Skip to main content
Log in

High-resolution coastal hazard assessment along the French Riviera from co-seismic tsunamis generated in the Ligurian fault system

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

The French Riviera is a densely populated and touristic coast. It is also one of the most seismically active areas of the Western Mediterranean. This is evidenced by the Mw 6.7–6.9, 1887 earthquake and tsunami, that was triggered nearshore, rupturing the easternmost 40 km of the 80-km-long Ligurian fault system, which runs parallel to and offshore of the Riviera. Here, coastal hazard from co-seismic tsunamis is assessed along the French and part of the Italian Riviera by simulating three Ligurian earthquake scenarios: (1) the 1887 event offshore Genoa, Italy; (2) a similar event transposed to the westernmost 40-km segment of the fault, offshore Nice, France; and (3) the rupture of the entire 80-km fault, which constitutes an extreme case scenario for the region. Simulations of tsunami propagation and coastal impact are performed by one-way coupling with the Boussinesq model FUNWAVE-TVD, in a series of nested grids, using new high-resolution bathymetric and topographic data. Results obtained in 10-m coastal grids provide the highest resolution predictions to date for this section of the French Riviera of co-seismic tsunami coastal hazard, in terms of inundation, runup, and current velocity. In general, the most impacted areas are bays (near Cap d’Antibes and Cap Ferrat), due to wave buildup and shoaling within semi-enclosed shallow areas, enhanced by possible resonances. In contrast to earlier work, which was based on coarser resolution grids, the area of Nice harbor is found to be rather well sheltered. It should be noted that uniform fault slip was used in the ruptures and runup estimates could locally be enhanced in case of more complex ruptures, such as segmented and heterogeneous ruptures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  • Alasset PJ, Hébert H, Maouche S, Calbini V, Meghraoui M (2006) The tsunami induced by the 2003 Zemmouri earthquake (Mw = 6.9, Algeria): modelling and results. Geophys J Int 166(1):213–226

    Article  Google Scholar 

  • Ambraseys NN (1960) The seismic sea wave of July 9, 1956 in the Greek archipelago. J Geophys Res 65:1257–1265

    Article  Google Scholar 

  • Assier-Rzadkiewicz S, Heinrich P, Sabatier PC, Savoye B, Bourillet JF (2000) Numerical modeling of a landslide-generated tsunami: the 1979 Nice event. Pure appl Geophys 157:1707–1727

    Article  Google Scholar 

  • Béthoux N, Fréchet J, Guyoton F, Thouvenot F, Cattaneo F, Nicolas M, Granet M (1992) A closing Ligurian sea. Pure appl Geophys 139:179–194

    Article  Google Scholar 

  • Day SJ, Watts P, Grilli ST, Kirby JT (2005) Mechanical models of the 1975 Kalapana, Hawaii earthquake and tsunami. Mar Geol 215(1–2):59–92. https://doi.org/10.1016/j.margeo.2004.11.008

    Article  Google Scholar 

  • Denza PF (1887) Osservazioni fatte all’Osservatoria di Moncalieri sul terremoto del 23 Febbrario 1887. Bolletino Mensuale dell’Osservatorio Centrale Moncalieri 2(7):68–70

    Google Scholar 

  • Eva C, Rabinovich AB (1997) The February 23, 1887 tsunami recorded on the Ligurian coast, western Mediterranean. Geophys Res Lett 24:2211–2214

    Article  Google Scholar 

  • Eva E, Solarino S, Spallarossa D (2001) Seismicity and crustal structure beneath the western Ligurian Sea derived from local earthquake tomography. Tectonophysics 339:495–510. https://doi.org/10.1016/S0040-1951(01)00106-8

    Article  Google Scholar 

  • Ferrari G (1991) The 1887 Ligurian earthquake: a detailed study from contemporary scientific observations. Tectonophysics 193:131–139

    Article  Google Scholar 

  • Glimsdal S, Pedersen GK, Harbitz CB, Løvholt F (2013) Dispersion of tsunamis: does it really matter? Nat Hazards Earth Syst Sci 13:1507–1526. https://doi.org/10.5194/nhess-13-1507-2013

    Article  Google Scholar 

  • Grilli S, Ioualalen M, Asavanant J, Shi F, Kirby JT, Watts P (2007) Source constraints and model simulation of the December 26, 2004 Indian Ocean tsunami. J Waterway Port Coast Ocean Eng 133(6):414–428. https://doi.org/10.1061/(ASCE)0733-950X(2007)

    Article  Google Scholar 

  • Grilli ST, Dubosq S, Pophet N, Pérignon Y, Kirby JT, Shi F (2010) Numerical simulation and first-order hazard analysis of large co-seismic tsunamis generated in the Puerto Rico trench: near-field impact on the North shore of Puerto Rico and far-field impact on the US East Coast. Nat Hazards Earth Syst Sci 10:2109–2125. https://doi.org/10.5194/nhess-2109-2010

    Article  Google Scholar 

  • Grilli ST, Harris JC, Tajalibakhsh T, Masterlark TL, Kyriakopoulos C, Kirby JT, Shi F (2013) Numerical simulation of the 2011 Tohoku tsunami based on a new transient FEM co-seismic source: comparison to far- and near-field observations. Pure appl Geophys 170:1333–1359. https://doi.org/10.1007/s00024-012-0528-y

    Article  Google Scholar 

  • Grilli ST, O’Reilly C, Harris JC, TajalliBakhsh T, Tehranirad B, Banihashemi S, Kirby JT, Baxter CDP, Eggeling T, Ma G, Shi F (2015) Modeling of SMF tsunami hazard along the upper US East Coast: detailed impact around Ocean City, MD. Nat Hazards 76(2):705–746. https://doi.org/10.1007/s11069-014-1522-8

    Article  Google Scholar 

  • Grilli ST, Grilli AR, David E, Coulet C (2016) Tsunami hazard assessment along the north shore of Hispaniola from far- and near-field Atlantic sources. Nat Hazards 82(2):777–810. https://doi.org/10.1007/s11069-016-2218-z

    Article  Google Scholar 

  • Grilli ST, Shelby M, Kimmoun O, Dupont G, Nicolsky D, Ma G, Kirby J, Shi F (2017) Modeling coastal tsunami hazard from submarine mass failures: effect of slide rheology, experimental validation, and case studies off the US East coast. Nat Hazards 86(1):353–391. https://doi.org/10.1007/s11069-016-2692-3

    Article  Google Scholar 

  • Heidarzadeh M, Satake K (2013) The 21 May 2003 tsunami in the Western Mediterranean Sea: statistical and wavelet analyses. Pure appl Geophys 170(9):1449–1462

    Article  Google Scholar 

  • Heidarzadeh M, Necmioglu O, Ishibe T, Yalciner AC (2017) Bodrum-Kos (Turkey-Greece) Mw 6.6 earthquake and tsunami of 20 July 2017: a test for the Mediterranean tsunami warning system. Geosci Lett 4:31. https://doi.org/10.1186/s40562-017-0097-0

    Article  Google Scholar 

  • Ioualalen M, Asavanant J, Kaewbanjak N, Grilli ST, Kirby JT, Watts P (2007) Modeling of the 26th December 2004 Indian Ocean tsunami: case study of impact in Thailand. J Geophys Res, Oceans 112:C07024. https://doi.org/10.1029/2006JC003850

    Article  Google Scholar 

  • Ioualalen M, Migeon S, Sardou O (2010) Landslide tsunami vulnerability in the Ligurian Sea: case study of the 1979 October 16 Nice international airport submarine landslide and of identified geological mass failures. Geophys J Int 181:724–740. https://doi.org/10.1111/j.1365-246X.2010.04572.x

    Google Scholar 

  • Ioualalen M, Larroque C, Scotti O, Daubord C (2014) Tsunami mapping related to local earthquakes on the French-Italian Riviera (western Mediterranean). Pure appl Geophys 171(7):1423–1443. https://doi.org/10.1007/s00024-013-0699-1

    Article  Google Scholar 

  • Ioualalen M, Pelletier B, Solis Gordillo GX (2017) Investigating the March 28th 1875 and the September 20th 1920 earthquakes/tsunamis of the Southern Vanuatu arc, offshore Loyalty Islands, New Caledonia. Tectonophysics. https://doi.org/10.1016/j.tecto.2017.05.006

  • Kirby JT, Shi F, Tehranirad B, Harris JC, Grilli ST (2013) Dispersive tsunami waves in the ocean: model equations and sensitivity to dispersion and Coriolis effects. Ocean Model 62:39–55. https://doi.org/10.1016/j.ocemod.2012.11.009

    Article  Google Scholar 

  • Labbé M, Donnadieu C, Daubord C, Hebert H (2012) Refined numerical modeling of the 1979 tsunami in Nice (French Riviera): comparison with coastal data. J Geophys Res 117:F01008. https://doi.org/10.1029/2011JF001964

    Article  Google Scholar 

  • Lambert J, Terrier M (2011) Historical tsunami database for France and its overseas territories. Nat Hazards Earth Syst Sci 11:1037–1046

    Article  Google Scholar 

  • Larroque C, Béthoux N, Calais E, Courboulex F, Deschamps A, Deverchère J, Stéphan JF, Ritz JF, Gilli E (2001) Active and recent deformation at the Southern Alps-Ligurian basin junction. Neth J Geosci Geologie en Mijnbouw 80:255–272

    Google Scholar 

  • Larroque C, Delouis B, Godel B, Nocquet J-M (2009) Active deformation at the southwestern Alps-Ligurian basin junction (France-Italy boundary): evidence for recent change from compression to extension in the Argentera massif. Tectonophysics 467:1–4. https://doi.org/10.1016/j.tecto.2008.12.013

    Article  Google Scholar 

  • Larroque C, Scotti O, Ioualalen M (2012) Reappraisal of the 1887 Ligurian earthquake (western Mediterranean) from macroseismicity, active tectonics and tsunami modelling. J. Int, Geophys. https://doi.org/10.1111/j.1365-246X.2012.05498.x

    Book  Google Scholar 

  • Madsen PA, Fuhrman DR, Schaffer HA (2008) On the solitary wave paradigm for tsunamis. J Geophys Res 113(C12012):22. https://doi.org/10.1029/2008JC004932

    Google Scholar 

  • Mård Karlsson J, Skelton A, Sanden M, Ioualalen M, Kaewbanjak N, Pophet N, von Matern A (2009) Reconstructions of the coastal impact of the 2004 Indian Ocean tsunami in the Khao Lak area, Thailand. J Geophys Res: Oceans 114(C10023):1–14

    Google Scholar 

  • Mulder T, Savoye B, Syvitsky JPM (1997) Numerical modeling of a mid-sized gravity flow: the 1979 Nice turbidity current (dynamics, processes, sediment budget and seafloor impact). Sedimentology 44:326–395

    Article  Google Scholar 

  • Okada Y (1985) Surface deformation due to shear and tensile faults in a half-space. Bull Seismol Soc Am 75(4):1135–1154

    Google Scholar 

  • Papadopoulos GA (2015) Tsunamis in the European-Mediterranean region: from historical record to risk mitigation. Elsevier, Amsterdam. ISBN 978-0-12-420224-5

  • Piper DJ, Savoye B (1993) Processes of late quaternary turbidity current flow and deposition on the Var deep-sea fan, north-west Mediterranean Sea. Sedimentology 40(3):557–582

    Article  Google Scholar 

  • Schambach L, Grilli ST, Kirby JT, Shi F (2018) Landslide tsunami hazard along the upper US East Coast: effects of slide rheology, bottom friction, and frequency dispersion. Pure Appl Geophys. https://doi.org/10.1007/s00024-018-1978-7. Published online 03 Sept 2018

  • Shelby M, Grilli ST, Grilli AR (2016) Tsunami hazard assessment in the Hudson River Estuary based on dynamic tsunami tide simulations. Pure Appl Geophys 173(12):3999-4037. https://doi.org/10.1007/s00024-016-1315-y

    Article  Google Scholar 

  • Shi F, Kirby JT, Harris JC, Grilli ST (2012) A high order adaptive time-stepping TVD for Boussinesq modeling of breaking waves and coastal inundation. Ocean Model 43:36–51. https://doi.org/10.1016/j.ocemod.2011.12.004

    Article  Google Scholar 

  • Tappin DR, Watts P, Grilli ST (2008) The Papua Neaw Guinea tsunami of 17 July 1998: anatomy of catastrophic event. Nat Hazards Earth Syst Sci 8(2):243–266. https://doi.org/www.nat-hazards-earth-syst-sci.net/8/243/2008/

  • Tappin DR, Grilli ST, Harris JC, Geller RJ, Masterlark T, Kirby JT, Shi F (2014) Did a submarine landslide contribute to the 2011 Tohoku tsunami? Mar Geol 357:344–361. https://doi.org/10.1016/j.margeo.2014.09.0

    Article  Google Scholar 

  • Taramelli T, Mercalli G (1888) Il terremoto ligure del 23 febbraio 1887. Annali dell’Ufficio Centrale Meteorologico e Geodinamico Italiano, II 8(4):331–626

    Google Scholar 

  • Tehranirad B, Shi F, Kirby JT, Harris JC, Grilli ST (2011) Tsunami benchmark results for fully nonlinear Boussinesq wave model FUNWAVE-TVD. Version 1.0. Technical report, No. CACR-11-02, Center for Applied Coastal Research, University of Delaware

  • Tehranirad B, Harris JC, Grilli AR, Grilli ST, Abadie S, Kirby JT, Shi F (2015) Far-field tsunami impact in the north Atlantic basin from large scale flank collapses of the Cumbre Vieja volcano, La Palma. Pure appl Geophys 172(12):3589–3616. https://doi.org/10.1007/s00024-015-1135-5

    Article  Google Scholar 

  • Tinti S, Maramai A, Graziani L (2004) The new catalogue of Italian tsunami. Nat Hazards 33:439–465

    Article  Google Scholar 

  • Watts P, Grilli ST, Kirby JT, Fryer GJ, Tappin DR (2003) Landslide tsunami case studies using Boussinesq model and a fully nonlinear tsunami generation model. Nat Hazards Earth Syst Sci 3:391–402

    Article  Google Scholar 

  • Wei G, Kirby JT (1995) A time-dependent numerical code for extended Boussinesq equations. J Waterway Port Coast Ocean Eng 121:251–261

    Article  Google Scholar 

  • Wei G, Kirby JT, Grilli ST, Subramanya R (1995) A fully nonlinear Boussinesq model for surface waves. Part 1. Highly nonlinear unsteady waves. J Fluid Mech 294:71–92

    Article  Google Scholar 

  • Wells DL, Coppersmith KJ (1994) New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bull Seismol Soc Am 84(4):974–1002

    Google Scholar 

  • Wilson R, Dengler L, Borrero J, Synolakis C, Jaffe B, Barberopoulou A, Ewing L, Legg M, Ritchie A, Lynett P, Admire A, McCrink T, Falls J, Rosinski A, Treiman J, Manson M, Silva M, Davenport C, Lancaster J, Olson B, Pridmore C, Real C, Miller K, Goltz J (2011) The effects of the 2011 Tohoku tsunami on the California coastline. Seismol Res Lett 82(3):459–460

    Google Scholar 

  • Wilson R, Davenport C, Jaffe B (2012) Sediment scour and deposition within harbors in California (USA), caused by the March 11, 2011 Tohoku-oki Tsunami. Sed Geol 282:228–240

    Article  Google Scholar 

  • Wilson RI, Admire AR, Borrero JC, Dengler LA, Legg MR, Lynett P, Mc Crink TP, Miller KM, Ritchie A, Sterling K, Whitmore PM (2013) Observations and Impacts from the 2010 Chilean and 2011 Japanese Tsunamis in California (USA). Pure appl Geophys 170(6–8):1127–1147. https://doi.org/10.1007/s00024-012-0527-z

    Article  Google Scholar 

Download references

Acknowledgments

Fatima Nemati and Stephan Grilli acknowledge support for this work from the US National Science Foundation Grant CMMI-15-35568. Mansour Ioualalen and colleagues from Géoazur acknowledge support from: (1) the European Commission under the project “Assessment, STrategy And Risk Reduction for Tsunamis in Europe,” ASTARTE (Grant No. 603839), and (2) the French government, through the UCA-JEDI Investments managed by the French National Research Agency (ANR-15-IDEX-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephan T. Grilli.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nemati, F., Grilli, S.T., Ioualalen, M. et al. High-resolution coastal hazard assessment along the French Riviera from co-seismic tsunamis generated in the Ligurian fault system. Nat Hazards 96, 553–586 (2019). https://doi.org/10.1007/s11069-018-3555-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-018-3555-x

Keywords

Navigation