Skip to main content
Log in

Subnetwork Origin-Destination Matrix Estimation Under Travel Demand Constraints

  • Published:
Networks and Spatial Economics Aims and scope Submit manuscript

Abstract

This paper proposes a subnetwork origin-destination (OD) matrix estimation model under travel demand constraints (SME-DC) that explicitly considers both internal-external subnetwork connections and OD demand consistency between the subnetwork and full network. This new model uses the maximum entropy of OD demands as the objective function and uses the total traffic generations (attractions) along with some fixed OD demands of the subnetwork OD nodes as the constraints. The total traffic generations and attractions along with the fixed OD demands of the subnetwork OD nodes are obtained through an OD node transformation and subnetwork topology analysis. For solving the proposed model, a convex combination method is used to convert the nonlinear SME-DC to the classical linear transportation problem, and a tabular method is used to solve the transportation problem. The Sioux Falls network and Kunshan network were provided to illustrate the essential ideas of the proposed model and the applicability of the proposed solution algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bar-Gera H, Boyce SD, Nie YM (2012) User-equilibrium route flows and the condition of proportionality. Transp Res B Methodol 46(3):440–462

    Article  Google Scholar 

  • Bazaraa MS, Sherali HD, Shetty CM (2013) Nonlinear programming: theory and algorithms, 3rd edn. Wiley, Hoboken

    Google Scholar 

  • Bekhor S, Toledo T, Prashker JN (2008) Effects of choice set size and route choice models on path-based traffic assignment. Transportmetrica 4(2):117–133

    Article  Google Scholar 

  • Bell MGH (1983) The estimation of an origin-destination matrix from traffic counts. Transp Sci 17(2):198–217

    Article  Google Scholar 

  • Bell MGH (1991) The estimation of origin-destination matrices by constrained generalised least squares. Transp Res B Methodol 25(1):13–22

    Article  Google Scholar 

  • Boyles SD (2012) Bush-based sensitivity analysis for approximating subnetwork diversion. Transp Res B Methodol 46(1):139–155

    Article  Google Scholar 

  • Bruton MJ (1975) Introduction to transportation planning. Hutchinson, London

    Google Scholar 

  • Chen A, Kasikitwiwat P, Yang C (2013) Alternate capacity reliability measures for transportation networks. J Adv Transp 47(1):79–104

    Article  Google Scholar 

  • De Grange L, Fernández E, de Cea J (2010) A consolidated model of trip distribution. Transport Res E-Log 46(1):61–75

    Article  Google Scholar 

  • Dijkstra EW (1959) A note on two problems in connexion with graphs. Numer Math 1(1):269–271

    Article  Google Scholar 

  • Facchinei F, Pang JS (2007) Finite-dimensional variational inequalities and complementarity problems. Springer Science & Business Media, Berlin

    Google Scholar 

  • Fisk CS (1988) On combining maximum entropy trip matrix estimation with user optimal assignment. Transp Res B Methodol 22(1):69–73

    Article  Google Scholar 

  • Frank M, Wolfe P (1956) An algorithm for quadratic programming. Nav Res Logist 3(1–2):95–110

    Article  Google Scholar 

  • Ge Q, Fukuda D (2016) Updating origin-destination matrices with aggregated data of GPS traces. Transp Res C Emerg Technol 69:291–312

    Article  Google Scholar 

  • Gemar M, Bringardner J, Boyles S, Machemehl R (2014) Subnetwork analysis for dynamic traffic assignment models: strategy for estimating demand at subnetwork boundaries. Transp Res Rec 2466:153–161

    Article  Google Scholar 

  • Grange L, González F, Bekhor S (2016) Path flow and trip matrix estimation using link flow density. Netw Spat Econ 2017, 17(1): 173-195

    Article  Google Scholar 

  • Haghani AE, Daskin MS (1983) Network design application of an extraction algorithm for network aggregation. Transp Res Rec 944: 37-46

  • Hendrickson C, McNeil S (1984) Matrix entry estimation errors. Proceedings of the 9th International Symposium on Transportation and Traffic Theory. Delft University The Netherlands, p 413–430

  • Iqbal MS, Choudhury CF, Wang P, González MC (2014) Development of origin-destination matrices using mobile phone call data. Transp Res C Emerg Technol 40:63–74

    Article  Google Scholar 

  • Jafari E, Boyles SD (2016) Improved bush-based methods for network contraction. Transp Res B Methodol 83:298–313

    Article  Google Scholar 

  • Kuwahara M, Sullivan EC (1987) Estimating origin-destination matrices from roadside survey data. Transp Res B Methodol 21(3):233–248

    Article  Google Scholar 

  • Leblanc LJ (1973) Mathematical programming algorithms for large-scale network equilibrium and network design problems. Unpublished PhD dissertation, Northwestern University, Evanston

  • Li T (2015) A bi-level model to estimate the us air travel demand. Asia Pac J Oper Res 32(02):1–34

    Article  Google Scholar 

  • Li T, Wu J, Sun H, Gao Z (2015) Integrated co-evolution model of land use and traffic network design. Netw Spat Econ 2016, 16(2): 579-603

    Article  Google Scholar 

  • Maher MJ (1983) Inferences on trip matrices from observations on link volumes: a Bayesian statistical approach. Transp Res B Methodol 17(6):435–447

    Article  Google Scholar 

  • Millard-Ball A (2015) Phantom trips: overestimating the traffic impacts of new development. J Transp Land Use 8(1):31–49

    Article  Google Scholar 

  • Mishra S, Wang Y, Zhu X, Moeckel R, Mahapatra S (2013) Comparison between gravity and destination choice models for trip distribution in Maryland. In: Transportation Research Board 92nd Annual Meeting

  • Moya-Gómez B, Salas-Olmedo MH, García-Palomares JC, Gutiérrez J (2018) Dynamic accessibility using big data: the role of the changing conditions of network congestion and destination attractiveness. Netw Spat Econ 18(2):273–290

    Article  Google Scholar 

  • Nihan NL, Davis GA (1987) Recursive estimation of origin-destination matrices from input/output counts. Transp Res B Methodol 21(2):149–163

    Article  Google Scholar 

  • Rossi TF, McNeil S, Hendrickson C (1989) Entropy model for consistent impact-fee assessment. J Urban Plan Dev 115(2):51–63

    Article  Google Scholar 

  • Ruiter E (1967) Towards a better understanding of the intervening opportunities model. Transp Res 1:47–56

    Article  Google Scholar 

  • Sherali HD, Sivanandan R, Hobeika AG (1994) A linear programming approach for synthesizing origin-destination trip tables from link traffic volumes. Transp Res B Methodol 28(3):213–233

    Article  Google Scholar 

  • Szeto WY, Jiang Y, Wang DZW, Sumalee A (2015) A sustainable road network design problem with land use transportation interaction over time. Netw Spat Econ 15(3):791–822

    Article  Google Scholar 

  • Toole JL, Colak S, Sturt B, Alexander LP, Evsukoff A, González MC (2015) The path most traveled: travel demand estimation using big data resources. Transp Res C Emerg Technol 58:162–177

    Article  Google Scholar 

  • Wei C, Asakura Y (2013) A Bayesian approach to traffic estimation in stochastic user equilibrium networks. Transp Res C Emerg Technol 36:446–459

    Article  Google Scholar 

  • Winston WL, Goldberg JB (2004) Operations research: applications and algorithms. Duxbury press, Belmont

    Google Scholar 

  • Xie C, Duthie J (2015) An excess-demand dynamic traffic assignment approach for inferring origin-destination trip matrices. Netw Spat Econ 15(4):947–979

    Article  Google Scholar 

  • Xie C, Kockelman KM, Waller ST (2010) Maximum entropy method for subnetwork origin-destination trip matrix estimation. Transp Res Rec 2196:111–119

    Article  Google Scholar 

  • Xie C, Kockelman KM, Waller ST (2011) A maximum entropy-least squares estimator for elastic origin-destination trip matrix estimation. Transp Res B Methodol 45(9):1465–1482

    Article  Google Scholar 

  • Yang H, Zhou J (1998) Optimal traffic counting locations for origin-destination matrix estimation. Transp Res B Methodol 32(2):109–126

    Article  Google Scholar 

  • Yang H, Sasaki T, Iida Y, Asakura Y (1992) Estimation of origin-destination matrices from link traffic counts on congested networks. Transp Res B Methodol 26(6):417–434

    Article  Google Scholar 

  • Yang H, Bell MGH, Meng Q (2000) Modeling the capacity and level of service of urban transportation networks. Transp Res B Methodol 34(4):255–275

    Article  Google Scholar 

  • Zhou X, Erdogan S, Mahmassani H (2006) Dynamic origin-destination trip demand estimation for subarea analysis. Transp Res Rec 1964:176–184

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to two anonymous referees for their constructive comments and suggestions to improve the quality and clarity of the paper. This research is supported by the National Natural Science Foundation of China (No. 71801115) and the Key Research and Development Projects of Zhenjiang City.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuji Shi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, C., Chang, Y., Shi, Y. et al. Subnetwork Origin-Destination Matrix Estimation Under Travel Demand Constraints. Netw Spat Econ 19, 1123–1142 (2019). https://doi.org/10.1007/s11067-019-09449-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11067-019-09449-6

Keywords

Navigation