Skip to main content
Log in

Modified Kadomtsev–Petviashvili equation for tsunami over irregular seabed

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

We derive an asymptotic equation governing the trans-ocean propagation of tsunami from source to the continental shelf. Focus is on disturbances originated from a slender fault of finite length. The variable sea depth is assumed to consist of a slowly varying mean and random fluctuations. The method of multiple scales is used to derive a Kadomtsev–Petviashvili equation with variable coefficients. Modifications by one- and two-dimensional random irregularities are shown to affect the wave speed, dissipation and additional dispersion. The result can be used to facilitate physical insight with modest numerical efforts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. Alternatively we can define the correlation as \(\widehat{\varGamma }(x^{\prime}-x)=\langle b(x)b(x^{\prime})\rangle\) which is related to \(\varGamma (\bar{x}-\bar{x}^{\prime})\) by \(\widehat{\varGamma }(x^{\prime}-x)=\varGamma (h(X)(\bar{x}^{\prime}-\bar{x}))\).

References

  • Ablowitz M, Clarkson PA (1991) Solitions, nonlinear evolution equations and inverse scattering. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Barnard EN, Robinson AR (2009) The Sea, vol. 15, Tsunami. McGraw-Hill, New York

    Google Scholar 

  • Bell TH (1975) Statistical features of sea floor topography. Deep Sea Res 22(12):883–892

    Google Scholar 

  • Bühler O, Holmes-Cerfon M (2011) Decay of an internal tide due to random topography in the ocean. J Fluid Mech 678:271–293

    Article  Google Scholar 

  • Carrier GF, Greenspan H (1957) Water waves of finite amplitude on a sloping beach. J Fluid Mech 4:97–109

    Article  Google Scholar 

  • Carrier GF, Yeh H (2005) Tsunami propagation from a finite source. Comput Math Eng Sci 10(2):113–121

    Google Scholar 

  • Chen Q, Kirby JT, Dalrymple RA, Kennedy AB, Chawla A (2000) Boussinesq modeling of wave transformation, breaking, and runup. II: 2D. J Waterw Port Coast Ocean Eng 126(1):48–56

    Article  Google Scholar 

  • Chen XN, Liu YZ (1988) Diffraction of a solitary wave by a thin wedge. Acta Mech Sin 4(3):201–210

    Article  Google Scholar 

  • Chen X-N, Sharma SD (1995) A slender ship moving at a near-critical speed in a shallow channel. J Fluid Mech 291:263–285

    Article  Google Scholar 

  • Choi HS, Bai KJ, Kim JW, Cho IH (1991) Nonlinear free surface waves due to a ship moving near the critical speed in shallow water. In: 18th Symposium on naval hydrodynamics, pp 173–189

  • Choi HS, Mei CC (1989) Wave resistance and squat of a slender ship moving near the critical speed in restricted water. In: Fifth international conference on numerical ship hydrodynamics, pp 439–452

  • Duffy DG (2001) Green’s functions with applications. Chapman & Hall, London

    Book  Google Scholar 

  • Dutykh D, Labart C (2011) Long wave run-up on beaches. Phys Rev Lett 107:187504

    Article  Google Scholar 

  • Elter JF, Molyneux JE (1972) The long-distance propagation of shallow water waves over an ocean of random depth. J Fluid Mech 53:1–15

    Article  Google Scholar 

  • Goff JA, Jordan TH (1988) Stochastic modeling of seafloor morphology: inversion of sea beam data for second order statistics. J Geophys Res 93(B11):13589–13608

    Article  Google Scholar 

  • Grataloup GL, Mei CC (2003) Localization of harmonics generated in nonlinear shallow water waves. Phys Rev E 68:026314

    Article  Google Scholar 

  • Grilli ST (2011) Numerical simulation of the 2011 Tohoku tsunami based on a new transient FEM co-seismic source: comparison to far- and near-field observations. Pure Appl Geophys 170(6–8):1333–1359

    Google Scholar 

  • Hammack JI, Segur H (1978) Modelling criteria for long water waves. J Fluid Mech 84:359–373

    Article  Google Scholar 

  • Johnson RS (1972) Some numerical solutions of a variable-coefficient Korteweg-de Vries equation (with applications to solitary wave development on a shelf). J Fluid Mech 54(1):81–91

    Article  Google Scholar 

  • Johnson RS (1973) On the development of a solitary wave over an uneven bottom. Proc Camb Philos Soc 73:183–203

    Article  Google Scholar 

  • Kajiura K (1963) The leading wave of a tsunami. Bull Earthq Res Inst Univ Tokyo 41:525–571

    Google Scholar 

  • Kakutani T (1971) Effect of an uneven bottom on gravity waves. J Phys Soc Jpn 30:272–276

    Article  Google Scholar 

  • Kanoglu U (2004) Nonlinear evolution and runup/rundown of long waves over a sloping beach. J Fluid Mech 513:363–372

    Article  Google Scholar 

  • Katsis C, Akylas TR (1987) On the excitation of long nonlinear water waves by a moving pressure distribution. Part 2. Three-dimensional effects. J Fluid Mech 177:49–65

    Article  Google Scholar 

  • Kawahara T (1976) Effect of random inhomogeneities on nonlinear propagation of water waves. J Phys Soc Jpn 41:1402

    Article  Google Scholar 

  • Kennedy AB, Chen Q, Kirby JT, Dalrymple RA (2000) Boussinesq modeling of wave transformation, breaking, and runup. I: 1D. J Waterw Port Coast Ocean Eng 126(1):39–47

    Article  Google Scholar 

  • Lee SJ, Grimshaw RHJ (1990) Upstream-advancing waves generated by three-dimensional moving disturbances. Phy Fluids A2:194–201

    Article  Google Scholar 

  • Li Y, Mei CC (2014) Scattering of internal tides by irregular bathymetry of large extent. J Fluid Mech 747:481–505

    Article  Google Scholar 

  • Liu PL-F, Yeh H, Synolakis CE (2008) Advanced numerical models for simulating tsunami waves and runup-advances in coastal and ocean engineering: vol 10. World Scientific, Singapore

    Book  Google Scholar 

  • Madsen OS, Mei CC (1969) The transformation of a solitary wave over an uneven bottom. J Fluid Mech 39:781–791

    Article  Google Scholar 

  • Mei CC, Hancock MJ (2003) Weakly nonlinear surface waves over a random seabed. J Fluid Mech 475:247

    Article  Google Scholar 

  • Papoulis A (1965) Probability, random variables and stochastic processes. McGraw-Hill, Nwe York

    Google Scholar 

  • Pihl J, Mei CC, Hancock MJ (2002) Surface gravity waves over a two dimensional random seabed. Phys Rev E 66:016611

    Article  Google Scholar 

  • Mei CC, Li Y (2004) Evolution of solitons over a randomly rough seabed. Phys Rev E 70(016302):1–11

    Google Scholar 

  • Mei CC, Li Y-L, Wang B-L (2016) Two-dimensional evolution of tsunami from a slender fault in a sea of variable depth. Sub Judice

  • Miles JW (1979) On the Korteweg-deVries equation for gradually varying channel. J Fluid Mech 91:181–190

    Article  Google Scholar 

  • Nachbin A (1995) The localization length of randomly scattered water waves. J Fluid Mech 296:353–372

    Article  Google Scholar 

  • Nachbin A, Papanicolaou GC (1992) Water waves in shallow channels of rapidly varying depth. J Fluid Mech 241:311–332

    Article  Google Scholar 

  • Novikov S, Manakov SV, Pitaevskii LP, Zakharov VE (1988) Theory of solitons, the inverse scattering method. Consultants Bureau, London

    Google Scholar 

  • Pelinovsky E, Razin A, Sasorova EV (1998) Berkhoff approximation in a problem on surface gravity wave propagation in a basin with bottom irregularities. Waves Random Media 8:255–258

    Article  Google Scholar 

  • Rosales RR, Papanicolaou GC (1983) Gravity waves in a channel with a rough bottom. Stud Appl Maths 68:89–102

    Article  Google Scholar 

  • Rybkin A, Pelinovsky E, Didenkulova Ira (2014) Nonlinear wave run-up in bays of arbitrary cross-section. J Fluid Mech 748:416–432

    Article  Google Scholar 

  • Tappert FD, Zabusky NJ (1971) Gradient induced fission of solitons. Phys Rev Lett 27:1174–1776

    Article  Google Scholar 

  • Trefethen LN (2000) Spectral methods in MATLAB. SIAM, Philadelphia

    Book  Google Scholar 

  • Wang X, Liu PL-F (2006) An analysis of 2004 Sumatra earthquake fault plane mechanisms and Indian Ocean tsunami. J Hydraul Res 44(2):147–154

    Article  Google Scholar 

  • Watts P, Ioualalen M, Grilli S, Shi F-Y, Kirby JT (2005) Numerical simulation of the December 26, 2004 Indian Ocean tsunami using a higher-order Boussinesq model. In: Fifth international symposium waves 2005, pp 1–10, Madrid

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chiang C. Mei.

Appendix: Equivalence of random forcing term in 1D

Appendix: Equivalence of random forcing term in 1D

For constant mean depth (\(h=1\)), Mei and Li (2004) found the random forcing term to be,

$$\begin{aligned} \left\langle b(x) \frac{\partial \zeta ^{(1)}}{\partial x} \right\rangle= & {}\,\varGamma (0) \frac{\partial \zeta ^{(0)}}{\partial \sigma } +\frac{1}{4}\frac{\partial ^2 \zeta ^{(0)}}{\partial \sigma ^2} \int _{-\infty }^\infty \varGamma (\xi ) {\text{d}}\xi \\ &+ \frac{1}{8} \int _{-\infty }^\infty \varGamma \left( \frac{\sigma -\sigma ^{\prime}}{2}\right) \frac{\partial ^2 \eta _0}{\partial \sigma ^{{\prime}2}} \, {\text{d}}\sigma ^{\prime} +\frac{1}{4}\int _{-\infty }^\infty P\left( \frac{\sigma -\sigma ^{\prime}}{2} \right) \frac{\partial ^3 \eta _0}{\partial \sigma ^{{\prime}3}} \, {\text{d}} \sigma ^{\prime} \end{aligned}$$
(7.1)

where \(P(\xi )\) is

$$\begin{aligned} P(\xi ) = \int _{|\xi |}^\infty \varGamma (u) \, {\text{d}}u, \end{aligned}$$
(7.2)

In this form the physical influence of random scattering is clear. The first term represents reduction in phase speed. The second and the third terms give rise to dissipation, while the last term augments dispersion. Let us prove that it is equivalent to (4.16).

Note first that

$$\begin{aligned} \frac{{\text{d}} P(\xi )}{{\text{d}} \xi } = -\frac{d |\xi |}{{\text{d}} \xi } \varGamma (\xi ) = -\text {sgn}(\xi ) \varGamma (\xi ). \end{aligned}$$
(7.3)

Let us start from (4.16)

$$\begin{aligned}&\int _0^\infty \varGamma (\xi ) \frac{\partial ^2 \zeta ^{(0)}}{\partial \sigma ^2}(\sigma +2\xi ) \, {\text{d}}\xi \nonumber \\&\quad =\frac{1}{2} \int _0^\infty \bigl [ 1 + \text {sgn}(\xi ) \bigr ] \varGamma (\xi ) \frac{\partial ^2 \zeta ^{(0)}}{\partial \sigma ^2}(\sigma +2\xi ) \, {\text{d}}\xi \nonumber \\&\quad = \frac{1}{2} \int _{-\infty }^\infty \bigl [ 1 + \text {sgn}(\xi ) \bigr ] \varGamma (\xi ) \frac{\partial ^2 \zeta ^{(0)}}{\partial \sigma ^2}(\sigma +2\xi ) \, {\text{d}}\xi \nonumber \\&\quad = \frac{1}{2} \int _{-\infty }^\infty \varGamma (\xi ) \frac{\partial ^2 \zeta ^{(0)}}{\partial \sigma ^2}(\sigma +2\xi ) \, {\text{d}}\xi - \frac{1}{2}\int _{-\infty }^\infty \frac{\partial ^2 \zeta ^{(0)}}{\partial \sigma ^2}(\sigma +2\xi ) \, {\text{d}} P(\xi ) \nonumber \\&\quad = \frac{1}{2} \int _{-\infty }^\infty \varGamma (\xi ) \frac{\partial ^2 \zeta ^{(0)}}{\partial \sigma ^2}(\sigma +2\xi ) \, {\text{d}}\xi +\frac{1}{2}\int _{-\infty }^\infty P(\xi ) \frac{\partial ^3 \zeta ^{(0)}}{\partial \sigma ^2 \partial \xi }(\sigma +2\xi ) \, {\text{d}} \xi \nonumber \\&\quad = \frac{1}{2} \int _{-\infty }^\infty \varGamma (\xi ) \frac{\partial ^2 \zeta ^{(0)}}{\partial \sigma ^2}(\sigma +2\xi ) \, {\text{d}}\xi +\int _{-\infty }^\infty P(\xi ) \frac{\partial ^3 \zeta ^{(0)}}{\partial \sigma ^3}(\sigma +2\xi ) \, {\text{d}} \xi . \end{aligned}$$
(7.4)

Equation (4.16) becomes

$$\begin{aligned} \left\langle b(x) \frac{\partial \zeta ^{(1)}}{\partial x} \right\rangle= &{}\,\varGamma (0) \frac{\partial \zeta ^{(0)}}{\partial \sigma } +\frac{1}{2}\frac{\partial ^2 \zeta ^{(0)}}{\partial \sigma ^2} \int _0^\infty \varGamma (\xi ) {\text{d}}\xi +\frac{1}{4} \int _{-\infty }^\infty \varGamma (\xi ) \frac{\partial ^2 \zeta ^{(0)}}{\partial \sigma ^2}(\sigma +2\xi ) \, {\text{d}}\xi \nonumber \\&+\frac{1}{2}\int _{-\infty }^\infty P(\xi ) \frac{\partial ^3 \zeta ^{(0)}}{\partial \sigma ^3}(\sigma +2\xi ) \, {\text{d}} \xi . \end{aligned}$$
(7.5)

By letting \(\sigma ^{\prime} = \sigma +2\xi\), (7.1) is recovered.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Mei, C.C. Modified Kadomtsev–Petviashvili equation for tsunami over irregular seabed. Nat Hazards 84 (Suppl 2), 513–528 (2016). https://doi.org/10.1007/s11069-016-2450-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-016-2450-6

Keywords

Navigation