Skip to main content
Log in

Tsunami potential from local seismic sources along the southern Middle America Trench

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

The Middle America convergent margin is capable of generating tsunamigenic earthquakes as portrayed through historical data. However, historical tsunamigenic sources appear to be unevenly distributed along the Middle America convergent margin. The last significant tsunami generated along the southern segments of this convergent margin occurred in 1992 causing 10-m run-up in Nicaragua. In particular, the Costa Rican Pacific coast has not clear evidences of significant wave heights or local tsunami events. Partly this could be explained by the lack of historical data since paleotsunami information is not available; thus, no tsunami data beyond 500 years could be found. Nevertheless, large rupture areas or shallow ruptures offshore Costa Rica cannot be neglected. We hereby present the results of numerical simulations aimed to assess the tsunamigenic potential of seismic sources offshore southern Central America. Our approach follows the deterministic method where earthquake maximum credible scenarios are assessed. We assumed hundreds of fault ruptures to obtain surface displacement and tsunami wave heights at the shoreline to assess the tsunami threat along south Nicaragua and Costa Rica. These fault scenarios are based on historical earthquakes as well as on the newest geodetic studies that provided slip deficit. Shallow part of locked segments in this region could release accumulated stress in the near future and may generate tsunamis similar to the 1992 Nicaragua M w 7.6 and 2012 El Salvador M w 7.4 tsunami earthquakes. The numerical simulations presented in this study show that maximum wave heights up to 2–6 m could affect the southern Pacific coast of Central America even when moderate-to-large M w 7.0–8.0 interplate or outer rise earthquakes occur.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Aki K (1966) Generation and propagation of G waves from the Niigata earthquake of june 16, 1964. Bull Earthq Res Inst 44:73–88

    Google Scholar 

  • Álvarez-Gómez JA, Meijer PT, Martínez-Díaz JJ, Capote R (2008) Constraints from finite element modeling on the active tectonics of northern Central America and the Middle America Trench. Tectonics. doi:10.1029/2007TC002162

    Google Scholar 

  • Álvarez-Gómez JA, Gutiérrez Gutiérrez OQ, Aniel-Quiroga Í, González M (2012) Tsunamigenic potential of outer-rise normal faults at the Middle America Trench in Central America. Tectonophysics 574–575:133–143. doi:10.1016/j.tecto.2012.08.014

    Article  Google Scholar 

  • Arroyo IG, Husen S, Flueh ER et al (2009) Three-dimensional P-wave velocity structure on the shallow part of the Central Costa Rican Pacific margin from local earthquake tomography using off- and onshore networks. Geophys J Int 179:827–849. doi:10.1111/j.1365-246X.2009.04342.x

    Article  Google Scholar 

  • Arroyo IG, Husen S, Flueh ER (2013) The seismogenic zone in the Central Costa Rican Pacific margin: high-quality hypocentres from an amphibious network. Int J Earth Sci. doi:10.1007/s00531-013-0955-8

    Google Scholar 

  • Arroyo IG, Grevemeyer I, Ranero CR, VonHuene R (2014) Interplate seismicity at the CRISP drilling site: the 2002 M w = 6.4 Osa Earthquake at the southeastern end of the Middle America Trench. Geochem Geophys Geosyst 15:3035–3050

    Article  Google Scholar 

  • Avants M, Schwartz S, Newman AV, DeShon H (2001) Large underthrusting earthquakes beneath the Nicoya Peninsula. Am Geophys Union Fall Meet. Fall Meeting Supplementary, San Francisco, p T52E-07

  • Babeyko AY, Hoechner A, Sobolev SV (2010) Source modeling and inversion with near real-time GPS: a GITEWS perspective for Indonesia. Nat Hazards Earth Syst Sci 10:1617–1627. doi:10.5194/nhess-10-1617-2010

    Article  Google Scholar 

  • Barckhausen U, Roeser HA, von Huene R (1998) Magnetic signature of upper plate structures and subducting seamounts at the convergent margin off Costa Rica. J Geophys Res 103:7079–7093

    Article  Google Scholar 

  • Barckhausen U, Ranero CR, Von Huene R et al (2001) Revised tectonic boundaries in the Cocos Plate off Costa Rica: implications for the segmentation of the convergent margin and for plate tectonic models. J Geophys Res 106:207–220

    Google Scholar 

  • Benito MB, Lindholm C, Camacho E et al (2012) A new evaluation of seismic hazard for the Central America Region. Bull Seismol Soc Am 102:504–523. doi:10.1785/0120110015

    Article  Google Scholar 

  • Bilek SL, Lay T (1999a) Comparison of depth dependent fault zone properties in the Japan Trench and Middle America Trench. Pure Appl Geophys 154:433–456. doi:10.1007/s000240050238

    Article  Google Scholar 

  • Bilek SL, Lay T (1999b) Rigidity variations with depth along interplate megathrust faults in subduction zones. Nature 400:443–446

    Article  Google Scholar 

  • Bilek SL, Schwartz SY, DeShon HR (2003) Control of seafloor roughness on earthquake rupture behavior. Geology 31:455–458. doi:10.1130/0091-7613(2003)031<0455:COSROE>2.0.CO;2

    Article  Google Scholar 

  • Borrero JC, Kalligeris N, Lynett PJ et al (2014) Observations and modeling of the August 27, 2012 earthquake and tsunami affecting El Salvador and Nicaragua. Pure Appl Geophys. doi:10.1007/s00024-014-0782-2

    Google Scholar 

  • Brown KM, Tryon MD, Deshon HR et al (2005) Correlated transient fluid pulsing and seismic tremor in the Costa Rica subduction zone. Earth Planet Sci Lett 238:189–203. doi:10.1016/j.epsl.2005.06.055

    Article  Google Scholar 

  • Chacón-Barrantes SE, Protti M (2011) Modeling a tsunami from the Nicoya, Costa Rica, seismic gap and its potential impact in Puntarenas. J South Am Earth Sci 31:372–382. doi:10.1016/j.jsames.2011.03.013

    Article  Google Scholar 

  • Christensen DH, Ruff LJ, Arbor A (1988) Seismic coupling and outer rise earthquakes. J Geophys Res 93:13421–13444

    Article  Google Scholar 

  • Correa-Mora F, DeMets C, Alvarado D et al (2009) GPS-derived coupling estimates for the Central America subduction zone and volcanic arc faults: El Salvador, Honduras and Nicaragua. Geophys J Int 179:1279–1291. doi:10.1111/j.1365-246X.2009.04371.x

    Article  Google Scholar 

  • Davis E, Heesemann M, Wang K (2011) Evidence for episodic aseismic slip across the subduction seismogenic zone off Costa Rica: CORK borehole pressure observations at the subduction prism toe. Earth Planet Sci Lett 306:299–305. doi:10.1016/j.epsl.2011.04.017

    Article  Google Scholar 

  • DeMets C (2001) A new estimate for present-day Cocos-Caribbean plate motion: implications for slip along the Central American volcanic arc. Geophys J Int 28:4043–4046

    Google Scholar 

  • DeMets C, Gordon RG, Argus DF (2010) Geologically current plate motions. Geophys J Int 181:1–80. doi:10.1111/j.1365-246X.2009.04491.x

    Article  Google Scholar 

  • Denyer P, Gazel E (2009) The Costa Rican Jurassic to Miocene oceanic complexes: origin, tectonics and relations. J South Am Earth Sci 28:429–442. doi:10.1016/j.jsames.2009.04.010

    Article  Google Scholar 

  • DeShon HR, Schwartz SY, Newman AV et al (2006) Seismogenic zone structure beneath the Nicoya Peninsula, Costa Rica, from three-dimensional local earthquake P - and S -wave tomography. Geophys J Int 164:109–124. doi:10.1111/j.1365-246X.2005.02809.x

    Article  Google Scholar 

  • Dixon T (2013) Detailed data available for recent costa rica earthquake. EOS Trans 94:17–18. doi:10.1029/94JB03099

    Article  Google Scholar 

  • Feng L, Newman AV, Protti M et al (2012) Active deformation near the Nicoya Peninsula, northwestern Costa Rica, between 1996 and 2010: interseismic megathrust coupling. J Geophys Res Solid Earth 117:B06407. doi:10.1029/2012JB009230

    Google Scholar 

  • Fernández Arce M, Doser DI (2009) Relocation and waveform modeling of the 1924 Orotina, Costa Rica, earthquake (MS 7.0). Tectonophysics 479:197–202. doi:10.1016/j.tecto.2009.08.010

    Article  Google Scholar 

  • Fernández M, Molina E, Havskov J, Atakan K (2000) Tsunamis and tsunami hazards in Central America. Nat Hazards 22:91–116. doi:10.1023/A:1008102600622

    Article  Google Scholar 

  • Franchello G (2010) Shoreline tracking and implicit source terms for a well balanced inundation model. Int J Numer Methods Fluids 63:1123–1146

    Google Scholar 

  • Geist EL (2009) Phenomenology of tsunamis: statistical properties from generation to runup. In: In Geophysics RDBT-A (ed) Advances in geophysics. Elsevier, Amsterdam, pp 107–169

    Google Scholar 

  • Geist EL, Bilek SL (2001) Effect of depth-dependent shear modulus on tsunami generation along subduction zones. Geophys Res Lett 28:1315–1318. doi:10.1029/2000GL012385

    Article  Google Scholar 

  • Goldfinger C, Ikeda Y, Yeats RS, Ren J (2013) Superquakes and supercycles. Seismol Res Lett 84:24–32. doi:10.1785/0220110135

    Article  Google Scholar 

  • Güendel F (1986) Seismotectonics of Costa Rica: an analytical view of the southern terminus of the Middle America Trench. Dissertation University of California, Santa Cruz

  • Güendel F, Protti M (1998) Sismicidad y sismotectónica de América Central. Fis la Tierra 10:19–51

    Google Scholar 

  • Hanks TC, Kanamori H (1979) A Moment Magnitude Scale. J Geophys Res 84:2348–2350

    Article  Google Scholar 

  • Hayes GP, Wald DJ, Johnson R (2012) A three-dimensional model of global subduction zone geometries. J Geophys Res 117:8524B01302. doi:10.1029/2011JB008524

    Google Scholar 

  • Heuret A, Conrad CP, Funiciello F et al (2012) Relation between subduction megathrust earthquakes, trench sediment thickness and upper plate strain. Geophys Res Lett 39. doi:10.1029/2011GL050712

  • Hill EM, Borrero JC, Huang Z et al (2012) The 2010 M w 7.8 Mentawai earthquake: very shallow source of a rare tsunami earthquake determined from tsunami field survey and near-field GPS data. J Geophys Res 117:B06402. doi:10.1029/2012JB009159

    Google Scholar 

  • Hinz K, VonHuene R, Ranero CR (1996) Tectonic structure of the convergent Pacific margin offshore Costa Rica from multichannel seismic reflection data. Tectonics 1:54–66

    Article  Google Scholar 

  • Hoechner A, Ge M, Babeyko AY, Sobolev SV (2013) Instant tsunami early warning based on real time GPS–Tohoku 2011 case study. Nat Hazards Earth Syst Sci 13:1285–1292. doi:10.5194/nhess-13-1285-2013

  • Husen S, Kissling E (2002) Tomographic evidence for a subducted seamount beneath the Gulf of Nicoya, Costa Rica: the cause of the 1990 M w = 7.0 Gulf of Nicoya earthquake. Geophys Res Lett 29:1–4

    Article  Google Scholar 

  • Ihmlé PF (1996) Monte Carlo slip inversion in the frequency domain: application to the 1992 Nicaragua slow earthquake. Geophys Res Lett 23:913–916. doi:10.1029/96GL00872

    Article  Google Scholar 

  • Imamura F, Shuto N, Ide S et al (1993) Estimate of the tsunami sources of the 1992 Nicaraguan earthquake from tsunami data. Geophys Res Lett 20:1515–1518

    Article  Google Scholar 

  • IUGG/IOC (1997) Time Project. Numerical method of tsunami simulation with the leap-frog scheme IOC Manuals and Guides No. 35

  • Jiang Y, Wdowinski S, Dixon TH et al (2012) Slow slip events in Costa Rica detected by continuous GPS observations, 2002–2011. Geochem Geophys Geosyst 13. doi: 10.1029/2012GC004058

  • Kanamori H (1972) Mechanism of tsunami earthquakes. Phys Earth Planet Inter 6:346–359. doi:10.1016/0031-9201(72)90058-1

    Article  Google Scholar 

  • Kanamori H, Anderson DL (1975) Theoretical basis of some empirical relations in seismology. Bull Seismol Soc Am 65:1073–1095

    Google Scholar 

  • Kanoglu U, Synolakis CE (1998) Long wave runup on piecewise linear topographies. J Fluid Mech 374:1–28. doi:10.1017/S0022112098002468

    Article  Google Scholar 

  • Kikuchi M, Kanamori H (1995) Source characteristics of the 1992 Nicaragua tsunami earthquake inferred from teleseismic body waves. Pure Appl Geophys (Pageoph) 144:441–453. doi:10.1007/BF00874377

    Article  Google Scholar 

  • Kodaira S, No T, Nakamura Y et al (2012) Coseismic fault rupture at the trench axis during the 2011 Tohoku-oki earthquake. Nat Geosci 5:646–650

    Article  Google Scholar 

  • Konca AO, Avouac JP, Sladen A et al (2008) Partial rupture of a locked patch of the Sumatra megathrust during the 2007 earthquake sequence. Nature 456:631–635. doi:10.1038/nature07572

    Article  Google Scholar 

  • LaFemina P, Dixon TH, Govers R et al (2009) Fore-arc motion and Cocos Ridge collision in Central America. Geochem Geophys Geosyst 10:1–21. doi:10.1029/2008GC002181

    Article  Google Scholar 

  • Lay T, Bilek S (2007) Anomalous earthquake ruptures at shallow depths on subduction zone megathrusts. In: Dixon T, Moore J (eds) Seism. Zo. subduction thrust faults. Columbia University Press, New York, pp 476–511

  • Lay T, Ammon CJ, Kanamori H et al (2010) The 2009 Samoa–Tonga great earthquake triggered doublet. Nature 466:964–968. doi:10.1038/nature09214

    Article  Google Scholar 

  • Lay T, Ammon CJ, Kanamori H et al (2011) The 25 October 2010 Mentawai tsunami earthquake (M w 7.8) and the tsunami hazard presented by shallow megathrust ruptures. Geophys Res Lett 38. doi:10.1029/2010GL046552

  • Lefeldt M, Grevemeyer I (2008) Centroid depth and mechanism of trench-outer rise earthquakes. Geophys J Int 172:240–251. doi:10.1111/j.1365-246X.2007.03616.x

    Article  Google Scholar 

  • Linkimer L, Alvarado G (2014) Distribución espacio-temporal de la sismicidad sentida en Costa Rica (1976–2013) en el marco histórico del 30 aniversario (1982–2012) de la Red Sismológica Nacional (RSN-ICE). Rev Geológica América Cent Sp. 45–71. doi:10.15517/rgac.v0i0.16569

  • Lorito S, Tiberti MM, Basili R et al (2008) Earthquake-generated tsunamis in the Mediterranean Sea: Scenarios of potential threats to Southern Italy. J Geophys Res 113:B01301

    Google Scholar 

  • Loveless JP, Meade BJ (2011) Spatial correlation of interseismic coupling and coseismic rupture extent of the 2011 M w = 9.0 Tohoku-oki earthquake. Geophys Res Lett 38:L17306. doi:10.1029/2011GL048561

    Article  Google Scholar 

  • Marshall JS, Anderson RS (1995) Quaternary uplift and seismic cycle deformation, Peninsula de Nicoya, Costa Rica. Geol Soc Am Bull 107:463–473

    Article  Google Scholar 

  • Marshall JS, Morris E, Lafromboise EJ, et al (2012) Morphotectonic Segmentation along the Nicoya Peninsula Seismic Gap. Eos, Trans Am Geophys Union, MoA, Abs T53A-1121

  • McCaffrey R (2008) Global frequency of magnitude 9 earthquakes. Geology 36:263. doi:10.1130/G24402A.1

    Article  Google Scholar 

  • McIntosh KD, Silver EA, Ahmed I et al (2007) The Nicaragua convergent margin. In: Dixon T, Moore J (eds) seism. Zo. subduction thrust faults. Columbia University Press, New York, pp 257–287

    Google Scholar 

  • Molina E (1997) Tsunami catalogue for Central America 1539–1996. Reduction of natural disasters in Central America. University of Bergen Technical Report No. II 1-04

  • Montero W (1986) Periodos de recurrencia-intraplaca. Rev Geológica América Cent 5:35–72

    Google Scholar 

  • Moreno M, Rosenau M, Oncken O (2010) 2010 Maule earthquake slip correlates with pre-seismic locking of Andean subduction zone. Nature 467:198–202

    Article  Google Scholar 

  • Müller RD, Landgrebe TCW (2012) The link between great earthquakes and the subduction of oceanic fracture zones. Solid Earth 3:447–465. doi:10.5194/se-3-447-2012

    Article  Google Scholar 

  • Newman AV, Okal EA (1998) Teleseismic estimates of radiated seismic energy: the E/M0 discriminant for tsunami earthquakes. J Geophys Res Solid Earth 103:26885–26898. doi:10.1029/98JB02236

    Article  Google Scholar 

  • Newman AV, Schwartz SY, González V et al (2002) Along-strike variability in the seismogenic zone below Nicoya Peninsula, Costa Rica. Geophys Res Lett 29:1977. doi:10.1029/2002GL015409

    Article  Google Scholar 

  • Newman AV, Hayes G, Wei Y, Convers J (2011) The 25 October 2010 Mentawai tsunami earthquake, from real-time discriminants, finite-fault rupture, and tsunami excitation. Geophys Res Lett. doi:10.1029/2010GL046498

    Google Scholar 

  • NGDC/WDS (2015) National Geophysical Data Center, World Data Service. Global Historical Tsunami Database. National Geophysical Data Center, NOAA. In: Access on 15.01.2015. http://www.ngdc.noaa.gov/hazard/tsu_db.shtml

  • Nishenko SP (1991) Circum-Pacific seismic potential: 1989–1999. Pageoph 135:169–259

    Article  Google Scholar 

  • Noda H, Lapusta N (2010) Three-dimensional earthquake sequence simulations with evolving temperature and pore pressure due to shear heating: effect of heterogeneous hydraulic diffusivity. J Geophys Res 115:B12314. doi:10.1029/2010JB007780

    Article  Google Scholar 

  • Okada Y (1985) Surface deformation due to shear and tensile faults in a half-space. Bull Seismol Soc Am 75:1135–1154

    Google Scholar 

  • Okal EA, Synolakis CE, Kalligeris N (2010) Tsunami simulations for regional sources in the South China and adjoining seas. Pure Appl Geophys 168:1153–1173. doi:10.1007/s00024-010-0230-x

    Article  Google Scholar 

  • Ortiz M, Fernández Arce M, Rojas W (2001) Análisis de riesgo de inundación por tsunamis en Puntarenas, Costa Rica. GEOS 21:108–113

    Google Scholar 

  • Outerbridge KC, Dixon TH, Schwartz SY et al (2010) A tremor and slip event on the Cocos-Caribbean subduction zone as measured by a global positioning system (GPS) and seismic network on the Nicoya Peninsula, Costa Rica. J Geophys Res Solid Earth. doi: 10.1029/2009JB006845

  • Pacheco JF, Sykes R, Scholz H (1993) Nature of seismic coupling along simple plate boundaries of the subduction type. J Geophys Res 98:14133–14159

    Article  Google Scholar 

  • Protti M, Güendel F, McNally K (1995a) Correlation between the age of the subducting Cocos Plateand the geometry of the Wadati-Benioff zone under Nicaragua and Costa Rica. Geol. Tecton. Dev. Caribb. Plate Bound. South. Cent. Am., Special Pa. Geological Society of America, Boulder, Colorado, pp 309–326

  • Protti M, McNally K, Pacheco JF et al (1995b) The March 25, 1990 (M w = 7.0, ML = 6.8), earthquake at the entrance of the Nicoya Gulf, Costa Rica: its prior activity, foreshocks, aftershocks, and triggered seismicity. J Geophys Res 100:345–358

    Google Scholar 

  • Protti M, Güendel F, Malavassi E (2001) Evaluación del potencial sísmico de la Península de Nicoya. Editorial Fundacion UNA, Heredia, Costa Rica

  • Protti M, González V, Kato T et al (2004) A creep event on the shallow interface of the Nicoya Peninsula, Costa Rica Seismogenic Zone. Am Geophys Union, Fall Meet. Abstr. S41D-07

  • Protti M, Gonzalez V, Newman AV et al (2014) Nicoya earthquake rupture anticipated by geodetic measurement of the locked plate interface. Nat Geosci 7:117–121. doi:10.1038/ngeo2038

    Article  Google Scholar 

  • Ranero CR, Morgan JP, McIntosh K, Reichert C (2003) Bending-related faulting and mantle serpentinization at the Middle America trench. Nature 425:367–373. doi:10.1038/nature01961

    Article  Google Scholar 

  • Ranero CR, von Huene R, Weinrebe W, Barckhausen U (2007) Convergent margin tectonics: a marine perspective. In: Bundschuh J, Alvarado GE (eds) Cent. Taylor and Francis, Am Geol Resour Hazards, pp 239–265

    Google Scholar 

  • Rojas W, Bungum H, Lindholm C (1993) Historical and recent earthquakes in Central America. Rev Geol Am Cent 16:5–22

    Google Scholar 

  • Rojas W, Camacho E, Marroquin G et al (2013) Evolution of the earthquake catalog in Central America. Meet Am AGU, Mex. S52A–08

  • Ryan WBF, Carbotte SM, Coplan JO et al (2009) Global multi-resolution topography synthesis. Geochem Geophys Geosyst. doi:10.1029/2008GC002332

    Google Scholar 

  • Sallarès V, Meléndez A, Prada M et al (2013) Overriding plate structure of the Nicaragua convergent margin: relationship to the seismogenic zone of the 1992 tsunami earthquake. Geochem Geophys Geosyst 14:3436–3461. doi:10.1002/ggge.20214

    Article  Google Scholar 

  • Satake K (1995) Linear and nonlinear computations of the 1992 Nicaragua earthquake tsunami. Pure Appl Geophys PAGEOPH 144:455–470. doi:10.1007/BF00874378

    Article  Google Scholar 

  • Schellart WP, Rawlinson N (2013) Global correlations between maximum magnitudes of subduction zone interface thrust earthquakes and physical parameters of subduction zones. Phys Earth Planet Inter 225:41–67. doi:10.1016/j.pepi.2013.10.001

    Article  Google Scholar 

  • Schwartz SY, Deshon HR (2007) Distinct updip limits to geodetic locking and microseismicity at the northern Costa Rica seismogenic zone. In: Dixon TH, Moore JC (eds) seism. Zo. subduction thrust faults. Columbia University Press, New York, pp 576–599

    Google Scholar 

  • Storchak DA, Di Giacomo D, Bondár I et al (2013) Public release of the ISC–GEM global instrumental earthquake catalogue (1900–2009). Seismol Res Lett 84:810–815. doi:10.1785/0220130034

    Article  Google Scholar 

  • Strasser FO, Arango MC, Bommer JJ (2010) Scaling of the source dimensions of interface and intraslab subduction-zone earthquakes with moment magnitude. Seismol Res Lett 81:941–950. doi:10.1785/gssrl

    Article  Google Scholar 

  • Tajima F, Kikuchi M (1995) Tectonic implications of the seismic ruptures associated with the 1983 and 1991 Costa Rica earthquakes. Geol Soc Am Spec Pap 295:327–340. doi:10.1130/SPE295-p327

    Google Scholar 

  • Tinti S, Armigliato A (2003) The use of scenarios to evaluate the tsunami impact in southern Italy. Mar Geol 199:221–243. doi:10.1016/S0025-3227(03)00192-0

    Article  Google Scholar 

  • Tristán F (1916) The Costa Rica earthquake of February 27, 1916. Bull Seismol Soc Am 6:232–235

    Google Scholar 

  • Ulutas E (2013) Comparison of the seafloor displacement from uniform and non-uniform slip models on tsunami simulation of the 2011 Tohoku-Oki earthquake. J Asian Earth Sci 62:568–585. doi:10.1016/j.jseaes.2012.11.007

    Article  Google Scholar 

  • Ulutas E, Inan A, Annunziato A (2012) Web-based tsunami early warning system: A case study of the 2010 Kepulaunan Mentawai Earthquake and Tsunami. Nat Hazards Earth Syst Sci 12:1855–1871. doi:10.5194/nhess-12-1855-2012

    Article  Google Scholar 

  • Ureña F (2005) Simulación de un tsunami eventual frente a las costas de la Península de Nicoya y su influencia en el Golfo de Nicoya. Repert Científico la Esc Ciencias Exactas y Nat la UNED 9:48–54

    Google Scholar 

  • Vannucchi P, Scholl DW, Meschede M, McDougall-Reid K (2001) Tectonic erosion and consequent collapse of the Pacific margin of Costa Rica: combined implications from ODP Leg 170, seismic offshore data, and regional geology of the Nicoya Peninsula. Tectonics 20:649–668. doi:10.1029/2000TC001223

    Article  Google Scholar 

  • VonHuene R, Ranero CR, Weinrebe W, Hinz K (2000) Quaternary convergent margin tectonics of Costa Rica, segmentation of the Cocos Plate, and Central American. Tectonics 19:314–334

    Article  Google Scholar 

  • Walter JI, Schwartz SY, Protti JM, Gonzalez V (2011) Persistent tremor within the northern Costa Rica seismogenic zone. Geophys Res Lett 38:L01307. doi:10.1029/2010GL045586

    Article  Google Scholar 

  • Walter JI, Schwartz SY, Protti M, Gonzalez V (2013) The synchronous occurrence of shallow tremor and very low frequency earthquakes offshore of the Nicoya Peninsula, Costa Rica. Geophys Res Lett 40:1517–1522. doi:10.1002/grl.50213

    Article  Google Scholar 

  • Wang K, Bilek SL (2011) Do subducting seamounts generate or stop large earthquakes? Geology 39:819–822. doi:10.1130/G31856.1

    Article  Google Scholar 

  • Wang K, Bilek SL (2014) Fault creep caused by subduction of rough seafloor relief. Tectonophysics 610:1–24. doi:10.1016/j.tecto.2013.11.024

    Article  Google Scholar 

  • Werner R, Hoernle K, van den Bogaard P et al (1999) Drowned 14-m.y. old Galapagos archipielago off the coast of Costa Rica: implications for tectonic and evolutionary models. Geol Soc London Spec Publ 27:499–502

    Google Scholar 

  • Wessel P, Smith WHF (1998) New, improved version of generic mapping tools released. EOS Trans Am Geophys Union 79:579. doi:10.1029/98EO00426

    Article  Google Scholar 

  • Ye S, Bialas J, Flueh ER et al (1996) Custal structure of the Middle American Trench off Costa Rica from wide-angle seismic data. Tectonics 15:1006–1021

    Article  Google Scholar 

  • Ye L, Lay T, Kanamori H (2013) Large earthquake rupture process variations on the Middle America megathrust. Earth Planet Sci Lett 381:147–155. doi:10.1016/j.epsl.2013.08.042

    Article  Google Scholar 

  • Yue H, Lay T, Schwartz SY et al (2013) The 5 September 2012 Nicoya, Costa Rica Mw 7.6 earthquake rupture process from joint inversion of high-rate GPS, strong-motion, and teleseismic P wave data and its relationship to adjacent plate boundary interface properties. J Geophys Res Solid Earth 118:5453–5466. doi:10.1002/jgrb.50379

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to L. Feng for providing the Nicoya Peninsula (NP) interseismic coupling model and H. Yue for sharing the Nicoya 2012 earthquake model. Thanks to J. Walter and Y. Jiang for providing tremors and the slow slip events locations along the NP. H. DeShon made available the Nicoya slab contours and microseismicity, and S. Hansen provided the focal mechanism. We want to thank G. Franchello for sharing the HyFlux2 code. M. Protti is acknowledged for his valuable help with explaining aspects of earthquake potential in the study area, and C. Ranero is acknowledged for clarifying aspects of the structural characteristics offshore Nicoya. We also thank W. Rojas for discussion regarding the seismic catalog of Central America. We aknowledge the Editor's work and sincerely thank the helpful comments of Dr. E. Ulutas and an anonymous reviewer. Thanks to S. Chacón, I. Arroyo and G. Cárdenes for technical suggestions. We acknowledge A. Höchner for providing Green Functions for Central America that were used in the first step of this research to compare dislocation models. Most figures were drawn using the GMT software (Wessel and Smith 1998). NZ thanks Helmholtz Association and the GeoSim Program for providing funding for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Zamora.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 8366 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zamora, N., Babeyko, A.Y. Tsunami potential from local seismic sources along the southern Middle America Trench. Nat Hazards 80, 901–934 (2016). https://doi.org/10.1007/s11069-015-2004-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-015-2004-3

Keywords

Navigation