Skip to main content

Advertisement

Log in

A spatial analysis of integrated risk: vulnerability of ecosystem services provisioning to different hazards in the Czech Republic

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

Ecosystem services are important to maintain the human well-being. However, their provisioning has been under the increasing pressure from both natural and socio-economic changes. This paper aims to assess the most significant hazards, such as water quality, nitrogen deposition, erosion, floods, invasive species, urbanisation and contaminated sites affecting delivery of ecosystem services in the Czech Republic. Using the multi-hazard assessment, the integrated risk index for ecosystem service provisioning was proposed. The spatial analysis based on this approach was then applied to the Czech Republic as a case study. The results showed that about 48% of the area falls into the very low risk category followed by 30%, 21%, and 1% for low, medium and high categories, respectively. Forest and wetland ecosystems were estimated to have the highest proportion of their total area among the highest risk values. Moreover, we found that the national parks appeared to have the highest proportion of medium- and high-risk classes among the natural areas. The approach presented in this study should aggregate the existing knowledge on ecosystem services and hazards and thus monitor the integrated risk. The results are intended to help with various planning and management decisions at both the national and regional levels and to bring more attention on the most problematic hot-spots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Anselin L (1995) Local indicators of spatial association. Geogr Anal 27:93–115

    Article  Google Scholar 

  • Bezák P, Mederly P, Izakovičová Z, Špulerová J, Schleyer C (2017) Divergence and conflicts in landscape planning across spatial scales in Slovakia: an opportunity for an ecosystem services-based approach? Int J Biodivers Sci Ecosyst Serv Manag 13(2):119–135

    Article  Google Scholar 

  • Bobbink R, Hicks K, Galloway J et al (2010) Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis. Ecol Appl 20:30–59

    Article  Google Scholar 

  • Brown I, Ridder B, Alumbaugh P, Barnett C, Brooks A, Duffy L et al (2011) Climate change risk assessment for the biodiversity and ecosystem services sector. Final Rep Defra UK Clim Change Risk Assess 471:51–57

    Google Scholar 

  • Burkhard B, Kroll F, Müller F (2010) Landscapes‘ capacities to provide ecosystem services: a concept for land-cover based assessments. Landsc Online 15:1–22

    Article  Google Scholar 

  • Burkhard B, Kroll F, Nedkov S, Müller F (2012) Mapping supply, demand and budgets of ecosystem services. Ecol Indic 21:17–29

    Article  Google Scholar 

  • Busch M, La Notte A, Laporte V, Erhard M (2012) Potentials of quantitative and qualitative approaches to assessing ecosystem services. Ecol Indic 21:89–103

    Article  Google Scholar 

  • CHMI—Czech Hydrometeorological Institute (2013) Water quality and nitrogen deposition data. Unpublished

  • Chytrý M, Wild J, Pyšek P, Tichý L, Danihelka J, Knollová I (2009) Maps of the level of invasion of the Czech Republic by alien plants. Preslia 8:187–207

    Google Scholar 

  • Chytrý M, Wild J, Pyšek P, Jarošík V, Dendoncker N, Reginster I, Pino J (2012) Projecting trends in plant invasions in Europe under different scenarios of future land-use change. Global Ecol Biogeogr 21:75–87

    Article  Google Scholar 

  • Collins TW, Grineski SE, de Lourdes Romo Aguilar M (2009) Vulnerability to environmental hazards in the Ciudad Juárez (Mexico)–El Paso (USA) metropolis: a model for spatial risk assessment in transnational context. Appl Geogr 29:448–461

    Article  Google Scholar 

  • Costanza R, D'Arge R, de Groot D, Farber S, Grasso M, Hannon B, Limburg K, Naeem S, O'Neill R, Paruelo J, Raskin RG, Sutton P, van den Belt M (1997) The value of the World's ecosystem services and natural capital. Nature 387:253–260

    Article  Google Scholar 

  • CSO—Czech Statistical Office (2013) Population data https://www.czso.cz/csu/czso/catalogue-of-products. Assessed July 2014

  • Cuddington K, Fortin MJ, Gerber LR, Hastings A, Liebhold A, O’Connor M, Ray C (2013) Process based models are required to manage ecological systems in a changing world. Ecosphere 4(2):20. doi:10.1890/ES12-00178.1

    Article  Google Scholar 

  • Cutter SL, Mitchell JT, Scott MS (2000) Revealing the vulnerability of people and places: A case study of georgetown. Ann Assoc Am Geogr 90:713–737

    Article  Google Scholar 

  • De Groot RS, Brander L, van der Ploeg S, Costanza R (2012) Global estimates of the value of ecosystems and their services in monetary units. Ecosyst Serv 1:50–61

    Article  Google Scholar 

  • Dockerty T, Lovett A, Sunnenberg G, Appleton K, Parry M (2005) Visualizing the potential impacts of climate change on rural landscapes. Comput Environ Urban 29:297–320

    Article  Google Scholar 

  • Ellis EC, Goldewijk KK, Siebert S, Lightman D, Ramankutty N (2010) Anthropogenic transformation of the biomes, 1700 to 2000. Global Ecol Biogeogr 19:589–606

    Google Scholar 

  • Etter A, McAlpine CA, Seabrook L, Wilson KA (2011) Incorporating temporality and biophysical vulnerability to quantify the human spatial footprint on ecosystems. Biol Conserv 144:1585–1594

    Article  Google Scholar 

  • Faber JH, van Wensem J (2012) Elaborations on the use of the ecosystem services concept for application in ecological risk assessment for soils. Sci Total Environ 415:3–8

    Article  Google Scholar 

  • FAO (2007) The state of food and agriculture: paying farmers for environmental services. FAO Agriculture series no. 38. FAO, Rome

    Google Scholar 

  • Frélichová J, Vačkář D, Pártl A, Loučková B, Harmáčková ZV, Lorencová E (2014) Integrated assessment of ecosystem services in the Czech Republic. Ecosyst Serv 8:110–117

    Article  Google Scholar 

  • Füssel HM, Klein RJT (2006) Climate change vulnerability assessments: an evolution of conceptual thinking. Clim Change 75:301–329

    Article  Google Scholar 

  • Galic N, Schmolke A, Forbes V, Baveco H, van den Brink PJ (2012) The role of ecological models in linking ecological risk assessment to ecosystem services in agroecosystems. Sci Total Environ 415:93–100

    Article  Google Scholar 

  • Getis A, Ord JK (2010) The analysis of spatial association by use of distance statistics. Geogr Anal 3:189–206

    Article  Google Scholar 

  • Greiving S, Fleischhauer M (2006) Spatial planning response towards natural and technological hazards. In: Schmidt-Thome P (ed) Natural and technological hazards and risks affecting the spatial development of European regions. Geological Survey of Finland, Special Paper 42, pp 109–123

  • Greiving S, Fleischhauer M, Lückenkötter J (2006) A methodology for an integrated risk assessment of spatially relevant hazards. J Environ Plan Manag 49:1–19

    Article  Google Scholar 

  • Grimm M, Jones R, Montanarella L (2001) Soil erosion risk in Europe. ISPRA, Rome

    Google Scholar 

  • Harmáčková ZV, Vačkář D (2015) Modelling regulating ecosystem services trade-offs across landscape scenarios in Třeboňsko Wetlands Biosphere Reserve, Czech Republic. Ecol Model 295:207–215

    Article  Google Scholar 

  • Hejcman M, Klaudisová M, Hejcmanová P, Pavlů V, Jones M (2009) Expansion of Calamagrostis villosa in sub-alpine Nardus stricta grassland: Cessation of cutting management or high nitrogen deposition? Agric Ecosyst Environ 129:91–96

    Article  Google Scholar 

  • Hejcman M, Strnad L, Hejcmanová P, Pavlů V (2012) Response of plant species composition, biomass production and biomass chemical properties to high N, P and K application rates in Dactylis glomerata- and Festuca arundinacea-dominated grassland. Grass Forage Sci 67:488–506

    Article  Google Scholar 

  • Hruška J, Oulehle F, Šamonil P, Šebesta J, Tahovská K, Hleb R, Houška J, Šikl J (2012) Long-term forest soil acidification, nutrient leaching and vegetation development: linking modelling and surveys of a primeval spruce forest in the Ukrainian Transcarpathian Mts. Ecol Modell 244:28–37

    Article  Google Scholar 

  • IPPC (2014) Climate Change 2014: Impacts,Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. In: CB Field, VR Barros, DJ Dokken, KJ Mach, MD Mastrandrea, TE Bilir, M Chatterjee, KL Ebi, YO Estrada, RC Genova, B Girma, ES Kissel, AS Levy, S MacCracken, PR Mastrandrea, LL White (eds) Cambridge University Press, Cambridge, United Kingdom, New York, NY, USA, pp 35–94

  • Janoušková S, Hák T, Vačkář D, Lorencová E (2013) Environmentální bezpečnost České republiky: Návrh koncepčního rámce. Obrana Strateg 13:25–40. doi:10.3849/1802-7199

    Google Scholar 

  • Jongman B, Hochrainer-stigler S, Feyen L, Aerts JCJH, Mechler R, Botzen WJW, Bouwer LM, Pflug G, Rojas R, Ward PJ (2014) Increasing stress on disaster-risk finance due to large floods. Nat Clim Chang 4:1–5

    Google Scholar 

  • Kopáček J, Cosby BJ, Evans CD, Hruška J, Moldan F, Oulehle F, Šantrůčková H, Tahovská K, Wright RF (2013) Nitrogen, organic carbon and sulphur cycling in terrestrial ecosystems: linking nitrogen saturation to carbon limitation of soil microbial processes. Biogeochemistry 115:33–51

    Article  Google Scholar 

  • Kovács E, Kelemen E, Kalóczkai Á, Margóczi K, Pataki G, Gébert J, Málovics G, Balázs B, Roboz Á, Kovács EK, Mihók B (2015) Understanding the links between ecosystem service trade-offs and conflicts in protected areas. Ecosyst Serv 12:117–127

    Article  Google Scholar 

  • Krása J (2010) Empirical Models for Water Erosion in Czech Republic (In Czech: Empirické modely vodní eroze v ČR). Habilitation Thesis. Department of Irrigation, Drainage and Landscape Engineering, Czech Technical University in Prague

  • Krása J, Dostál T (2008) Revised detailed map of the soil loss for the Czech Republic. In: Proceedings from the 15th annual international symposium, GIS, Ostrava, 27–30 Jan 2008

  • Kreibich H, Bubeck P, Kunz M, Mahlke H, Parolai S, Khazai B, Daniell J, Lakes T, Schroter K (2014) A review of multiple natural hazards and risks in Germany. Nat Hazards 74:2279–2304

    Article  Google Scholar 

  • Krkoška Lorencová E, Harmáčková ZV, Landová L, Pártl A, Vačkář D (2016) Assessing impact of land use and climate change on regulating ecosystem services in the Czech Republic. Ecosyst Health Sustain 2(3):e01210. doi:10.1002/ehs2.1210

    Google Scholar 

  • Landuyt D, Lemmens P, D’hondt R, Broekx S, Liekens I, De Bie T, Declerck SAJ, De Meester L, Goethals PLM (2014) An ecosystem service approach to support integrated pond management: a case study using Bayesian belief networks—highlighting opportunities and risks. J Environ Manage 145:79–87

    Article  Google Scholar 

  • Li K, Li GS (2011) Vulnerability assessment of storm surges in the coastal area of Guangdong Province. Nat Hazards Earth Syst Sci 11:2003–2010

    Article  Google Scholar 

  • Liu S, Costanza R, Troy A, D’Aagostino JD, Mates W (2010) Valuing New Jersey’s ecosystem services and natural capital: a spatially explicit benefit transfer approach. Environ Manag 45:1271–1285

    Article  Google Scholar 

  • Liu X, Zhang J, Tong Z, Bao Y (2012) GIS-based multi-dimensional risk assessment of the grassland fire in northern China. Nat Hazards 64:381–395

    Article  Google Scholar 

  • Lorencová E, Frélichová J, Nelson E, Vačkář D (2013) Past and future impacts of land use and climate change on agricultural ecosystem services in the Czech Republic. Land Use Policy 33:183–194

    Article  Google Scholar 

  • Maczka K, Matczak P, Pietrzyk-Kaszyńska A, Rechciński M, Olszańska A, Cent J, Grodzińska-Jurczak M (2016) Application of the ecosystem services concept in environmental policy: a systematic empirical analysis of national level policy documents in Poland. Ecol Econ 128:169–176

    Article  Google Scholar 

  • McClean CJ, Berg LL, Ashmore MR, Preston CD (2011) Atmospheric nitrogen deposition explains patterns of plant species loss. Glob Chang Biol 17:2882–2892

    Article  Google Scholar 

  • McDonough K, Hutchinson S, Moore T, Hutchinson JMS (2017) Analysis of publication trends in ecosystem services research. Ecosyst Serv 25:82–88

    Article  Google Scholar 

  • Metzger MJ, Schröter D (2006) Towards a spatially explicit and quantitative vulnerability assessment of environmental change in Europe. Reg Environ Chang 6:201–216

    Article  Google Scholar 

  • Millennium Ecosystem Assessment (2005a) Ecosystems and Human Well-Being: Synthesis. Island Press, Washington, DC

    Google Scholar 

  • Millennium Ecosystem Assessment (2005b) Ecosystems and Human Well-Being: Current State and Trends. Island Press, Washington, DC

    Google Scholar 

  • Mujabar PS, Chandrasekar N (2013) Coastal erosion hazard and vulnerability assessment for southern coastal Tamil Nadu of India by using remote sensing and GIS. Nat Hazards 69(3):1295–1314

    Article  Google Scholar 

  • Munns WR Jr, Poulsen V, Gala WR, Marshall SJ, Rea AW, Sorensen MT, von Stackelberg K (2017) Ecosystem services in risk assessment and management. Integr Environ Assess Manag 13(1):62–73

    Article  Google Scholar 

  • Nel JL, Le Maitre DC, Nel DC, Reyers B, Archibald S, Van Wilgen BW, Forsyth GG, Theron AK, O’Farrell PJ, Mwenge Kahinda JM, Engelbrecht FA, Kapangaziwiri E, Van Niekerk L, Barwell L (2014) Natural hazards in a changing world: a case for ecosystem-based management. PLoS ONE 9(5):e95942. doi:10.1371/journal.pone.0095942

    Article  Google Scholar 

  • NG INSPIRE—National Geoportal INSPIRE (2013) Land cover change and contaminated sites data, CENIA, Czech Environmental Information Agency, Prague, http://geoportal.gov.cz/web/guest/map. Assessed July 2014

  • Nguyen TC, Robinson J, Kaneko S, Komatsu S (2013) Estimating the value of economic benefits associated with adaptation to climate change in a developing country: a case study of improvements in tropical cyclone warning services. Ecol Econ 86:117–128

    Article  Google Scholar 

  • Nienstedt KM, Brock TCM, van Wensem J, Montforts M, Hart A, Aagaard A, Alix A, Boesten J, Bopp SK, Brown C, Capri E, Forbes V, Köpp H, Liess M, Luttik R, Maltby L, Sousa JP, Streissl F, Hardy AR (2012) Development of a framework based on an ecosystem services approach for deriving specific protection goals for environmental risk assessment of pesticides. Sci Total Environ 415:31–38

    Article  Google Scholar 

  • Norman LM, Villarreal ML, Lara-Valencia F, Yuan Y, Nie W, Wilson S, Amaya G, Sleeter R (2012) Mapping socio-environmentally vulnerable populations access and exposure to ecosystem services at the U.S.–Mexico borderlands. Appl Geogr 34:413–424

    Article  Google Scholar 

  • OECD (2008) OECD Environmental Outlook to 2030. OECD, Paris

    Book  Google Scholar 

  • Olschewski R, Bebi P, Teich M, Wissen Hayek U, Grêt-Regamey A (2012) Avalanche protection by forests: a choice experiment in the Swiss Alps. For Policy Econ 17:19–24

    Article  Google Scholar 

  • Olson D, David M et al (2001) Terrestrial ecoregions of the world: a new map of life on earth—a new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. Bioscience 51(11):933–938

    Article  Google Scholar 

  • Polasky S, Nelson E, Camm J, Csuti B, Fackler P, Lonsdorf E, Montgomery C, White D, Arthur J, Garber-Yonts B, Haight R, Kagan J, Starfield A, Tobalske C (2008) Where to put things? Spatial land management to sustain biodiversity and economic returns. Biol Conserv 141:1505–1524

    Article  Google Scholar 

  • Rannow S, Loibl W, Greiving S, Gruehn D, Meyer BC (2010) Potential impacts of climate change in Germany—identifying regional priorities for adaptation activities in spatial planning. Landsc Urban Plan 98:160–171

    Article  Google Scholar 

  • Raudsepp-Hearne C, Peterson GD, Tengö M, Bennett EM, Holland T, Benessaiah K, MacDonald GK, Pfeifer L (2010) Untangling the environmentalist’s paradox: Why is human well-being increasing as ecosystem services degrade? Bioscience 60:576–589

    Article  Google Scholar 

  • Renaud FG, Birkmann J, Damm M, Gallopín GC (2010) Understanding multiple thresholds of coupled social-ecological systems exposed to natural hazards as external shocks. Nat Hazards 55:749–763

    Article  Google Scholar 

  • Roebeling PC, Costa L, Magalhães-Filho L, Tekken V (2013) Ecosystem service value losses from coastal erosion in Europe: historical trends and future projections. J Coast Conserv 17:389–395

    Article  Google Scholar 

  • Sandvik H, Sæther BE, Holmern T, Tufto J, Engen S, Roy H (2013) Towards a generic ecological impact assessment of alien species in Norway: a semi-quantitative set of criteria. Biodivers Conserv 22:37–62

    Article  Google Scholar 

  • Schleyer C, Görg C, Hauck J, Winkler KJ (2015) Opportunities and challenges for mainstreaming the ecosystem services concept in the multi-level policy-making within the EU. Ecosyst Serv 16:174–181

    Article  Google Scholar 

  • Schröter D, Polsky C, Patt AG (2005) Assessing vulnerabilities to the effects of global change: an eight step approach. Mitig Adapt Strat Glob Chang 10(4):573–595

    Article  Google Scholar 

  • Shi ZH, Ai L, Fang NF, Zhu HD (2012) Modeling the impacts of integrated small watershed management on soil erosion and sediment delivery: a case study in the Three Gorges Area, China. J Hydrol 438:156–167

    Article  Google Scholar 

  • Stelzenmüller V, Lee J, Garnacho E, Rogers SI (2010) Assessment of a Bayesian belief network-GIS framework as a practical tool to support marine planning. Mar Pollut Bull 60:1743–1754

    Article  Google Scholar 

  • TEEB (2010) The economics of ecosystems and biodiversity: ecological and economic foundations. In: P Kumar (ed) Earthscan. London, Washington

  • Tetzlaff B, Friedrich K, Vorderbrügge T, Vereecken H, Wendland F (2013) Distributed modelling of mean annual soil erosion and sediment delivery rates to surface waters. CATENA 102:13–20

    Article  Google Scholar 

  • Tgm WRI (2011) The methodology for creating maps of flood danger and flood risk. TG Masaryk Water Research Institute, Prague, p 91p

    Google Scholar 

  • Thomsen M, Faber JH, Sorensen PB (2012) Soil ecosystem health and services: evaluation of ecological indicators susceptible to chemical stressors. Ecol Indic 16:67–75

    Article  Google Scholar 

  • Turner RK, Georgiou S, Fisher B (2008) Valuing ecosystem services: the case of multi-functional wetlands. Routledge, London

    Google Scholar 

  • UK, NEA (UK National Ecosystem Assessment) (2011) The UK national ecosystem assessment: synthesis of the key findings. UNEP-WCMC, Cambridge

    Google Scholar 

  • Van der Ploeg S, De Groot RS, Wang Y (2010) The TEEB valuation database: overview of structure, data and results. Foundation for Sustainable Development, Wageningen

    Google Scholar 

  • Van Wensem J, Calow P, Dollacker A, Maltby L, Olander L, Tuvendal M, Van Houtvenz G (2017) Identifying and assessing the application of ecosystem services approaches in environmental policies and decision making. Integr Environ Assess Manag 13(1):41–51

    Article  Google Scholar 

  • Van Westen CJ, Castellanos E, Kuriakose SL (2008) Spatial data for landslide susceptibility, hazard, and vulnerability assessment: an overview. Eng Geol 102:112–131

    Article  Google Scholar 

  • Verburg PH, Schulp CJE, Witte N, Veldkamp A (2006) Downscaling of land use change scenarios to assess the dynamics of European landscapes. Agric Ecosyst Environ 114:39–56

    Article  Google Scholar 

  • Vitousek PM, Mooney HA, Lubchenco J, Melillo JM (1997) Human domination of earth’s ecosystems. Science 277:494–499

    Article  Google Scholar 

  • Whitehead PG, Wilby RL, Battarbee R, Kernan M, Wade A (2009) A review of the potential impacts of climate change on surface water quality. Hydrol Sci 54:101–123

    Article  Google Scholar 

  • Wisner B, Blaikie P, Cannon T, Davis I (2004) At risk: natural hazards, people’s vulnerability and disasters, 2nd edn. Routledge, New York

    Google Scholar 

  • Wolff S, Schulp CJE, Verburg PH (2015) Mapping ecosystem services demand: a review of current research and future perspectives. Ecol Indic 55:159–171

    Article  Google Scholar 

  • Wu K, Ye X, Qi Z, Zhang H (2013) Impacts of land use/land cover change and socioeconomic development on regional ecosystem services: the case of fast-growing Hangzhou metropolitan area, China. Cities 31:276–284

    Article  Google Scholar 

  • Xie H, Wang P, Huang H (2013) Ecological risk assessment of land use change in the Poyang lake eco-economic zone, China. Int J Environ Res Public Health 10:328–346

    Article  Google Scholar 

  • Yin J, Yin Z, Xu S (2013) Composite risk assessment of typhoon-induced disaster for China’s coastal area. Nat Hazards 69:1423–1434

    Article  Google Scholar 

  • Zhang JQ, Okada N, Tatano H (2005) Integrated natural disaster risk management: comprehensive and integrated model and Chinese strategy Choice. In: Proceedings of fifth annual IIASA-DPRI forum on integrated natural disaster risk management, pp 115–125

  • Zhou Y, Liu Y, Wu W, Li N (2015) Integrated risk assessment of multi-hazards in China. Nat Hazards 78:257–280

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the Ministry of the Interior of the Czech Republic, Security Research Grant No. VG20122015091, Integrated assessment of global change impacts on environmental security of the Czech Republic. This work was also supported by the Ministry of Education, Youth and Sports of the Czech Republic within the National Sustainability Program I (NPU I), Grant No. LO1415. The authors also would like to thank the organizers of the 2014 Summer Institute for Disaster and Risk Research at Beijing Normal University (the State Key Laboratory of Earth Surface Processes and Resource Ecology at Beijing Normal University, Beijing, China) and D. Geneletti for comments and suggestions, which helped to improve the methodology. Lastly, the authors would like to acknowledge J. Krása for providing the erosion data and P. Pyšek and J. Wild for providing the invasive species data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam Pártl.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 160 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pártl, A., Vačkář, D., Loučková, B. et al. A spatial analysis of integrated risk: vulnerability of ecosystem services provisioning to different hazards in the Czech Republic. Nat Hazards 89, 1185–1204 (2017). https://doi.org/10.1007/s11069-017-3015-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-017-3015-z

Keywords

Navigation