Advertisement

Natural Hazards

, Volume 86, Supplement 2, pp 295–324 | Cite as

The environmental effects of the 1743 Salento earthquake (Apulia, southern Italy): a contribution to seismic hazard assessment of the Salento Peninsula

  • R. NappiEmail author
  • G. Gaudiosi
  • G. Alessio
  • M. De Lucia
  • S. Porfido
Open Access
Original Paper

Abstract

The aim of this study was to provide a contribution to seismic hazard assessment of the Salento Peninsula (Apulia, southern Italy). It is well known that this area was struck by the February 20, 1743, earthquake (I 0 = IX and M w = 7.1), the strongest seismic event of Salento, that caused the most severe damage in the towns of Nardò (Lecce) and Francavilla Fontana (Brindisi), in the Ionian Islands (Greece) and in the western coast of Albania. It was also widely felt in the western coast of Greece, in Malta Islands, in southern Italy and in some localities of central and northern Italy. Moreover, the area of the Salento Peninsula has also been hit by several low-energy and a few high-energy earthquakes over the last centuries; the instrumental recent seismicity is mainly concentrated in the western sector of the peninsula and in the Otranto Channel. The Salento area has also experienced destructive seismicity of neighboring regions in Italy (the Gargano Promontory in northern Apulia, the Southern Apennines chain, the Calabrian Arc) and in the Balkan Peninsula (Greece and Albania). Accordingly, a critical analysis of several documentary and historical sources, as well as of the geologic–geomorphologic ground effects due to the strong 1743 Salento earthquake, has been carried out by the authors in this paper; the final purpose has been to re-evaluate the 1743 MCS macroseismic intensities and to provide a list of newly classified localities according to the ESI-07 scale on the base of recognized Earthquake Environmental Effects. The result is a quite different damage scenario due to this earthquake that could raise the seismic potential currently recognized for the Salento area, and consequently upgrade the seismic hazard classification of the Salento. Indeed it is important to remind that currently, despite the intense earthquake activity recorded not only in the Otranto Channel, but especially in Greece and Albania, this area is classified in the least dangerous category of the Seismic Classification of the Italian territory (IV category).

Keywords

Salento Peninsula, 1743 earthquake ESI scale Seismic hazard 

1 Introduction

The Salento Peninsula (Apulia, southern Italy) over the last centuries has been epicentral area of several low- and medium-energy earthquakes with magnitude 3 ≤ M w ≤ 5, apart from the February 20, 1743, earthquake with I 0 = IX and M w = 7.1 (Rovida et al. 2011), considered as the strongest seismic event of this area. The 1743 epicenter is still very controversial due to different locations ascribed respectively on land, near the town of Nardò by the Catalogue of Strong Earthquakes in Italy and Mediterranean Area (CFTI4Med, Guidoboni et al. 2007), and offshore, in various positions of the Ionian Sea (Shebalin et al. 1974; Postpischl 1985; Camassi and Stucchi 1997; Papazachos and Papazachou 2003; Rovida et al. 2011; Stucchi et al. 2013). The Salento area has also suffered destructive seismicity of the Gargano Promontory (northern Apulia), of the Southern Apennines chain and of the Calabrian Arc, in Italy. Moreover, the Salento has been affected by the effects of the strongest earthquakes from Albania and Ionian Islands (western Greece) (Grünthal et al. 2013; Stucchi et al. 2013). Nevertheless, this area is actually included in the IV category of the Italian Seismic Classification; this category is the least dangerous, in fact municipalities of this area have a low probability of seismic damages. According to the Ordinance of President of the Council of Ministers no. 3519 (28 April 2006), the seismic areas of this category have acceleration with probability of exceeding the threshold ag ≤0.05 equal to 10 % in 50 years (where ‘ag’ is the peak acceleration on rigid ground (www.protezionecivile.gov.it).

In order to contribute, on the basis of a detailed study of the 1743 earthquake, to an updated evaluation of the seismic hazard of the Salento area, currently underestimated, the following matters have been examined:
  1. 1.

    Historical and recent seismicity of the Apulia region and particularly of the Salento Peninsula from available catalogues (Guidoboni et al. 2007; Rovida et al. 2011; ISIDe working group 2016);

     
  2. 2.

    Macroseismic revision of the February 20, 1743, earthquake according to the Mercalli Cancani Sieberg (MCS) scale, on the basis of scientific papers (Margottini 1981, 1985; Ferrari 1987; Galli and Naso 2008; De Lucia et al. 2014; Gaudiosi et al. 2015; Nappi et al. 2015) and historical documents found in the State and Religious Archives.

     
  3. 3.

    Earthquake Environmental Effects (EEEs) from the available collected documents, according to the Environmental Seismic Intensity 2007 (ESI-07) scale (Michetti et al. 2007; Audemard et al. 2015).

     

As regards the methodology of earthquake intensity assessment, the traditional MCS scale and the new macroseismic scale ESI-07 have been applied in this paper (Gaudiosi et al. 2014; Michetti et al. 2007; Audemard et al. 2015).

The intensity evaluated through the MCS scale is a major seismic hazard parameter because is not only used for the description of earthquake effects, but it also describes the damage pattern. The intensity is the direct measure of damage and is commonly used in hazard assessment (D’Amico and Albarello 2008; Pasolini et al. 2008), in seismic risk management, post-earthquake emergency planning, earthquake loss estimation and damage scenarios.

The ESI-07 scale was ratified by the INQUA (International Union for Quaternary Research) during the XVII Congress in Cairns, Australia, 2007; it represents a new macroseismic scale that measures the intensity based on the effects induced by earthquakes on the environment. This scale integrates the traditional macroseismic scales, of which it represents an evolution, allowing to assess the intensity parameter exclusively on the basis of environmental effects, also where buildings are absent, and when diagnostic elements damage-based have saturated. The ESI-07 scale is a 12° scale: Each degree reflects the corresponding strength of an earthquake and provides a measure of the intensity on the basis of its characteristics. The main advantage of the ESI-07 scale is the classification, quantification and measurement of several known geological, hydrological, geomorphologic and botanical features that are associated with each intensity degree. This scale has been tested worldwide, in the case of several modern, historical earthquakes and paleoearthquakes (Silva et al. 2008; Reicherter et al. 2009; Lekkas 2010; Papanikolaou 2011; Giles 2013; Porfido et al. 2015a, b; Serva et al. 2015; Heddar et al. 2016; Quigley et al. 2016; Sanchez and Maldonado 2016).

Based on the above-mentioned seismic intensities scales, the reassessment of both the 1743 macroseismic effects on man-made structures and the triggered effects in the natural environment have allowed to elaborate a quite different scenario of the 1743 earthquake, leading to other intensity values for some localities and increasing the number of the newly classified localities, represented in this paper with a new intensity map.

2 Geodynamic framework of the study area

The Apulia region (southern Italy), NW–SE elongated, represents the emerged part of the Adriatic foreland domain, shared by the Apennines chain to the west and the Dinarides–Albanides–Hellenides chains to the east (Caputo et al. 1970; Moretti and Royden 1988). The geodynamic background of this area, located in the central sector of the Mediterranean basin, shows complex tectonics since it is a plate boundary collision zone (Fig. 1), characterized by the ongoing subduction of the Ionian slab beneath the Calabrian Arc, to the southwest, and the Dinarides–Albanides–Hellenides thrust front, to the northeast. Such compressional regime is still active and featured by frequent and strong seismicity occurring mostly in the Ionian Sea and western Greece (Slejko et al. 1999; Castello et al. 2006; Markusic et al. 2015).
Fig. 1

Apulia seismotectonic map. Historical seismicity of Apulia and surrounding areas: Red squares represent earthquakes from the CPTI11 catalogue (Rovida et al. 2011) for southern Italy and from the SHARE European Earthquake Catalogue (Stucchi et al. 2013; Grünthal et al. 2013) for the Balkan peninsula; red squares, with full red circles inside, represent earthquakes of Salento Peninsula from CFTI4Med catalogue (Guidoboni et al. 2007). The epicenter of the 1743 earthquake located onland (from CFTI4Med), and offshore (from CPTI11) in the Otranto Channel, is identified by the year of its occurrence. Instrumental seismicity of Apulia and surrounding areas: Yellow circles represent earthquakes from ISIDE Working group (2016). Structural map: simplified from Ambrosetti et al. (1986), Bigi et al. (1983) and Gambini and Tozzi (1996). (1) Apulian and Dalmatian Platform Margin; (2) main normal faults; (3) main thrust belt fronts; (4) main strike slip faults, which are PDFZ, Pescara-Dubrovnik Fault Zone; NGFZ, Nord-Gargano Fault Zone; MGFZ, Mattinata-Gondola Fault Zone; NSFZ, North-Salento Fault Zone; and NKFZ, North-Kerkira Fault Zone

In the framework of the Mediterranean basin tectonic evolution, the relative motion of the Adriatic foreland respect to the African plate is still under debate; particularly many geological and geophysical data point out an independent Adriatic microplate, moving by counter-clockwise rotation, which deformation shows different pattern near its borders (Argnani et al. 2001; Serpelloni et al. 2005; Argnani 2012).

In Fig. 1, the Apulian block and its surrounding regions have been mapped; several normal faults, NW–SE and NNW–SSE trending, dissect this area and dislocate the sea floor by about 200–300 m (Merlini et al. 2000). Moreover, major E–W strike slip fault zones divide Apulia into structural blocks behaving independently, the Gargano Promontory, the Murge Ridge and the Salento Peninsula. The spatial distribution of earthquakes shows different pattern of seismic activity inside these three zones, and some of the mapped faults are presently active (Fig. 1).

The outcropping rocks of the Apulian foreland are prevalently limestone-dolomite units belonging to the Apulia platform, with carbonatic-terrigenous marine deposits at the top of the stratigraphic sequence, Middle Eocene–Upper Pleistocene age (Mastronuzzi et al. 2011).

According to Ambrosetti et al. (1986), Bigi et al. (1983) and Gambini and Tozzi (1996), the major structural lineaments cutting the Apulian foreland and to be considered as significant probable seismogenic sources are (Fig. 1): the Pescara-Dubrovnik Fault Zone (PDFZ); the Nord-Gargano Fault Zone (NGFZ); the Mattinata-Gondola Fault Zone (MGFZ); the North-Salento Fault Zone (NSFZ) and the North-Kerkira Fault Zone (NKFZ).

3 Seismicity of the Salento Peninsula

The seismic history of Apulia and surrounding regions has been analyzed consulting the available catalogues on the INGV Web site. The historical earthquakes were extracted from the 2011 version of the Parametric Catalogue of Italian Earthquakes (CPTI11) (Rovida et al. 2011), proposed by its authors as the reference document for new hazard estimates. The CPTI11 updates a previous version of 2004 (Gruppo di lavoro CPTI 2004) and is based on both the Italian Macroseismic Database DBMI11 (Locati et al. 2011) and instrumental databases, from 1000 to 2006. In the CPTI11, when both macroseismic and instrumental seismic parameters are available, the epicenter is selected according to expert judgment. Magnitude of instrumental data (after 1980) is obtained from moment tensor or spectral method (M w), while magnitude of macroseismic data (before 1980) is a weighted mean of previous magnitude values calculated from magnitude–intensity empirical relations (Rovida et al. 2011).

In addition, the CFTI4Med catalogue (Guidoboni et al. 2007) has been consulted to improve the completeness of the seismic database of the southern Apulia. This catalogue lists earthquakes occurred in Italy between 461 BC and 1997, and earthquakes occurred in the Mediterranean area between the eighth century BC and the sixteenth century. The CFTI4Med contains all Italian earthquakes with epicentral intensity VIII or larger and a selection of smaller earthquakes (total number of earthquakes: 1257) among which there are many events occurred in the Salento region and lacking in the CPTI11 catalogue. The whole data from this catalogue are based on ad hoc historical investigations and on new interpretations of historical seismic sources.

The historical seismicity of the Balkan peninsula has been extracted from the SHARE European Earthquake Catalogue consisting of two portions: (1) the SHARE European Earthquake Catalogue (SHEEC) 1000–1899 (Stucchi et al. 2013), built on the data contained in the Archive of Historical Earthquake Data (AHEAD) and (2) the SHARE European Earthquake Catalogue (SHEEC) 1900–2006 (Grünthal et al. 2013) that represents a temporal and spatial selection of the “European-Mediterranean Earthquake Catalogue” (EMEC).

The instrumental seismicity has been extracted from the Italian Seismological Instrumental and parametric Data-basE (ISIDe working group INGV 2016, http://iside.rm.ingv.it/iside/standard/index.jsp). ISIDE gives accurate and reviewed information on the current seismicity in Italy. It includes also the data of past instrumental seismicity from the Italian Seismic Bulletin that listed the earthquakes recorded by the Italian National Seismic Network since 1985.

The historical seismicity of Apulia and neighboring areas and instrumental seismicity from 1985 to 2015 are shown in Fig. 1.

The historical and recent seismicity of the Apulia region is characterized by a higher frequency of earthquakes in the northern sector (Gargano), than in the southern one (Murge, Salento) (Fig. 1). The strongest historical earthquakes (I 0 ≥ VIII MCS) of the last centuries in the whole Apulian region from Gargano to Salento, extracted from CPTI11 (Rovida et al. 2011), are (Table 1): the 1223 (Gargano, I 0 = VIII–IX MCS, M w = 5.8); the July 17, 1361 (Ascoli Satriano, I 0 = IX MCS, M w = 6.0); the 1414 (Vieste, I 0 = VIII–IX, M w = 5.8); the May 11, 1560 (Barletta-Bisceglie I 0 = VIII MCS, M w = 5.6); the July 30, 1627 (Gargano, I 0 = X MCS, M w = 6.7); the May 31, 1646 (Gargano, I 0 = IX–X MCS, M w = 6.6); the January 29, 1657 (Lesina, I 0 = VIII–IX MCS, M w = 6.4); the March 20, 1731 (Foggia, I 0 = IX MCS, M w = 6.5); the February 20, 1743 (Ionian Sea, I 0 = IX MCS, M w = 7.1); the February 7, 1844 (Adriatic Sea, I 0 = VIII MCS, M w = 5.6); the December 6, 1875 (San Marco in Lamis, I 0 = VIII MCS, M w = 6.0) and the August 10, 1893 (Gargano, I 0 = VIII MCS, M w = 5.4).
Table 1

Strongest historical earthquakes with I 0 ≥ VIII MCS in the whole Apulian region from Gargano to Salento extracted from CPTI11 (Rovida et al. 2011)

Date

T 0

I 0 (MCS)

I max

M w

Lat N

Long E

Location

1223

 

VIII–IX

IX

5.8

41.873

15.981

Gargano

1361-07-17

17:15

IX

X

6.0

41.205

15.561

Ascoli Satriano

1414

 

VIII–IX

VIII–IX

5.8

41.882

16.180

Vieste

1560-05-11

04:40

VIII

VIII

5.6

41.248

16.485

Barletta-Bisceglie

1627-07-30

10:50

X

X

6.7

41.737

15.342

Gargano

1646-05-31

 

IX–X

X

6.6

41.727

15.764

Gargano

1657-01-29

 

VIII–IX

IX–X

6.4

41.726

15.393

Lesina

1731-03-20

03:00

IX

IX

6.5

41.274

15.757

Foggiano

1743-02-20

16:30

IX

IX

7.1

39.852

18.777

Ionian Sea

1844-02-07

22:16

VIII

 

5.6

42.000

17.000

Basso Adriatico

1875-12-06

 

VIII

VIII

6.0

41.689

15.677

S.Marco in Lamis

1893-08-10

20:52

VIII

VIII–IX

5.4

41.713

16.075

Gargano

The earthquakes parameters are: T 0: origin time; Lat N: latitude (north); Long E: longitude (east); I 0: MCS epicentral intensity; I max: maximum MCS intensity; M w: moment magnitude estimated from macroseismic data

The analysis of the historical seismicity of Apulia highlights that the Gargano area has been hit by several high-energy earthquakes (I 0 ≥ VIII MCS, M w ≥ 6.0) in the last thousand years, while southern Apulia (Murge and Salento) historically experienced only a few moderate earthquakes (Fig. 1).

The historical and recent earthquakes of Salento extracted from parametric catalogues and the instrumental seismicity with M ≥ 3.0 extracted from ISIDe working group INGV (2016) are shown, respectively, in Tables 2 and 3.
Table 2

Historical and recent earthquakes occurred in the Salento Peninsula and surrounding seas extracted from CPTI04 (Gruppo di lavoro CPTI 2004), CPTI11 (Rovida et al. 2011), CFTI4Med (Guidoboni et al. 2007)

Date

T 0

I 0 (MCS)

I max

M w

Lat N

Long E

Location

Catalogue

1087-09-10

 

VI–VII

VI–VII

4.9

41.128

16.864

Bari

CPTI11

1713-01-03

 

V–VI

VI–VII

4.5

40.589

17.113

Massafra (TA)

CPTI11

1743-02-20

16:30

IX

IX

7.1

39.852

18.777

Ionian Sea

CPTI11

1826-10-27

18:00

VI–VII

VI–VII

5.4

40.451

17.678

Manduria (TA)

CPTI11

1844-02-07

22:16

VIII

 

5.6

42.000

17.000

Basso Adriatico

CPTI11

1848-08-03

00:05

VII

 

5.1

42.000

17.000

Basso Adriatico

CPTI11

1909-01-05

20:00

IV–V

IV–V

4.1

40.283

18.300

Vernole (Le)

CFTI4Med

1909-01-06

02:00

III

III

3.5

40.117

18.300

Maglie (LE)

CFTI4Med

1909-01-20

19:58

V

VI

4.6

40.183

18.033

Salento

CFTI4Med

1926-12-14

21:00

III

III

3.5

40.633

17.950

Brindisi

CFTI4Med

1931-04-24

21:10

III–IV

III–IV

3.7

40.550

17.717

Latiano (BR)

CFTI4Med

1932-07-19

12:31

III

III

3.5

40.750

17.317

Locorotondo (BA)

CFTI4Med

1935-03-01

12:38

IV

IV

3.9

40.350

18.167

Lecce

CFTI4Med

1935-03-01

17:17

III

III

3.5

40.350

18.167

Lecce

CFTI4Med

1935-05-29

13:00

IV

IV

3.9

39.800

18.367

S. Maria di Leuca LE)

CFTI4Med

1936-06-13

00:35

III

III

3.5

40.783

17.050

Bari-Taranto

CFTI4Med

1937-10-17

10:00

III

III

3.5

40.450

17.250

Taranto

CFTI4Med

1938-03-04

02:00

IV

IV

3.9

40.400

18.067

Trepuzzi (Le)

CFTI4Med

1947-06-20

21:30

II–III

II–III

3.2

40.533

17.433

Grottaglie (TA)

CFTI4Med

1948-05-07

15:57:24

V–VI

 

4.8

40.000

19.000

Canale d’Otranto

CPTI04, CPTI11

1974-06-29

22:32:03

  

4.1

39.648

18.833

Alto Ionio

CPTI11

1974-10-01

00:34:40

  

4.4

39.699

18.814

Alto Ionio

CPTI11

1974-10-07

11:43:40

  

4.5

39.786

18.915

Alto Ionio

CPTI11

1974-10-20

11:25:50

  

5.0

39.572

18.826

Alto Ionio

CPTI11

1974-10-22

07:29:04

  

4.5

39.705

18.717

Alto Ionio

CPTI11

1974-11-23

07:52:28

VII

 

4.6

39.774

18.810

Alto Ionio

CPTI04, CPTI11

1974-11-23

18:46:36

  

4.8

39.742

18.839

Alto Ionio

CPTI11

1976-10-22

11:23:27

  

4.9

39.724

18.928

Canale d’Otranto

CPTI11

1976-10-27

10:14:56

  

4.6

39.600

18.835

Alto Ionio

CPTI11

1976-11-06

20:57:04

  

4.6

39.606

18.772

Alto Ionio

CPTI11

1976-11-07

02:10:18

  

4.4

39.645

18.868

Alto Ionio

CPTI11

1976-11-08

18:08:41

  

4.4

39.220

18.609

Alto Ionio

CPTI11

1976-11-12

19:36:36

  

4.5

39.657

18.934

Alto Ionio

CPTI11

1976-11-13

05:29:37

  

4.3

39.661

18.976

Alto Ionio

CPTI11

1977-06-05

23:19:47

  

4.6

39.601

18.831

Alto Ionio

CPTI11

1983-05-07

22:09:14

  

5.0

40.062

17.890

Penisola salentina

CPTI11

1983-11-08

20:11:40

  

4.6

39.907

17.825

Penisola salentina

CPTI11

1985-09-19

04:54:26

  

4.4

39.674

18.833

Alto Ionio

CPTI11

2001-09-23

21:16:57

  

5.0

39.767

18.001

Penisola salentina

CPTI11

The earthquakes parameters are: T 0: origin time; Lat N: latitude (north); Long E: longitude (east); I 0: MCS epicentral intensity; I max: maximum MCS intensity; M w: moment magnitude estimated from macroseismic and instrumental data

Table 3

Salento Peninsula instrumental seismicity (3 < M < 5), extracted from ISIDe working group (2016)

Date

T 0

M

Lat N

Long E

Location

1985-09-24

22:56:20

M d = 3.5

39.553

18.804

Canale D’Otranto

1994-01-07

18:30:11

M d = 3.5

40.176

17.285

Golfo di Taranto

2001-07-15

11:17:30

M d = 3.0

40.665

17.54

Ostuni

2003-04-06

19:07:56

M d = 3.4

39.868

18.954

Canale d’Otranto

2008-12-10

18:44:42

M l = 3.3

39.348

19.090

Canale d’Otranto

2011-06-27

18:35:53

M l = 3.1

40.108

18.809

Canale d’Otranto

2013-01-30

04:28:10

M l = 3.0

39.301

19.338

Canale d’Otranto

2013-07-30

21:13:08

M l = 3.1

39.358

18.880

Canale d’Otranto

2015-11-10

17:50:58

M l = 3.1

39.898

18.727

Canale d’Otranto

T 0: origin time: Lat N: latitude (north); Long E: longitude (east); M (magnitude): M l (local magnitude) or M d (magnitude from duration of signal)

The Salento Peninsula has been generally considered almost aseismic. It is a common opinion that the seismic hazard of this area is exclusively associated with damage caused by sources from the Ionian Sea and from the eastern side of the Adriatic Sea, including the Hellenic Arc. In particular, the Salento region is close to areas with frequent and intense seismicity; in fact it is less than 100 km far from Albanian and Greek coasts where many energetic earthquakes occurred and are strongly felt in the Salento Peninsula. For example, the 10.10.1858 earthquake, located near Brindisi in the PFG catalogue (I = VI MCS; M = 4.6, Postpischl 1985), actually occurred in Albania near the town of Delvino (I 0 = VIII–IX; M w = 6.4, Stucchi et al. 2013) and, due to the Cathedral of Brindisi collapses, damaged its mosaic floor.

The only strong earthquake affecting seriously the Salento Peninsula is represented by the February 20, 1743, earthquake (I 0 = IX, M w = 7.1, Rovida et al. 2011), which caused the most severe damage in the Salento area, in the towns of Nardò (Lecce), and Francavilla Fontana (Brindisi), in the Ionian Islands (Greece) and in the western coast of Albania. It was also widely felt in Malta Islands, in southern Italy and in some localities of central and northern Italy. The total number of casualties is undefined, probably several hundreds. The most striking effect of this earthquake was a large tsunami on the Salento coasts (Mastronuzzi et al. 2007).

The CPTI11 catalogue (Rovida et al. 2011) indicates that the maximum felt intensity was IX MCS in Nardò and Amaxichi (Lefkada, GR) and locates the epicenter in the Ionian Sea (Fig. 1). On the other hand, according to the CFTI4Med catalogue, the 1743 earthquake (I 0 = IX, M e = 6.9, Guidoboni et al. 2007) is located onland in the Salento Peninsula near the town of Nardò (Fig. 1). However, the location and geometry of the seismogenetic source of the 1743 Salento earthquake is still a subject of scientific debate and will be discussed later.

This area suffered other strong earthquakes as suggested by Pieri et al. (1997), considering the occurrence of seismites in the Tyrrhenian deposits along the Adriatic–Apulian coast of the Salento and on the basis of geomorphologic (tsunami deposits) and archaeological data (Galli and Naso 2008; Mastronuzzi et al. 2007, 2011). However, the internal part of the Salento shows a minor, but not negligible, seismic activity (Tables 2, 3; Fig. 1) as the 1826 Manduria earthquake with I 0 = VI–VII, M w = 5.3. In particular, analyzing the CFTI4Med catalogue, 13 earthquakes located in the Salento Peninsula with 3.2 < M w < 4.6 in the twentieth century have been added to the CPTI11 extracted events (Table 1). The instrumental seismicity in the Murge and in the Salento Peninsula is characterized by scattered seismicity of low energy, mainly concentrated in the western sector of Salento, in the Gulf of Taranto and in the Otranto channel. In particular, the instrumental seismicity in the Gulf of Taranto has moderate energy with epicenters not far from the coasts of Salento, as in the case of the May 7, 1983, earthquake (M w = 5.0) (Fig. 1). Moreover, the area of the Otranto channel has been hit by two seismic sequences in the 1974 (maximum magnitude M w = 5.0, Rovida et al. 2011) and 1976 (maximum magnitude M w = 4.9, Rovida et al. 2011), in the same area where the 1743 earthquake probably occurred, following Rovida et al. (2011).

Low-magnitude earthquakes could not be localized until about 15 years ago due to the small number of seismic stations of the INGV seismic network in the central and southern Apulia. The increase in the number of seismic stations since 2000 provides more complete hypocentral determinations of low-magnitude earthquakes, occurring in the Apulia foreland (Del Gaudio et al. 2005; Pierri et al. 2013). The distribution of earthquakes in the Salento Peninsula shows a clear concentration of seismic events along the NE–SW Taranto-Brindisi depression zone separating the Murge from the Salento Peninsula (Fig. 1).

4 The February 20, 1743, earthquake

The February 20, 1743, earthquake caused heavy damages in the Salento Peninsula and is considered the strongest seismic event occurred in the area in the last centuries (Basso Ionio I = IX MCS, M w = 7.1, Rovida et al. 2011), over a seismic period that began in 1741 (Margottini 1985; Guidoboni et al. 2007; Galli and Naso 2008). The event was felt in the whole Apulia region, in many cities as Napoli, Matera, Reggio Calabria, Messina in southern Italy and even in some localities of central and northern Italy as Parma, Venezia, Vicenza, Trento and Udine (Baratta 1901), the last two cities far from the epicentral area more than a 1000 km. This earthquake was also felt in a wide sector of the Mediterranean area causing considerable damage along the western coast of Greece, Albania and Malta Islands (Malta and Gozo). It also generated a large tsunami, quoted in many references and databases as the Euro-Mediterranean Tsunami Catalogue (Maramai et al. 2014) and the Global Historical Tsunami Database of NOAA (NGDC/WDS 2014).

4.1 The chronological occurrence of the 1743 main seismic events

The February 20, 1743, earthquake was a complex seismic event, consisting in at least three distinct shocks, beginning approximately from 23.30 to 23.45 “Italian time” (orario all’ italiana), corresponding to 16.30–16.45 GMT. It is noteworthy that, according to the “Italian time,” the day started at sunset, and consequently, also the counting of the hours (Dominici and Marcelli 1979). According to the descriptions and the accounts of some witnesses, as Cagnes and Scalese (1743) in Brindisi, and local notaries in Lecce and in Nardò (ASL 1743a, b, c; De Simone 1993; Camarda 1997), the three shocks followed each other in about 20 min, as reported in Table 4. According to Ambraseys (2009), there were more shocks over 1 h involving the Ionian Islands. Far from the epicentral area, in the Malta Island the earthquakes were also perceived with very long duration, lasting 7½ min (De Soldanis 1746).
Table 4

Coeval noteworthy quotation relative to the 1743 events chronological occurrence from archival sources Archivio di Stato di Lecce (ASL) and Biblioteca Arcivescovile di Brindisi “A. De Leo” (BAD), also reported in modern studies (De Simone 1993; Camarda 1997)

Locality

Contemporary brief description

References

Brindisi

at 23:45 it was in this city a most terrible earthquake, which lasted two minutes in three afterschoks

BAD, Cagnes and Scalese (1743)

Lecce

in the same time, 23.30 h, there was such a terrible earthquake that lasted about two minutes … Ceased the first shock, from which we remained safe, after a few minutes the second and then the third one occurred, but always with the same vehemence and power

ASL, Notary F. Piccinni (1908)

Camarda (1997)

Lecce

a very terrible earthquake, which lasted for the space of seven minutes for three times

ASL, Notary V. Fedele (1743c)

De Simone (1993)

Lecce

a terrible earthquake … with three successive movements of the ground, which became undulating like the waves of the stormy sea …, lasted a third of hour

ASL, Notary N. Bona (1743b)

De Simone (1993)

Nardò

at 23.30 h it was a tremendous earthquake of three continuous shocks that lasted more than eight minutes

ASL, Notary O. De Carlo (1743a)

4.2 The different epicentral locations of the 1743 main seismic event

The location and geometry of the 1743 seismogenetic source are still a subject of scientific debate, due to the different locations ascribed, respectively, on land (Guidoboni et al. 2007) on the basis of the severe damages which affected the town of Nardò, Francavilla Fontana and other Salento villages, and offshore, in the Ionian Sea (Shebalin et al. 1974; Postpischl 1985; Camassi and Stucchi 1997; Papazachos and Papazachou 2003; Rovida et al. 2011; Stucchi et al. 2013). (Table 5). In Fig. 2, the two most updated different epicentral locations, onland (Guidoboni et al. 2007) and offshore (Rovida et al. 2011), with felt reports are shown.
Table 5

Different epicentral locations of the 1743 mainshock from the available most important Catalogues

Catalogue

Lat N

Long E

M

I 0

References

Location

The 20, February 1743 seismological parameters in different Catalogues

Shebalin et al. 1974

39.000

20.000

  

Shebalin et al. (1974)

South of Corfu

CNR-PFG 1985

38.0

18.0

M k = 5.6

9

Postpischl (1985)

Basso Ionio

NT4.1

  

M s = 7.0

10.5

Camassi and Stucchi (1997)

Canale D’Otranto

Papazachos and Papazachou 2003

39.200

20.100

M w = 7.10

8

Papazachos and Papazachou (2003)

Corfu

CPTI04

39.850

18.780

M w = 6.9

9.5

CPTI Working Group (2004)

Basso Ionio

CFTI4Med 2007

40.25

18.05

M e = 6.9

9

Guidoboni et al. (2007)

Basso Ionio

CPTI11

39.852

18.777

M w = 7.13

9

Rovida et al. (2011)

Basso Ionio

2013

39.846

18.772

M w = 7.10

9

Stucchi et al. (2013)

Basso Ionio

Lat N : latitude (north); Long E : longitude (east); M (magnitude): M e (equivalent magnitude computed on macroseismic data), M k (macroseismic magnitude according to Karnik (1969)), M s (magnitude from surface seismic waves), M w (moment magnitude estimated from macroseismic data)

Fig. 2

The 1743 two different epicentral locations with felt reports. Left the empty black star shows the epicenter located onland, near the town of Nardò, according to CFTI4Med (modified from Guidoboni et al. 2007). Right the burgundy star shows the epicenter located offshore, in the Ionian Sea according to CPTI11 (modified from Rovida et al. 2011)

Most authors agree on the hypothesis of a seismic source in the Otranto channel (Galli and Naso 2008; Locati et al. 2011), in the same epicentral area of the instrumental seismicity recorded recently (1974 and 1976 seismic sequences). According to Galli and Naso (2008), the strong intensity values recorded in Nardò, Francavilla Fontana, Leverano and other localities in Salento as well as in Greece have been caused by local amplification site effects, a “double-resonance” phenomenon that occurred in villages characterized by thin soft Pleistocene sediments.

The authors of this paper carried out a critical revision of both original archival sources and the most important historical and recent papers, taking into account the macroseismic evaluations of Mercalli (1883), De Giorgi (1898), Baratta (1901), Margottini (1981, 1985), Ferrari (1987), Guidoboni et al. (2007), and the detailed studies of Mastronuzzi and Sansò (2004), Mastronuzzi et al. (2007), Galea (2007), Galli and Naso (2008) in order to figure out the effects of this earthquake on the urban and natural environment.

Many primary sources have been found in the writings of local historians, as De Simone (1993) and Camarda (1997), who reported detailed accounts by notaries and witnesses from Salento. In fact at that time (1743), the notary protocols often reported news about the extraordinary events occurred in their regions. Other information from the Vatican archives are reported in Guidoboni et al. (2007) and Galli and Naso (2008), while Ambraseys (2009) accounts for both occidental and oriental primary sources, as those from the Venice State Archive (ASV) and from Ottoman archives in Istanbul.

According to historical sources, the number of casualties is variable from about 200–300 (Notary Oronzo De Carlo, ASL Notary Protocols 1743a) to 160 by notary Nicola Bona (ASL Notary Protocols 1743b; De Simone 1993). Guidoboni et al (2007) report 180 victims, of which 150 in the town of Nardò (Lecce).

As regards the damage level in the Salento Peninsula, the towns of Nardò (Lecce), Francavilla Fontana (Brindisi) and Brindisi were particularly affected by serious devastation. In Greece, the localities of Amaxichi (Lefkada) and Kérkira (Corfù) were strongly hit: Most houses collapsed, and the remaining had major damages, and several people died. Significant damages were reported also in the nearby town of Preveza, in other villages of inland Greece, Albania and Malta (Margottini 1981, 1985; Galea 2007; Galli and Naso 2008).

5 Macroseismic analysis of the 1743 earthquake

In this paper, a revaluation of the 1743 earthquake MCS intensity for the damaged localities has been carried out on the basis of historical documents of contemporary witnesses, as Cagnes and Scalese (1743), Leo (1743), Forleo (1743), De Soldanis (1746) and Saracino (1744) found both in private and public archives, in historiographical books (De Giorgi 1898; De Simone 1993; Camarda 1997), and in the recent scientific literature (Margottini 1981, 1985; Ferrari 1987; Galea 2007; Galli and Naso 2008; Guidoboni et al. 2007; Ambraseys 2009). Geological and geomorphologic studies from Mastronuzzi and Sansò (2004) and Mastronuzzi et al. (2007) were also considered. In addition, for some localities local historiographical Web sites have been also consulted.

The assessment of the macroseismic degree has been made using the traditional MCS scale. Moreover, for a more complete evaluation of this event, the indirect geomorphologic data referable to environmental earthquake effects have been utilized to evaluate the intensity according to the ESI-07 scale. For both MCS and ESI-07 scales, the authors have decided to assign a well-defined unique intensity value for each locality, based on the collected data and on their professional judgment. In this study, the new MCS intensities have been assessed for 18 localities, mainly in the Salento Peninsula. In Table 6, the MCS revaluated intensity values with a brief description of the felt reports, the damage level, the main archival sources and the recent literature consulted, are listed.
Table 6

MCS intensity values for 18 localities hit by 1743 earthquake, with a brief description of the felt reports, the damage level, the main archival sources and the relative recent literature

MCS intensities evaluation of 1743 earthquake

Locality

Brief description

Reference

I (MCS) current work

Nardò (Lecce, IT)

On February 20 of the year 1743 … happened a fierce earthquake that … ruined the foundations of the town of Nardò … 228 people and other 29 from Gallipoli died… 349 people died, mostly children…. The damage was about one million and one hundred sixty-five thousand ducats. The earthquake was felt throughout Europe, even all over the world

ASL, Notary O. De Carlo (1743a), Notarial Protocols, De Simone (1993)

X

…one hundred and sixty people dead and buried under stones, and almost sixty were wounded and injured

ASL, Notary N. Bona (1743b), Notarial Protocols, De Simone (1993)

On February 20, at 23.45 such a large earthquake began that not only plunged the whole city, but the following 112 people died under the stones

ACN, Registro dei Morti 1743, De Simone (1993)

Brindisi (IT)

…it was so horrible that ruined all the houses, palaces, many of which have fallen, and many are not able to be inhabited, but all the houses were damaged and generally very compromised

BAD, Cagnes and Scalese (1743), Margottini (1981)

IX

Francavilla Fontana (Brindisi, IT)

On February 20, 1743 there was a severe earthquake … so that many churches, palaces and houses collapsed … Under the ruins of the buildings many people died

Leo (1743), Camarda (1997)

IX

If you looked at that beautiful road of the Carmine you found those beautiful palaces … all shattered and some of them fallen to the ground

Forleo (1743), Camarda (1997)

Leverano (Lecce, IT)

Many houses totally collapsed or were severely damaged; the main church collapsed almost completely

De Simone (1993), Guidoboni et al. (2007)

VIII

Malta (MT)

It [the earthquake] did great damage to both islands. In Gozo, St. George’s Church, St. James’ Church and the chapel of Our Lady at Qala were badly damaged. In Malta, St. John’s at Valletta, Mdina Cathedral and numerous other churches in the countryside were also heavily damaged

De Soldanis (1746), Galea (2007)

VIII

Manduria (Taranto, IT)

This earthquake was so terrible that the bell tower of the main church collapsed, as well as the church of the Servite fathers … with many buildings and houses, and a pregnant woman died under stones

Saracino (1744), in: Margottini (1981)

VIII

Mesagne (Brindisi, IT)

The earthquake caused severe damage: many houses and public and religious buildings suffered collapses or became uninhabitable

Margottini (1981), De Simone (1993), Guidoboni et al. (2007)

VIII

Oria (Brindisi, IT)

The earthquake caused severe damage to the houses and the main church of the village

Margottini (1981), Guidoboni et al. (2007)

VIII

Racale (Lecce, IT)

The earthquake caused severe damage and partial collapse in the majority of the houses of the village. The main church was badly damaged and partly collapsed

Serio and Santantonio (1983), Guidoboni et al. (2007)

VIII

Salve (Lecce, IT)

The earthquake damaged almost all the buildings, some collapsed and others resulted significantly damaged

Cardone (1969)

VIII

Tuturano (Brindisi, IT)

The earthquake damaged houses, the tower and the mill of the village

ASB Notarial archive 1745, Guidoboni et al. (2007)

VIII

Calimera (Lecce, IT)

The Immacolata church was rebuilt after the 1743 earthquake

http://www.viveresalento.info/p/calim/i/cult.asp

VII

Castrignano del Capo (Lecce, IT)

The earthquake severely damaged the parish church so as to make it unfit for use

Parish Archive of Castrignano del Capo, Margottini (1981), Guidoboni et al. (2007)

VII

Copertino (Lecce, IT)

The earthquake significantly damaged two churches that had to be repaired and consolidated

Guidoboni et al. (2007)

VII

Lecce (IT)

The earthquake was clearly felt but did not cause collapses or casualties, damage and injuries were recognized many houses, churches and convents

Notary F. A. Piccinni (1908), Camarda (1997), Margottini (1981)

VII

Ostuni (Brindisi, IT)

The Church of St. Francis of Assisi was rebuilt after 1743, following the earthquake that damaged it seriously

http://www.webdiocesi.chiesacattolica.it,

http://www.ostuni.tv/PortNotizie.htm

VII

Seclì (Lecce, IT)

The earthquake caused great damage to the church annexed to the Carmelite monastery

http://win.associazioneitaloellenica.org/SECLI_ROSSANA.HTM

VII

Napoli (IT)

…there was one significant earthquake, which lasted for many minutes of time …the motion, however, was wavelike and horizontal, so neither happened any pain, nor any damage

ASN, State Councillor, Duke of Salas (1743) Napoli

V

English translations of original texts from archival sources are written in italics. In parentheses are the province and the country of each locality

ASB Archivio di Stato di Brindisi, ASL Archivio di Stato di Lecce, ASN: Archivio di Stato di Napoli, ACN Archivio della Cattedrale di Nardò, BAD Biblioteca Arcivescovile di Brindisi “A. De Leo”

The most damaged town by the 1743 earthquake was Nardò, to which the X MCS intensity value was assigned. Many coeval accounts attest the high degree of damage suffered by the town and the high number of deaths (Table  6).

Accordingly, it has been possible to attribute the value of I = IX MCS to the town of Francavilla Fontana (Table 6), because in this town many edifices and churches were destroyed and many casualties occurred, as witnessed by reliable local chroniclers (Leo 1743).

Also the city of Brindisi has been evaluated with an intensity I = IX, on the basis of the heavy damages suffered, as reported in the chronicle of the mayors of the city, by the priest and eyewitness Nicola Scalese (Cagnes and Scalese 1743) (Table 6). Moreover, a value of VIII MCS has been attributed to the towns of Leverano, Manduria, Mesagne, Oria, Racale, Salve and Tuturano and VII MCS to Calimera, Castrignano del Capo, Copertino, Lecce, Ostuni and Seclì. Furthermore, the Maltese Islands, Malta and Gozo, have been classified with a MCS intensity I = VIII due to the severe damages (De Soldanis, 1746).

In the city of Naples (I = V MCS), far from the Salento area more than 300 km, according to the Duke of Salas, Secretary of State in the Kingdom of Naples, the earthquake was significant, but without damage (Fig. 3).
Fig. 3

Contemporary document of ASN (Archivio di Stato di Napoli). Letter from the State Councillor, Duke of Salas, to the Count Finocchietti, Naples, February, 26, 1743. Original Italian text: Mercoledì prossimo scorso verso le ore ventitrè e mezza si ebbe qui una sensibile scossa di terremoto, quale durò per molti minuti di tempo. Il moto però fu d’ondulazione, ed orizzontale, onde nè successe il minimo male, nè danno alcuno. English translation of original text: The last Wednesday, at approximately 23.30, there was here a significant earthquake, which lasted for several minutes. The motion, however, was wavelike and horizontal, so neither happened the minimum pain, nor any damage

6 Environmental effects of the 1743 earthquake

For a comprehensive evaluation of the 1743 earthquake, it is essential to take into account both the direct information derived from archival and historical sources and also the geomorphologic data concerning the Environmental Earthquake Effects (EEEs).

Although for this earthquake the primary effects such as faults, uplift, subsidence phenomena have not been clearly recognized, neither in the ground nor in the seabed, this event triggered several secondary effects. The most important EEE was the tsunami, whose deposits consist of a series of boulders along the Adriatic coasts of the Salento Peninsula, according to Mastronuzzi and Sansò (2004) and Mastronuzzi et al. (2007) who first associated these boulders to the 1743 earthquake. Other secondary effects are represented by hydrological changes, landslides, liquefaction phenomena and ground cracks (Table 7).
Table 7

Environmental Earthquake Effects (EEEs) induced by the 1743 earthquake and corresponding ESI-07 intensity

Locality

Type of effect

EEE description

References

Intensity ESI-07

Environmental Earthquake Effects induced by the 1743 earthquake

Torre Sant’ Emiliano (Otranto, Lecce, IT)

Tsunami

Evidence of tsunami deposits consisting of large boulders, with a maximum weight of about 70 t and a run up of about 11 m

Mastronuzzi et al. (2007)

X

Brindisi (IT)

Tsunami

…it was so scary that, retiring the sea, you could see fractures of the ground, and the pier of Porta Reale divided into three parts…

BAD, Cagnes and Scalese (1743),

Margottini (1981)

IX

Torre Santa Sabina (Carovigno, Brindisi, IT)

Tsunami

Evidence of tsunami deposits consisting of large boulders, with a maximum weight of about 8 t and a run up of about 1.5 m

Mastronuzzi and Sansò (2004)

IX

Torre Sasso (Tricase, Lecce, IT)

Tsunami

Evidence of tsunami deposits consisting of large boulders with a maximum weight of 31 t, and a run up of about 5 m

Mastronuzzi et al. (2007)

IX

Butrinto (AL)

Liquefaction/ground cracks

…and the ground opened, and it was rising up, and water and smoke come through the cracks; then it stopped

ASV b. 988, in Ambraseys (2009)

VIII

Castel Sant’Angelo (Corfù Island, GR)

Landslides

The rocky cliff on which the Castel Sant’ Angelo fortress is built partly collapsed

Guidoboni et al. (2007)

VIII

Gozo (MT)

Landslides

At Wardija in Qala, Gozo, the people reported that they saw the ground rise and fall with such force that the soil was left floating in the air, causing a mist like fog for a long time. Many sections from hills in Gozo crumbled from the quake

De Soldanis (1746), Galea (2007)

VIII

Nardò (Lecce, IT)

Hydrological changes

On the day of Wednesday, February 20, 1743, …, at 23 h a strong wind began to blow… The water in the wells was jumping and falling, … the earth was moving like water bustles in the pot …

ASL Notary O. De Carlo, (1743a), De Simone (1993).

VIII

Kefalonia Island (GR)

Hydrological changes

It has been observed that strong odours of sulphur came up from the wells

Saint Sauver, 1794, in Ambraseys (2009)

VII

A brief description of the EEEs and the relative references are listed. English translations of original texts from archival sources are written in italics. In parentheses are the province and the country of each locality

ASL Archivio di Stato di Lecce, ASV Archivio di Stato di Venezia, BAD Biblioteca Arcivescovile di Brindisi “A. De Leo”

On the basis of the 1743 EEEs, new local intensities, from VII to X ESI-07, have been assessed for 9 localities, according to the professional judgment of the authors, considering the effects description of the ESI-07 scale (Michetti et al. 2007; Audemard et al. 2015). In Table 7, the new classified localities are listed together with a brief description of the observed EEEs, by coeval chroniclers, and the main relative references.

The 1743 earthquake triggered a high-energy tsunami that produced devastating effects on the coasts of the Salento Peninsula (Maramai et al. 2014; NOAA (NGDC/WDS 2015). The tsunami effects are evidenced both by historical accounts (Fig. 4), as the withdrawal of the sea in the Brindisi harbor (Cagnes and Scalese 1743), and by the presence of large boulders found near the coastline and inland.
Fig. 4

Chronicle of the February 20, 1743, event, written by the mayors of Brindisi (Italy). In the orange paragraph, the original Italian text : … è stato così spaventoso che, ritiratosi il mare, faceansi vedere aperture della terra, et il molo di porta Reale diviso in tre parti. English translation of original text: … it was so scary that, retiring the sea, you could see fractures of the ground, and the pier of Porta Reale divided into three parts (Cagnes and Scalese 1743)

Two main sites of boulders accumulation have been recognized along the Otranto–Leuca coast: the Torre Sasso locality, near the village of Tricase, and the Torre S. Emiliano site (Otranto). At the first locality, boulders are spread on the coast from sea level up to 5 m of elevation, with weight up to 31 tons. In the second locality, boulders are distributed along the coastline in a belt 30 m large and 2.5 km long, with maximum weight of about 70 tons, and a run up of about 11 m (Fig. 5). At Torre Santa Sabina (Carovigno, Brindisi), the tsunami impact produced large boulders with maximum weight of about 8 tons, and a run up of about 1.5 m (Mastronuzzi and Sansò 2004; Mastronuzzi et al. 2007).
Fig. 5

Boulders attributed to the tsunami induced by the 1743 event on the Salento eastern coast (Torre S. Emiliano near Otranto (Lecce). (Photo by S. Porfido)

As regards other secondary environmental earthquake effects, in the town of Nardò variations of the water flow rate of wells were observed, together with changes in chemical–physical properties of water (ASL Notarial Protocols 1743). The same effects were observed also in the northern area of the island of Kefalonia (Greece) (Saint-Sauveur, 1794, in Ambraseys 2009). Moreover, landslides were observed in the locality of Castel Sant’Angelo (Corfù, Greece), where the earthquake triggered a rockfall (Guidoboni et al. 2007), and very far from the epicentral area, in the island of Gozo (Malta) where some portions of the hill crumbled (De Soldanis 1746). Furthermore, in the neighboring of the Butrinto fortress (Albania) ruptures and probably liquefaction phenomena in the ground were detected, as reported by Mamunà, Governor of Corfù in 1743 (ASV 1743; Ambraseys 2009).

7 Discussion

The aim of this study is providing a contribution to seismic hazard assessment of the Salento Peninsula (Apulia, southern Italy) through the analysis of historical and recent seismicity, and the reassessment of the 1743 earthquake MCS macroseismic intensities. The low hazard level that characterizes nowadays the Salento Peninsula is prevalently attributed to the lack of high-level seismicity inside the area. A great effort has been made to collect all historical and instrumental seismic data, because this area, mainly marine, is surrounded by various nations, with different seismic networks whose data are available in different catalogues at present not yet completely homogeneous. Moreover, low-magnitude earthquakes of the area could not be well localized due to the small number of seismic stations of the INGV seismic network in the central and southern Apulia, until about 15 years ago. The increase in the number of seismic stations since 2000 provides the occurrence of a high number of low-magnitude earthquakes previously not localizable in the Apulia foreland (Pierri et al. 2013). The obtained epicentral map of Fig. 1 illustrates that the Salento area is seismically active characterized by an historical and instrumental seismicity of low and moderate energy (3<M<5) that cannot be neglected. The February 20, 1743, earthquake is considered the only and strongest event (I 0 = IX, M w = 7.1, Rovida et al. 2011) that hits the Salento area. Moreover, it is essential to remind that this area has also experienced in the past many strong earthquakes located in the Gargano Promontory (northeastern Apulia) where occurred the July 30, 1627, earthquake (I = X MCS). It was also hit by strong earthquakes of southern Italy as the 1456 Campania-Lucania earthquake (I max = XI MCS); the 1694 Irpinia earthquake (I max = XI MCS); the 1857 Basilicata earthquake (I max = XI MCS); the July 23, 1930, Irpinia earthquake (I max = X MCS); and the November 23, 1980, Irpinia-Lucania earthquake (I max = X MCS). Several earthquakes with epicenter in the central-eastern Mediterranean (Greece, Ionian Islands, Albania) were also strongly felt in the Salento Peninsula, probably with environmental effects like tsunami. Recently, the Kefalonia seismic event of November 17, 2015 (M l = 6.5), has caused extensive felt effects in Italy, on the Apulian and Calabrian coasts, and a tsunami-like sea level oscillation was recorded by a tide gauge station in Crotone (Ionian coast of Calabria) (Papadopoulos 2015).

In order to contribute to an updated evaluation of the seismic hazard of the Salento area, currently underestimated, the reassessment of both the 1743 macroseismic effects on man-made structures and the triggered effects in the natural environment has allowed to elaborate a quite different scenario of the 1743 earthquake, leading to other intensity values for some localities and increasing the number of the newly classified localities, represented in this paper with a new intensity map (Fig. 6; Table 8). For both MCS and ESI-07 scales, the authors have decided to assign a well-defined unique intensity value for each locality, based on the collected data and on their professional judgment.
Fig. 6

Map of the intensity values of the 1743 Salento earthquake revaluated in this paper according to the traditional MCS scale and the ESI-07 scale

Table 8

The 1743 earthquake MCS intensity values according to recent authors; in the last column, the macroseismic MCS and ESI intensities evaluated in this paper are reported

Locality

Lat N

Long E

Margottini (1981, 1985)

Guidoboni et al. (2007)

Galli and Naso (2008)

Rovida et al. (2011)

Current work

Italy

Nardò (LE)

40.178

18.031

IX

IX

IX–X

IX

X

Torre S. Emiliano (LE)

40.090

18.496

    

X ESI

Brindisi

40.636

17.945

VIII–IX

VIII

VIII

VIII

IX ESI

Francavilla Fontana (BR)

40.529

17.583

VIII–IX

VIII

IX

IX

IX

Torre Santa Sabina (BR)

40.757

17.700

    

IX ESI

Torre Sasso (LE)

39.952

18. 398

    

IX ESI

Galatina (LE)

40.175

18.168

 

VIII

VIII

VIII–IX

 

Leverano (LE)

40.288

17.998

 

VIII

VIII–IX

VIII–IX

VIII

Canosa di Puglia (FG)

41.223

16.066

 

VIII

VIII

VIII

 

Manduria (TA)

40.399

17.634

VIII

VIII

VIII

VIII

VIII

Oria (BR)

40.498

17.642

VIII

VIII

VIII

VIII

VIII

Salice Salentino (LE)

40.384

17.964

 

VIII

VIII

VIII

 

Taranto

40.458

17.246

VIII

VIII

VIII

VIII

 

Carpignano S. (LE)

40.196

18.340

 

VII–VIII

VII–VIII

VII–III

 

Corato (BA)

41.153

16.411

 

VII

VII–VIII

VII–VIII

 

Guagnano (LE)

40.401

17.950

  

VII–VIII

  

Leporano (TA)

40.383

17.334

 

VIII

VII–VIII

VII–VIII

 

Madonna di Pasano (TA)

40.388

17.516

 

VIII

VII–VIII

VII–VIII

 

Maglie (LE)

40.119

18.299

 

VII

VII–VIII

VII–VIII

 

Mesagne (BR)

40.558

17.808

VIII

VIII

VII–VIII

VII–VIII

VIII

Racale (LE)

39.959

18.094

VII

VIII

VII–VIII

VII–VIII

VIII

Salve (LE)

39.859

18.294

 

VIII

VII–VIII

VII–VIII

VIII

San Pietro in L. (LE)

40.307

18.129

 

VII

VII–VIII

VII–VIII

 

Tuturano (BR)

40.544

17.946

 

VII

VII–VIII

VII

VIII

Vanze (LE)

40.322

18.318

 

VIII

VII–VIII

VII–VIII

 

Alessano (LE)

39.889

18.331

 

VII

VII

VII

 

Avetrana (TA)

40.349

17.726

 

VII

VII

VII

 

Bari

41.106

16.846

 

VII

VII

VII–VIII

 

Barletta (BAT)

41.318

16.279

VII

VII

VII

VII–VIII

 

Calimera (LE)

40.250

18.280

  

VII

 

VII

Campi Salentina (LE)

40.398

18.019

 

VII

VII

VII

 

Castrignano del C. (LE)

39.833

18.348

VIII

VII

VII–VIII

VII–III

VII

Copertino (LE)

40.271

18.048

 

VII

VII

VII

VII

Catanzaro

38.914

16.586

 

VI

VII

VII

 

Gallipoli (LE)

40.055

17.988

VI

VI–VII

VII

VII

 

Grottaglie (TA)

40.535

17.433

 

VII

VII

VII

 

Lecce

40.351

18.169

VII

VII

VII

VII

VII

Lizzano (TA)

40.391

17.448

 

VII

VII

VII

 

Masseria Li Sicuri (LE)

40.223

18.112

  

VII

  

Matera

40.665

16.607

 

VII

VII

VII

 

Messina

38.187

15.549

VII

VII

VII

VII

 

Monteparano (TA)

40.443

17.414

 

VIII

VII

VII–VIII

 

Ostuni (BR)

40.729

17.577

  

VII

VII

VII

Reggio Calabria

38.108

15.647

VII

VII

VII

VII–VIII

 

Seclì (LE)

40.131

18.105

 

VII

  

VII

Otranto (LE)

40.144

18.491

 

VI–VII

VII

VII

VII

Galatone (LE)

40.147 18.070

40.147 18.070

  

VI–VII

  

Vieste (FG)

41.882

16.179

 

VI

VI–VII

VI–VII

 

Other Countries

Amaxichi Lefkada (GR)

38.831

20.703

IX

IX

IX

  

Kérkira (Corfù, GR)

39.621

19.925

IX

VIII

VIII

VIII

 

Castel Sant’angelo Corfù (GR)

39.694

19.683

VIII

VIII

  

VIII ESI

Santa Maura Lefkada (GR)

38.848

20.715

 

VIII

   

Préveza (GR)

38.969

20.733

 

VIII

VIII

VIII

 

Arta (GR)

39.143

21.089

 

VII–VIII

VII–VIII

  

Butrinto (AL)

39.752

20.026

 

VII–VIII

VII–VIII

VIII

VIII ESI

Gozo (MT)

36.045

14.251

    

VIII ESI

Ioannina (GR)

39.663

20.869

 

VII–VIII

VII–III

  

Vonitsa (GR)

38.912

20.879

 

VII–VIII

VII–III

VII–VIII

 

Xeromero (GR)

38.533

21.083

 

VII–VIII

VII–VIII

  

Malta (MT)

35.833

14.417

VIII

VII

VII

VII

VIII

Zakinthos (GR)

37.794

20.875

 

VII

VII

VII

 

Kefallinia (GR)

38.250

20.583

VII

VI–VII

VI–VII

VI–VII

VII ESI

The only localities with I > VI have been included

In Table 8, the intensity values for localities in Italy and in other countries (Greece, Albania, Malta), according to recent authors, are listed. In the last column of table, the macroseismic MCS and ESI intensities evaluated in this paper are presented. The threshold of I > VI has been assumed for localities reported in our study; therefore, the city of Napoli, with a MCS I = V, has not been included. On the basis of a critical analysis of the 1743 intensity evaluations assigned by the various authors (Margottini 1981, 1985; Guidoboni et al. 2007; Galli and Naso 2008; Rovida et al. 2011), we have chosen to assign the felt reports by Guidoboni et al. (2007) to the localities not revaluated in our study.

The authors emphasize that, when it has been possible to estimate two independent MCS and ESI-07 intensity values for one locality, the highest value has been chosen as final intensity, according to ESI-07 scale guidelines (Michetti et al. 2007). This is particularly evident for the town of Nardò, with X MCS final value, while the ESI-07 intensity value is VIII; in this case, the value of X has been assigned because it correctly represents the felt effects. An intensity value of IX MCS has been estimated for the city of Brindisi, also taking into account the tsunami effects. Moreover, the new intensity values assessed for the coastal localities of Torre S. Emiliano (Otranto) X ESI-07, Torre S. Sabina (Carovigno) IX ESI-07 and Torre Sasso (Tricase) IX ESI-07 are even more considerable, since these villages had no intensity evaluation before.

According to the primary historical documents quoted in this paper, the February 20, 1743, earthquake consisted in a multiple shocks sequence due to the activation of at least three distinct fault segments, within a few tens of minutes. The precise location and geometry of this complex seismogenetic source is still debated, but it was most likely nucleated offshore, in the Otranto Channel according to Galli and Naso (2008) and Rovida et al. (2011); the existence in the same area of recent instrumental seismicity like the 1974 and 1976 seismic sequences would strengthen this hypothesis.

Even results of other recent studies confirm the 1743 event complexity, since it generated a large tsunami which environmental effects are quite difficult to be interpreted and justified all over the affected areas, suggesting a probable submarine landslide off the Apulian coasts, as a possible additional source of the tsunami (Armigliato et al. 2007).

On the basis of the great damage caused by the 1743 event, and of the felt effects reported in the whole peninsular Italy, as well as in the Malta Islands, it is reasonable to hypothesize for this event a very efficient strong propagation with NW–SE preferential directivity. Indeed, the most serious macroseismic effects, as well as secondary environmental effects, were observed in an area with NW–SE rough direction (Fig. 7), including the Salento Peninsula, the western coast of Greece with the Corfù and Cefalonia islands and the Albania western coast. These effects were also observed in the Malta Islands and along the Calabria and Sicilia Ionian coasts, along NE–SW direction. In the map of Fig. 7 are plotted the MCS intensity values revaluated in this study integrated with intensity values of other localities from CFTIMed04 (Guidoboni et al. 2007).
Fig. 7

Map of the intensity values of the 1743 Salento earthquake: MCS intensity values revaluated in this study integrated with intensity values of other localities from CFTIMed04 (Guidoboni et al. 2007). The red star represents the 1743 epicenter hypothesized in this paper. The dashed ellipse includes the localities with macroseismic MCS and ESI intensities I ≥ VIII. The circle includes the localities with macroseismic MCS intensities I > VI

The total area affected by secondary environmental effects (tsunami, landslides, liquefaction and hydrological variations) useful for the determination of epicentral intensity, according to the ESI-07 scale guidelines (Michetti et al 2007), could be approximately 30.000 km2 wide; this consideration is based on the specific occurrence of hydrological changes in Nardò (Italy), as well as landslides and liquefaction, respectively, in Corfù (Greece) and Butrinto (Albania); consequently, it has been possible to hypothesize a new intensity value of I 0 = XI–XII ESI-07 for the 1743 event. In Fig. 7, the dashed ellipse approximately includes the localities with macroseismic MCS and ESI intensities I ≥ VIII, and its center (the red star) represents the hypotized 1743 epicenter (Lat. N 39.44°, Long. E 19.21°). As regards the possible hypocentral depth of the 1743 earthquake, its value can be estimated of about 30 km, on the basis of the damage level detected in Salento (I max = X, Nardò), in Greece (I max = IX, Amaxichi), in Albania (I max = VIII, Butrinto) and in the Malta Islands (I max = VIII). Moreover, also the felt reports area in Italy, which extent reached the cities of Udine and Trento in northern Italy (Guidoboni et al. 2007), confirms this hypothesis. In the localities of Torre Santa Sabina, Torre Sasso e Torre S. Emiliano and Brindisi, EEE effects of intensity I between IX and X degree in the ESI-07 scale have been estimated in this paper (Table 7). According to the I 0 = XI–XII ESI-07 value, also the 1743 magnitude value should be re-evaluated and estimated roughly higher than 7.1 as reported in the recent catalogues, taking also into account the paper of Biolchi et al. (2016), where the boulders found along the Malta coasts have been related to good reliability to historically known tsunamis in the Mediterranean region, such as the 1743 earthquake.

8 Conclusions

The critical analysis of the collected documentary and historical sources, together with the geomorphologic evidences of the EEEs effects due to the strong 1743 event, has allowed us to re-evaluate this earthquake and remodel a quite different scenario, useful to the seismic hazard assessment of the Salento Peninsula.

The most relevant results of this study are:
  1. 1.

    the Salento Peninsula should not be considered a low seismic hazard area as above-discussed issues;

     
  2. 2.

    a new assessment of the intensity values for 25 localities with a MCS I > VII; moreover, a new value of I = V MCS was assigned to the city of Naples (Table 8);

     
  3. 3.

    a new map of the MCS intensity values of the 1743 Salento earthquake according to the traditional MCS scale and the ESI-07 scale (Fig. 6). In particular, X MCS has been assigned to the city of Nardò previously evaluated IX MCS and IX–X MCS by other authors (Table 8); IX MCS to the city of Brindisi, also taking into account the tsunami effects, previously estimated VIII–IX MCS and VIII MCS (Table 8). Moreover, the new intensity values assessed for the coastal localities of Torre S. Emiliano (Otranto) X ESI-07, Torre S. Sabina (Carovigno) IX ESI-07 and Torre Sasso (Tricase) IX ESI-07 are even more considerable, since these villages had no intensity evaluation before;

     
  4. 4.

    a contribution to improve the uncertainty of the 1743 epicenter that, in this paper, has been located offshore (Fig. 7) in the Otranto Channel (Lat. N 39.44°, Long. E 19.21°);

     
  5. 5.

    the re-evaluation, on the basis of ESI-07 scale, of the 1743 I 0 = XI value which would also require the re-evaluation of the magnitude that would be underestimated.

     

In conclusion, this study highlights that the seismic hazard of the Salento Peninsula, currently classified in IV category (Seismic Classification Map of the Italian territory; MPSO4—Order PCM 3519/2006), should be re-evaluated taking into account also the local effects due to the distant and strong earthquakes located in the central Mediterranean, and the relative damages on the urban structure and on the natural environment. Moreover, it is also important to remind, as regards the local risk level, that the Salento Peninsula represents one of the most crowded touristic destinations of the southern Italy, all over the summer season.

Notes

Acknowledgments

We wish to acknowledge the archivists of the “Archivio di Stato di Lecce,” the dr. Katiuscia Di Rocco, Director of the Biblioteca Arcivescovile di Brindisi “A. De Leo” for the support they have provided us in the research of historical sources. We are grateful to Rosanna Altavilla and Marina Loddo, librarians of the Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Napoli Osservatorio Vesuviano for their courtesy and availability. Special thanks to Prof. M. O. Spedicato and Prof. L. Ruggiero of the University of Salento; Prof. E. De Simone of the Liceo Scientifico Banzi Bazzoli of Lecce, for the useful discussion about the historical data of the 1743 Salento earthquake. Many thanks to the two anonymous referees for their useful suggestions which helped to improve the original manuscript.

References

  1. Ambraseys N (2009) Earthquakes in the mediterranean and middle east. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  2. Ambrosetti P, Bosi C, Carraro F, Ciaranfi N, Panizza M, Papani G, Vezzani L, Zanferrari A (1986) Neotectonic map of Italy, Modello strutturale, scala 1:500.000. CNR, Quaderni della Ricerca Scientifica, 114Google Scholar
  3. Argnani A, Frugoni F, Cosi R, Ligi M, Favali P (2001) Tectonics and seismicity of the Apulian Ridge south of Salento peninsula (Southern Italy). Ann Geofis 44:527–540Google Scholar
  4. Argnani A (2012) The Apulian platform and the structural styles along the front of the Hellenide fold belt (south-eastern Adriatic). Rendiconti Online della Società Geologica Italiana 21:61–62Google Scholar
  5. Armigliato A, Tinti S, Pagnoni G, Mastronuzzi G, Pignatelli C, Sansò P, Gallazzi S, Tonini R, Brizuela Reyes B (2007) Studio preliminare sulla sorgente del terremoto del 20 febbraio 1743 in Puglia meridionale a partire da dati di tsunami. Atti del 26° Convegno Nazionale GNGTS, Roma, 13–15 novembre 2007, pp 36–37 (in Italian) Google Scholar
  6. Audemard F, Azuma T, Baiocco F, Baize S, Blumetti AM, Brustia E, Clague J, Comerci, V, Esposito E, Guerrieri L, Gurpinar A, Grützner C, Jin K, Kim YS, Kopsachilis V, Lucarini M, Mc Calpin J, Michetti AM, Mohammadioun B, Morner NA, Okumura K, Ota Y, Papathanassiou G, Pavlides S, Perez López R, Porfido S, Reicherter K, Rodríguez Pascua MA, Roghozin E, Scaramella A, Serva L, Silva PG, Sintubin M, Tatevossian R, Vittori E (2015) Earthquake Environmental Effect for seismic hazard assessment: the ESI intensity scale and the EEE Catalogue. In: Memorie descrittive della carta geologica d’Italia 97 ISPRA, RomaGoogle Scholar
  7. Baratta M (1901) I terremoti d’Italia. Fratelli Bocca, Torino (in Italian) Google Scholar
  8. Bigi G, Cosentino D, Parotto M, Sartori R, Scandone P (1983) Structural Model of Italy: Geodynamic Project, C.N.R., SELCA, Firenze, scale 1:500,000, 9 sheetsGoogle Scholar
  9. Biolchi S, Furlani S, Antonioli F, Baldassini N, Deguara JC, Devoto S, Di Stefano A, Evans J, Gambin T, Gauci R, Mastronuzzi G, Monaco C, Scicchitano G (2016) Boulder accumulations related to extreme wave events on the eastern coast of Malta. Nat Hazards Earth Syst Sci 16:737–756. doi: 10.5194/nhess-16-737-2016 CrossRefGoogle Scholar
  10. Camarda D (1997) Il terremoto del 20 febbraio 1743 a Francavilla e nell’area del basso Ionio. Biasco, Manduria (in Italian) Google Scholar
  11. Camassi R, Stucchi M (eds) (1997) NT4.1, un catalogo parametrico di terremoti di area italiana al di sopra della soglia del danno. GNDT, Milano. http://emidius.mi.ingv.it/NT/
  12. Caputo M, Panza GF, Postpischl D (1970) Deep structure of the Mediterranean Basin. J Geophys Res 75:4919–4923CrossRefGoogle Scholar
  13. Cardone G (1969) Vita del servo di Dio don Alessandro Cardone scritta dal sac. don Giuseppe Cardone, suo nipote, nell’anno del Signore 1798. Edizioni Corciulo, Salve (in Italian) Google Scholar
  14. Castello B, Selvaggi G, Chiarabba C, Amato A (2006) CSI Catalogo della sismicità italiana 1981-2002 versione 1.1. INGV-CNT, Roma. http://csi.rm.ingv.it/
  15. D’Amico V, Albarello D (2008) SASHA: a computer program to assess seismic hazard from intensity data. Seismol Res Lett 79(5):663–671CrossRefGoogle Scholar
  16. Del Gaudio V, Pierri P, Calcagnile G, Venisti N (2005) Characteristic of the low Energy seismicity of Central Apulia (Southern Italy) and hazard implications. J Seismol 9:39–59CrossRefGoogle Scholar
  17. De Giorgi C (1898) Ricerche su i terremoti avvenuti in Terra d’Otranto dall’XI al secolo XIX. Memorie della Pontificia Accademia dei Nuovi Lincei 15:95–154 (in Italian) Google Scholar
  18. De Lucia M, Alessio G, Gaudiosi G, Nappi R, Porfido S (2014) A review of the Intensity values for the 1743 Salento earthquake. Rendiconti Online Società Geologica Italiana 31(Suppl. n.1):608. doi: 10.3301/ROL.2014.140 Google Scholar
  19. De Simone E (1993) Vicende sismiche salentine. Edizioni Grifo, Lecce (in Italian) Google Scholar
  20. De Soldanis GP (1746) Gozo—ancient and modern, religious and profane (translation into English by Rev. Fr. Anthony Mercieca of original De Soldanis manuscript, 1999). Media Centre Publications, MaltaGoogle Scholar
  21. Dominici P, Marcelli L (1979) Evoluzione storica delle misure orarie in Italia. Suoi riflessi nello studio di fenomeni geofisici e in particolare nella catalogazione di eventi sismici. Ann Geofis 32:131–212. doi: 10.4401/ag-4733 (in Italian) Google Scholar
  22. Ferrari G (1987) Some aspects of the seismological interpretation of information on historical earthquakes. In: Margottini C, Serva L (eds) Workshop on historical seismicity of central-eastern Mediterranean Region. Proceedings. ENEA CRE Casaccia—Roma, 27/29 Oct 1987. Roma, pp 45–63Google Scholar
  23. Forleo NGF (1743) Trascrizione del manoscritto a cura di N. Argentina, 1912 (in Italian) Google Scholar
  24. Galea P (2007) Seismic history of the Maltese islands and considerations on seismic risk. Ann Geophys 50:725–740Google Scholar
  25. Galli P, Naso G (2008) The “taranta” effect of the 1743 earthquake in Salento (Apulia, Southern Italy). Bollettino di Geofisica Teorica Applicata 49:177–204Google Scholar
  26. Gambini R, Tozzi M (1996) Tertiary geodynamic evolution of the Southern Adria microplate. Terra Nova 8:593–602CrossRefGoogle Scholar
  27. Gaudiosi G, Nappi R, Alessio G, Porfido S (2014) Breve storia delle misurazioni dell’Intensità Macrosismica in Italia da Giuseppe Mercalli fino ai giorni nostri. Miscellanea INGV, 2014 N. 24, pp 104–132. ISSN 2039-6651 (in Italian) Google Scholar
  28. Gaudiosi G, Nappi R, De Lucia M, Alessio G, Porfido S (2015) Macroseismic parametrization of the Salento 20 February, 1743 historical earthquake (Southern Italy). XIX INQUA Congress 2015, Nagoya, Japan, 26 July–2 Aug 2015Google Scholar
  29. Giles D (2013) Intensity scales. In: Bobrowsky PT (ed) Encyclopedia of natural hazards. Springer, New York, pp 544–552CrossRefGoogle Scholar
  30. Grünthal G, Wahlström R, Stromeyer D (2013) The SHARE European Earthquake Catalogue (SHEEC) for the time period 1900–2006 and its comparison to the European-Mediterranean Earthquake Catalogue (EMEC). J Seismol 17(4):1339–1344. doi: 10.1007/s10950-013-9379y CrossRefGoogle Scholar
  31. Gruppo di Lavoro CPTI (2004) Catalogo Parametrico dei Terremoti Italiani, versione 2004 (CPTI04), INGV, Bologna. doi: 10.6092/INGV.IT-CPTI04
  32. Guidoboni E, Ferrari G, Mariotti D, Comastri A, Tarabusi G, Valensise G (2007) CFTI4Med, Catalogue of Strong Earthquakes in Italy (461 B.C.-1997) and Mediterranean Area (760 B.C.-1500). INGV-SGA. http://storing.ingv.it/cfti4med/
  33. Heddar A, Beldjoudi H, Authemayou C, SiBachir R, Yelles-Chaouche A, Boudiaf A (2016) Use of the ESI-2007 scale to evaluate the 2003 Boumerdès earthquake (North Algeria). Ann Geophys. doi: 10.4401/ag-6926 Google Scholar
  34. ISIDe working group (2016) version 1.0. doi:10.13127/ISIDeGoogle Scholar
  35. Karnik V (1969) Seismicity of the European Area. Part II, vol 1. Reidel Publishing Company, HollandGoogle Scholar
  36. Lekkas EL (2010) The 12 May 2008 Mw 7.9 Wenchuan, China, earthquake: macroseismic intensity assessment using the EMS-98 and ESI 2007 scale and their correlation with the geological structure. Bull Seismol Soc Am. doi: 10.1785/0120090244 Google Scholar
  37. Leo GC (1743) Memorie manoscritte. Francavilla Fontana. In: Palumbo P, 1870 (in Italian) Google Scholar
  38. Locati M, Camassi R, Stucchi M (eds) (2011). DBMI11, la versione 2011 del Database Macrosismico Italiano. Istituto Nazionale di Geofisica e Vulcanologia, Milano, Bologna. doi: 10.6092/INGV.IT-DBMI11. http://emidius.mi.ingv.it/DBMI11 (in Italian)
  39. Maramai A, Brizuela B, Graziani L (2014) The Euro-Mediterranean tsunami catalogue. Ann Geophys 57(4):S0435. doi: 10.4401/ag-6437 Google Scholar
  40. Margottini C (1981) Il terremoto del 1743 nella penisola salentina. CNEL-ENEL, Congresso annuale del P.F.G., Udine 12-14 maggio 1981 (in Italian) Google Scholar
  41. Margottini C (1985) The earthquake of February 20,1743 in the Ionian Sea. In: Postpischl D (ed) Atlas of isoseismal maps of Italian earthquakes. CNR-PFG, Bologna, pp 62–63Google Scholar
  42. Markusic S, Gulerce Z, Kuka N, Duni L, Ivancic I, Radovanovic S, Glavatovic B, Milutinovic Z, Akkar S, Kovacevic S, Mihaljevic J, Salic R (2015) An updated and unified earthquake catalogue for the Western Balkan Region. Bull Earthq Eng. doi: 10.1007/s10518-015-9833-z Google Scholar
  43. Mastronuzzi G, Caputo R, Di Bucci D, Fracassi U, Iurilli V, Milella M, Pignatelli C, Sansò P, Selleri G (2011) Middle-Late Pleistocene Evolution of the Adriatic Coastline of Southern Apulia (Italy) in response to relative sea-level changes. Geografia Fisica e Dinamica del Quaternario 34:207–221. doi: 10.4461/GFDQ.2011.34.19 Google Scholar
  44. Mastronuzzi G, Pignatelli C, Sansò P, Selleri G (2007) Boulder accumulations produced by the 20th of February, 1743 tsunami along the coast of southeastern Salento (Apulia region, Italy). Mar Geol 242:191–205CrossRefGoogle Scholar
  45. Mastronuzzi G, Sansò P (2004) Large boulder accumulations by extreme waves along the Adriatic coast of southern Apulia (Italy). Quat Int 12:173–184CrossRefGoogle Scholar
  46. Mercalli G (1883) Vulcani e fenomeni vulcanici in Italia. Vallardi, Milano (in Italian) Google Scholar
  47. Merlini S, Cantarella G, Doglioni C (2000) On the seismic profile Crop M5 in the Ionian Sea. Boll Soc Geol Ital 119:227–236Google Scholar
  48. Michetti AM, Esposito E, Guerrieri L, Porfido S, Serva L, Tatevossian R, Vittori E, Audemard F, Azuma T, Clague J, Comerci V, Gurpinar A, Mccalpin J, Mohammadioun B, Mörner NA, Ota Y, Roghozin E (2007) Intensity Scale ESI 2007. Memorie Descrittive della Carta Geologica d’Italia. 74. APAT, RomeGoogle Scholar
  49. Moretti I, Royden L (1988) Deflection, gravity anomalies and tectonics of doubly subducted continental lithosphere: Adriatic and Ionian seas. Tectonics 7:875–893CrossRefGoogle Scholar
  50. Nappi R, Gaudiosi G, Alessio G, De Lucia M, Porfido S (2015) A contribution to seismic hazard assessment of the Salento Peninsula (Apulia, Southern Italy). Miscellanea INGV 27:317-320. ISSN 2039-6651Google Scholar
  51. National Geophysical Data Center/World Data Service (NGDC/WDS) (2015) Global Historical Tsunami Database. National Geophysical Data Center, NOAA. doi: 10.7289/V5PN93H7. Accessed Dec 2015
  52. Papadopoulos G (2015) Tsunami early warning in the Mediterranean: the recent case after the large (M 6.5) Greek earthquake of 17 November 2015. doi:10.13140/RG.2.1.3144.3282Google Scholar
  53. Papanikolau ID (2011) Uncertainty in intensity assignment and attenuation relationships: how seismic hazard maps can benefit from the implementation of the Environmental Seismic Intensity scale (ESI 2007). Quat Int 242:42–51. doi: 10.1016/j.quaint.2011.03.058 CrossRefGoogle Scholar
  54. Papazachos BC, Papazachou C (2003) The earthquakes of Greece. Ziti publications, Thessaloniki (in Greek) Google Scholar
  55. Pasolini C, Albarello D, Gasperini P, D’Amico V, Lolli B (2008) The attenuation of seismic intensity in Italy, part II: modeling and validation. Bull Seismol Soc Am 98:692–708. doi: 10.1785/0120070021 CrossRefGoogle Scholar
  56. Piccinni FA (1908) Cronache leccesi dal 1723 al 1757. In: Rivista storica salentina, anno IV, Lecce 1908 (in Italian) Google Scholar
  57. Pieri P, Festa V, Moretti M, Tropeano M (1997) Quaternary tectonic activity of the Murge area (Apulian foreland-Southern Italy). Ann Geofis 40:1395–1404Google Scholar
  58. Pierri P, de Lorenzo S, Calcagnile G (2013) Analysis of the low-energy seismic activity in the Southern Apulia (Italy). Open J Earthq Res 2:91–105CrossRefGoogle Scholar
  59. Porfido S, Nappi R, De Lucia M, Gaudiosi G, Alessio G, Guerrieri L (2015a) The ESI scale, an ethical approach to the evaluation of seismic hazards. Geophs Res Abs 17, EGU2015-11732-2Google Scholar
  60. Porfido S, Esposito E, Sacchi M, Molisso F, Mazzola S (2015b) Impact of ground effects for an appropriate mitigation strategy in seismic area: the example of Guatemala 1976 earthquake. In: Lollino G, Giordan D, Crosta G, Corominas J, Azzam R, Wasowski J, Sciarra N (eds) Engineering Geology for Society and Territory, vol 2, pp 703–708Google Scholar
  61. Postpischl D (ed) (1985) Catalogue of Italian earthquakes from 1000 to 1980. CNR—PFG. Quaderni della Ricerca Scientifica”, 114/2BGoogle Scholar
  62. Quigley MC, Hughes MW, Bradley BA, van Ballegooy S, Reid C, Morgenroth J, Horton T, Duffy B, Pettinga JR (2016) The 2010–2011 canterbury earthquake sequence: environmental effects, seismic triggering thresholds and geologic legacy. Tectonophysics 672–673:228–274. doi: 10.1016/j.tecto.2016.01.044 CrossRefGoogle Scholar
  63. Reicherter K, Michetti AM, Silva PG (2009) Paleoseismology: historical and prehistorical records of earthquake ground effects for seismic hazard assessment. Geol Soc Lond Spec Publ 316:1–10CrossRefGoogle Scholar
  64. Rovida A, Camassi R, Gasperini P, Stucchi M (eds) (2011) CPTI11, the 2011 version of the Parametric Catalogue of Italian Earthquakes. Istituto Nazionale di Geofisica e Vulcanologia, Milano, Bologna. doi: 10.6092/INGV.IT-CPTI11. http://emidius.mi.ingv.it/CPTI
  65. Sanchez JJ, Maldonado RF (2016) Application of the ESI 2007 scale to two large earthquakes: South Island, New Zealand (2010 Mw 7.1), and Tohoku, Japan (2011 Mw 9.0). Bull Seismol Soc Am. doi: 10.1785/0120150188 Google Scholar
  66. Saracino D (1744) Breve descrizione dell’antica città di Manduria oggi detta Casalnuovo. In: Gigli G, 1903 (in Italian) Google Scholar
  67. Serio A, Santantonio G (1983) Racale. Note di storia e di costume. Editrice Salentina, Galatina (in Italian) Google Scholar
  68. Serpelloni E, Anzidei M, Baldi P, Casula G, Galvani A (2005) Crustal velocity and strain-rate fields in Italy and surrounding regions: new results from the analysis of permanent and non-permanent GPS networks. Geophys J Int 161:861–880CrossRefGoogle Scholar
  69. Serva L, Vittori E, Comerci V, Esposito E, Guerrieri L, Michetti AM, Mohammadioun B, Porfido S, Tatevossian RE (2015) Earthquake Hazard and the Environmental Seismic Intensity (ESI) Scale. Pure appl Geophys. doi: 10.1007/s00024-015-1177-8 Google Scholar
  70. Silva PG, Rodríguez-Pascua MA, Pérez-López R, Bardaji T, Lario J, Alfaro P, Martínez-Díaz JJ, Reicherter K, Giménez García J, Giner J, Azañón JM, Goy JL, Zazo C (2008) Catalogacion de los efectos geologicos y ambientales de los terremotos en Espana en la Escala ESI 2007 y su aplicacion a los estudions paleosismologicos. Geotemas 6:1063–1066 (in Spanish) Google Scholar
  71. Shebalin NV, Karnik V, Hadzievski D (eds) (1974) Catalogue of earthquake of Balkan region. UNDP/UNESCO, SkopjeGoogle Scholar
  72. Slejko D, Camassi R, Cecic I, Herak D, Herak M, Kociu S, Kouskouna V, Lapajne J, Makropoulos K, Meletti C, Muco B, Papaioannou C, Peruzza L, Rebez A, Scandone P, Sulstarova E, Voulgaris N, Zivcic M, Zupancic P (1999) Seismic hazard assessment for Adria. Ann Geofis 42:1085–1107Google Scholar
  73. Stucchi M, Rovida A, Gomez Capera AA, Alexandre P, Camelbeeck T, Demircioglu MB, Gasperini P, Kouskouna V, Musson RMW, Radulian M, Sesetyan K, Vilanova S, Baumont D, Bungum H, Fäh D, Lenhardt W, Makropoulos K, Martinez Solares JM, Scotti O, Zivcic M, Albini P, Battlo J, Papaioannou C, Tatevossian R, Locati M, Meletti C, Viganò D, Giardini D (2013) The SHARE European Earthquake Catalogue (SHEEC) 1000-1899. J Seismol 17:523–544. doi: 10.1007/s10950-012-9335-2 CrossRefGoogle Scholar

Archival sources

  1. ASB (Archivio di Stato di Brindisi) (1746) Archivi notarili. Notaio Giovanni L. Bifaro, Attestatio pro venerabili Monasterio Sancti Benedicti huius civitatis Brundusii, Brindisi 25 febbraio 1745Google Scholar
  2. ASL (Archivio di Stato di Lecce) (1743a) Protocolli Notarili. Notaio Oronzo De CarloGoogle Scholar
  3. ASL (Archivio di Stato di Lecce) (1743b) Protocolli Notarili. Notaio Nicola BonaGoogle Scholar
  4. ASL (Archivio di Stato di Lecce) (1743c) Protocolli Notarili. Notaio Vincenzo FedeleGoogle Scholar
  5. ASN ((Archivio di Stato di Napoli) (1743) Affari esteri, Segreteria degli Affari esteri, Legazioni, Venezia, vol.2294, Lettera del consigliere di Stato duca di Salas al conte Finocchietti, Napoli 26 febbraio 1743Google Scholar
  6. BAD (Biblioteca Arcivescovile di Brindisi “A. De Leo”) (1743) Cagnes P and Scalese N, Cronaca manoscritta dei sindaci di Brindisi dall’anno 1529 al 1787 e narrazione di molti fatti avvenuti in detta Città, (handwritten transcription of 1880), ms_D/17Google Scholar

Web

  1. http://www.protezionecivile.gov.it /resources/cms/documents/ A3_class20140605.pdf). Accessed June 2016. Italian seismic classification

Copyright information

© The Author(s) 2016

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • R. Nappi
    • 1
    Email author
  • G. Gaudiosi
    • 1
  • G. Alessio
    • 1
  • M. De Lucia
    • 1
  • S. Porfido
    • 2
  1. 1.Istituto Nazionale di Geofisica e VulcanologiaSezione di Napoli Osservatorio VesuvianoNaplesItaly
  2. 2.CNR-IAMC, Calata Porta di MassaNaplesItaly

Personalised recommendations