Skip to main content

Advertisement

Log in

Impact indicators for caprock integrity and induced seismicity in CO2 geosequestration: insights from uncertainty analyses

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

The geological sequestration (geosequestration) of carbon dioxide (CO2) is a mitigation method for reducing greenhouse gas emission into the atmosphere. The security and safety of CO2 geosequestration are strongly dependent on the mechanical stability of the caprock overlying the reservoir. Underground injection of CO2 increases the pore pressure and thus decreases the effective stress. It may lead to caprock failure, as well as the subsequent leakage of sequestered CO2. In particular, geothermal exploitation and the underground disposal of hazardous liquid wastes have demonstrated a risk of induced seismicity. We performed an uncertainty analysis using a novel response surface methodology and a two-step statistical experimental design, evaluated the statistical significance of operator choices and subsurface uncertainties to caprock integrity, and quantified the moment magnitude of the induced seismicity. Furthermore, the optimal combination (i.e., the worst-case scenario) with the desired properties was forecast. A series of numerical experiments was well designed, and 130 combinations were statistically determined. Based on the results from the analysis of variance for the response surface quadratic model, the impact indicators were presented in histograms according to their significances to the Coulomb failure stress and moment magnitude of the induced seismicity. Lastly, the values of the selected independent impact indicators were predicted to obtain optimal compositions for object function of both Coulomb failure stress and moment magnitude, and the desired properties were being picked out. The optimal combinations had desirability values of 1.000, demonstrating the fitness of the selected statistical models in analyzing the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aruffo C, Rodriguez-Herrera A, Tenthorey E, Krzikalla F, Minton J, Henk A (2014) Geomechanical modelling to assess fault integrity at the CO2CRC Otway project, Australia. Aust J Earth Sci 61:987–1001

    Article  Google Scholar 

  • Aslan N, Cebeci Y (2007) Application of Box–Behnken design and response surface methodology for modeling of some Turkish coals. Fuel 86:90–97. doi:10.1016/j.fuel.2006.06.010

    Article  Google Scholar 

  • Bachu S (2000) Sequestration of CO2 in geological media: criteria and approach for site selection in response to climate change. Energy Convers Mgmt 41:953–970

    Article  Google Scholar 

  • Biot MA (1956) Theory of propagation of elastic waves in a fluid-saturated porous solid. I. Low-frequency range. J Acoust Soc Am 28:168–178

    Article  Google Scholar 

  • Box GEP, Behnken DW (1960) Some new three level designs for the study of quantitative variables. Technometrics 2:455–475. doi:10.1080/00401706.1960.10489912

    Article  Google Scholar 

  • Box GE, Hunter JS (1957) Multi-factor experimental designs for exploring response surfaces. Ann Math Stat 195–241

  • Cappa F, Rutqvist J (2011) Modeling of coupled deformation and permeability evolution during fault reactivation induced by deep underground injection of CO2. Int J Greenh Gas Control 5:336–346

    Article  Google Scholar 

  • Coussy O (2004) Poromechanics. Wiley, New York

    Google Scholar 

  • Dempsey D, Kelkar S, Pawar R, Keating E, Coblentz D (2014) Modeling caprock bending stresses and their potential for induced seismicity during CO2 injection. Int J Greenh Gas Control 22:223–236. doi:10.1016/j.ijggc.2014.01.005

    Article  Google Scholar 

  • Deng H, Stauffer PH, Dai Z, Jiao Z, Surdam RC (2012) Simulation of industrial-scale CO2 storage: multi-scale heterogeneity and its impacts on storage capacity, injectivity and leakage. Int J Greenh Gas Control 10:397–418. doi:10.1016/j.ijggc.2012.07.003

    Article  Google Scholar 

  • Dethlefsen F, Haase C, Ebert M, Dahmke A (2011) Uncertainties of geochemical modeling during CO2 sequestration applying batch equilibrium calculations. Environ Earth Sci 65:1105–1117. doi:10.1007/s12665-011-1360-x

    Article  Google Scholar 

  • Fei W, Li Q, Wei X, Song R, Jing M, Li X (2015) Interaction analysis for CO2 geological storage and underground coal mining in Ordos Basin, China. Eng Geo 196:194–209. doi:10.1016/j.enggeo.2015.07.017

  • Ferreira SL et al (2007) Box–Behnken design: an alternative for the optimization of analytical methods. Anal Chim Acta 597:179–186. doi:10.1016/j.aca.2007.07.011

    Article  Google Scholar 

  • Gysi AP, Stefánsson A (2012) Experiments and geochemical modeling of CO2 sequestration during hydrothermal basalt alteration. Chem Geol 306–307:10–28. doi:10.1016/j.chemgeo.2012.02.016

    Article  Google Scholar 

  • Hosein R, Alshakh S (2013) CO2 sequestration in saline water: an integral part of CO2 sequestration in a geologic formation. Pet Sci Technol 31:2534–2540. doi:10.1080/10916466.2011.574181

    Article  Google Scholar 

  • IPCC (2005) IPCC special report on carbon dioxide capture and storage. Cambridge University Press, Cambridge

  • Iversen GR, Norpoth H (1987) Analysis of variance, vol 1. Sage, London

    Google Scholar 

  • Jaeger JC, Cook NG, Zimmerman R (2009) Fundamentals of rock mechanics. Wiley, New York

    Google Scholar 

  • Jeannin L, Mainguy M, Masson R, Vidal-Gilbert S (2007) Accelerating the convergence of coupled geomechanical-reservoir simulations. Int J Numer Anal Meth Geomech 31:1163–1181. doi:10.1002/nag.576

    Article  Google Scholar 

  • Karimnezhad M, Jalalifar H, Kamari M (2014) Investigation of caprock integrity for CO2 sequestration in an oil reservoir using a numerical method. J Nat Gas Sci Eng 21:1127–1137. doi:10.1016/j.jngse.2014.10.031

    Article  Google Scholar 

  • Khuri AI, Mukhopadhyay S (2010) Response surface methodology. Wiley Interdiscip Rev Comput Stat 2:128–149. doi:10.1002/wics.73

    Article  Google Scholar 

  • Lary LD et al. (2015) Quantitative risk assessment in the early stages of a CO2 geological storage project: implementation of a practical approach in an uncertain context. Greenh Gases Sci Technol 5:50–63. doi:10.1002/ghg.1447

  • Lei X, Ma S (2013) A detailed view of the injection-induced seismicity in a natural gas reservoir in Zigong, southwestern Sichuan Basin, China. J Geophys Res Solid Earth 118:4296–4311

    Article  Google Scholar 

  • Li Q, Liu G, Liu X, Li X (2013) Application of a health, safety, and environmental screening and ranking framework to the Shenhua CCS project. Int J Greenh Gas Control 17:504–514. doi:10.1016/j.ijggc.2013.06.005

    Article  Google Scholar 

  • Li Q, Fei W, Liu X, Wei X, Jing M, Li X (2014a) Challenging combination of CO2 geological storage and coal mining in the Ordos Basin, China. Greenh Gases Sci Technol 4:452–467. doi:10.1002/ghg.1408

    Article  Google Scholar 

  • Li Q, Liu G, Liu X (2014b) Development of management information system of global acid gas injection projects. In: Wu Y, Carroll JC, Li Q (eds) Gas injection for disposal and enhanced recovery. Advances in natural gas engineering. Wiley, New York, pp 243–254. doi:10.1002/9781118938607.ch13

    Google Scholar 

  • Li Q, Wei Y-N, Liu G, Lin Q (2014c) Combination of CO2 geological storage with deep saline water recovery in western China: insights from numerical analyses. Appl Energy 116:101–110. doi:10.1016/j.apenergy.2013.11.050

    Article  Google Scholar 

  • Liu L-C, Wu G (2015) Assessment of energy supply vulnerability between China and USA. Nat Hazards 75:127–138. doi:10.1007/s11069-014-1071-1

    Article  Google Scholar 

  • Liu C, Zhao H, Sun Y (2009) Tectonic background of Ordos Basin and its controlling role for basin evolution and energy mineral deposits. Energy Explor Exploit 27:15–27

    Article  Google Scholar 

  • Mathias SA, Hardisty PE, Trudell MR, Zimmerman RW (2009) Screening and selection of sites for CO2 sequestration based on pressure buildup. Int J Greenh Gas Control 3:577–585

    Article  Google Scholar 

  • Myers RH, Montgomery DC, Anderson-Cook CM (2009) Response surface methodology: process and product optimization using designed experiments, vol 705. Wiley, New York

    Google Scholar 

  • Nuzzo RG (2014) Scientific method: statistical errors. Nature 506:150–152

    Article  Google Scholar 

  • O’Dell PM, Lindsey KC (2010) Uncertainty management in a major CO2 EOR project. Abu Dhabi International Petroleum Exhibition and Conference. Society of Petroleum Engineers, Abu Dhabi, UAE. doi:10.2118/137998-MS

  • Rohmer J (2014) Induced seismicity of a normal blind undetected reservoir-bounding fault influenced by dissymmetric fractured damage zones. Geophys J Int 197:636–641. doi:10.1093/gji/ggu018

  • Rohmer J et al (2014) Improving our knowledge on the hydro-chemo-mechanical behaviour of fault zones in the context of CO2 geological storage. Energy Procedia 63:3371–3378. doi:10.1016/j.egypro.2014.11.366

    Article  Google Scholar 

  • Rutqvist J (2012) The geomechanics of CO2 storage in deep sedimentary formations. Geotech Geol Eng 30:525–551. doi:10.1007/s10706-011-9491-0

    Article  Google Scholar 

  • Rutqvist J, Wu YS, Tsang CF, Bodvarsson G (2002) A modeling approach for analysis of coupled multiphase fluid flow, heat transfer, and deformation in fractured porous rock. Int J Rock Mech Min Sci 39:429–442

    Article  Google Scholar 

  • Seebeck H, Tenthorey E, Consoli C, Nicol A (2015) Polygonal faulting and seal integrity in the Bonaparte Basin, Australia. Mar Pet Geol 60:120–135. doi:10.1016/j.marpetgeo.2014.10.012

    Article  Google Scholar 

  • Shen X (2010) Examples and applications of ABAQUS in energy engineering. China Machine Press, Beijing

    Google Scholar 

  • Shukla R, Ranjith P, Haque A, Choi X (2010) A review of studies on CO2 sequestration and caprock integrity. Fuel 89:2651–2664. doi:10.1016/j.fuel.2010.05.012

    Article  Google Scholar 

  • Song J, Zhang D (2013) Comprehensive review of caprock-sealing mechanisms for geologic carbon sequestration. Environ Sci Technol 47:9–22. doi:10.1021/es301610p

    Article  Google Scholar 

  • Tenthorey E, Dance T, Cinar Y, Ennis-King J, Strand J (2014) Fault modelling and geomechanical integrity associated with the CO2CRC Otway 2C injection experiment. Int J Greenh Gas Control 30:72–85. doi:10.1016/j.ijggc.2014.08.021

    Article  Google Scholar 

  • Vidal-Gilbert S, Nauroy J-F, Brosse E (2009) 3d geomechanical modelling for CO2 geologic storage in the Dogger carbonates of the Paris Basin. Int J Greenh Gas Control 3:288–299. doi:10.1016/j.ijggc.2008.10.004

    Article  Google Scholar 

  • Vilarrasa V (2014) Impact of CO2 injection through horizontal and vertical wells on the caprock mechanical stability. Int J Rock Mech Min Sci 66:151–159. doi:10.1016/j.ijrmms.2014.01.001

    Google Scholar 

  • Wei XC, Li Q, Li X-Y, Sun Y-K, Liu XH (2015) Uncertainty analysis of impact indicators for the integrity of combined caprock during CO2 geosequestration. Eng Geol 196:37–46. doi:10.1016/j.enggeo.2015.06.023

    Article  Google Scholar 

  • Xing H, Liu Y, Gao J, Chen S (2015) Recent development in numerical simulation of enhanced geothermal reservoirs. J Earth Sci 26:28–36

    Article  Google Scholar 

  • Yang D, Zeng R, Zhang Y, Wang Z, Wang S, Jin C (2012) Numerical simulation of multiphase flows of CO2 storage in saline aquifers in Daqingzijing oilfield, China. Clean Technol Environ Policy 14:609–618. doi:10.1007/s10098-011-0420-y

    Article  Google Scholar 

  • Zhou X, Burbey TJ (2014) Pore-pressure response to sudden fault slip for three typical faulting regimes. Bull Seismol Soc Am 104:793–808

    Article  Google Scholar 

  • Zhou R, Huang L, Rutledge J (2010) Microseismic event location for monitoring CO2 injection using double-difference tomography. Lead Edge 29:208–214. doi:10.1190/1.3304826

    Article  Google Scholar 

  • Zoback MD, Gorelick SM (2012) Earthquake triggering and large-scale geologic storage of carbon dioxide. Proc Natl Acad Sci USA 109:10164–10168. doi:10.1073/pnas.1202473109

    Article  Google Scholar 

Download references

Acknowledgments

This work was mainly supported by the National Natural Science Foundation of China (NSFC) under Grant No. 41274111. We would also like to thank the financial support provided by the National Department Public Benefit Research Foundation of MLR, China (Grant No. 201211063-4-1), and the China National Key Technology R&D Program (Grant No. 2012BAC24B05).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi Li.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 59 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, X., Li, Q., Li, X. et al. Impact indicators for caprock integrity and induced seismicity in CO2 geosequestration: insights from uncertainty analyses. Nat Hazards 81, 1–21 (2016). https://doi.org/10.1007/s11069-015-2063-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-015-2063-5

Keywords

Navigation