F (2002) Volcanological and petrological evolution of Marsili seamount (southern Tyrrhenian Sea). Volc Geoth Res 114:441–464

    Article  Google Scholar 

  • Urgeles R, Camerlenghi A (2013) Submarine landslides of the Mediterranean Sea: trigger mechanisms, dynamics, and frequency-magnitude distribution. J Volcanol Geoth Res 118(4):2600–2618

    Google Scholar 

  • Valbonesi C, Amato A, Cerase A (2019) The INGV Tsunami Alert Centre: analysis of the responsibility profiles, procedures and risk communication issues. Boll Geof Teor App 60(2):359–374

    Google Scholar 

  • Ventura G (2013) Kinematics of the Aeolian volcanism (Southern Tyrrhenian Sea) from geophysical and geological data. In: Lucchi F, Peccerillo A, Keller J, Tranne CA, Rossi PL (eds) The Aeolian Islands Volcanoes. Geol Soc London Mem 37:3–12

  • Ventura G, Milano G, Passaro S, Sprovieri M (2012) The Marsili Ridge (Southern Tyrrenhian Sea, Italy): an island-arc volcanic complex emplaced on a ‘relict’ back-arc basin. Earth Sci Rev 116:85–94

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Mr. Carro G. and Mr. Muglia M. C. that administer the questionnaire in Campania and Sicily as part of their Bachelor’s thesis at University Guglielmo Marconi. We thank all the respondents of the questionnaire. Authors thank the anonymous reviewer for their comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gravina Teresita.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teresita, G., Nicola, M., Luca, F. et al. Tsunami risk perception along the Tyrrhenian coasts of Southern Italy: the case of Marsili volcano. Nat Hazards 97, 437–454 (2019). https://doi.org/10.1007/s11069-019-03652-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-019-03652-x

Keywords

Navigation