Skip to main content

Advertisement

Log in

Integrated Co-evolution Model of Land Use and Traffic Network Design

  • Published:
Networks and Spatial Economics Aims and scope Submit manuscript

Abstract

An integrated co-evolution model with the consideration of land use and traffic network design is proposed in this paper. In the suggested model, two kinds of economic agents are considered. On the one hand, the government makes the investment decision for the traffic network improvement based on the current traffic condition under the limited budget. On the other hand, households and companies will choose their locations according to the attraction of each traffic zone related to the road network accessibility and the housing price. Therefore, the land use is indicated by the population and employment distributions through the evolution process. Besides, the improvement of road capacity is modeled by a general bi-level programming of traffic network design. Simulation experiments show that the city will be more efficient and will have higher average accessibility for employment and population in the evolution process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Alonso W (1964) Location and land use: toward a general theory of land rent [M]. Harvard University Press, Cambridge

    Book  Google Scholar 

  • Anas A (1978) Dynamics of urban residential growth [J]. J Urban Econ 5(1):66–87

    Article  Google Scholar 

  • Barthélemy M, Flammini A (2009) Co-evolution of density and topology in a simple model of city formation [J]. Netw Spat Econ 9(3):401–425

    Article  Google Scholar 

  • Batty M (2007) Cities and complexity: understanding cities with cellular automata, agent-based models, and fractals [M]. The MIT press, Cambridge

    Google Scholar 

  • Batty M, Xie Y, Sun Z (1999) Modeling urban dynamics through GIS-based cellular automata [J]. Comput Environ Urban Syst 23(3):205–233

    Article  Google Scholar 

  • Beckmann MJ (1969) On the distribution of urban rent and residential density [J]. J Econ Theory 1(1):60–67

    Article  Google Scholar 

  • Beckmann MJ (1974) Spatial equilibrium in the housing market [J]. J Urban Econ 1(1):99–107

    Article  Google Scholar 

  • Bravo M, Briceno L, Cominetti R et al (2010) An integrated behavioral model of the land-use and transport systems with network congestion and location externalities [J]. Transp Res B Methodol 44(4):584–596

    Article  Google Scholar 

  • Carlino G, Chatterjee S (2002) Employment deconcentration: a new perspective on America’s postwar urban evolution [J]. J Reg Sci 42(3):445–475

    Article  Google Scholar 

  • Chang JS, Mackett RL (2006) A bi-level model of the relationship between transport and residential location [J]. Transp Res B Methodol 40(2):123–146

    Article  Google Scholar 

  • Dendrinos DS, Mullally H (1981) Evolutionary patterns of urban populations [J]. Geogr Anal 13(4):328–344

    Article  Google Scholar 

  • Dendrinos DS, Mullally H (1985) Urban evolution: studies in the mathematical ecology of cities [M]. Oxford University Press, Oxford

    Google Scholar 

  • El-Geneidy AM, Levinson DM (2006) Access to destinations: development of accessibility measures[R]

  • Frank M, Wolfe P (1956) An algorithm for quadratic programming [J]. Nav Res Logist Q 3(1–2):95–110

    Article  Google Scholar 

  • Gao Z, Zhang H, Sun H (2004) Bi-level programming models, approaches and applications in urban transportation network design problems [J]. Commun Transp Syst Eng Inf 4(1):35–44

    Google Scholar 

  • Geurs KT, van Wee B (2004) Accessibility evaluation of land-use and transport strategies: review and research directions [J]. J Transp Geogr 12(2):127–140

    Article  Google Scholar 

  • Hansen WG (1959) How accessibility shapes land use [J]. J Am Inst Planners 25(2):73–76

    Article  Google Scholar 

  • Hurtubia R, Bierlaire M (2014) Estimation of bid functions for location choice and price modeling with a latent variable approach [J]. Netw Spat Econ 14(1):47–65

    Article  Google Scholar 

  • Karoonsoontawong A, Lin DY (2015) Combined gravity model trip distribution and paired combinatorial logit stochastic user equilibrium problem [J]. Networks and Spatial Economics: 1–38

  • Krugman P (1991) Geography and trade [M]. The MIT press, Cambridge

    Google Scholar 

  • Levinson D, Yerra B (2006) Self-organization of surface transportation networks [J]. Transp Sci 40(2):179–188

    Article  Google Scholar 

  • Levinson D, Xie F, Zhu S (2007) The co-evolution of land use and road networks [J]. Transportation and traffic theory: 839–859

  • Li X, Yeh AGO (2000) Modelling sustainable urban development by the integration of constrained cellular automata and GIS [J]. Int J Geogr Inf Sci 14(2):131–152

    Article  Google Scholar 

  • Li L, Sato Y, Zhu H (2003) Simulating spatial urban expansion based on a physical process [J]. Landsc Urban Plan 64(1):67–76

    Article  Google Scholar 

  • Li ZC, Lam WHK, Wong SC et al (2012) Modeling the effects of integrated rail and property development on the design of rail line services in a linear monocentric city [J]. Transp Res B Methodol 46(6):710–728

    Article  Google Scholar 

  • Li ZC, Chen YJ, Wang YD et al (2013) Optimal density of radial major roads in a two-dimensional monocentric city with endogenous residential distribution and housing prices[J]. Reg Sci Urban Econ 43(6):927–937

    Article  Google Scholar 

  • Ma XS, Lo HK (2012) Modeling transport management and land use over time [J]. Transp Res B Methodol 46(6):687–709

    Article  Google Scholar 

  • Ma XS, Lo HK (2013) On joint railway and housing development strategy [J]. Transp Res B Methodol 57(SI):451–467

    Article  Google Scholar 

  • Martínez FJ (1992) The bid-choice land-use model: an integrated economic framework [J]. Environ Plan A 24(6):871–885

    Article  Google Scholar 

  • Martinez FJ, Henriquez R (2007) A random bidding and supply land use equilibrium model [J]. Transp Res B Methodol 41(6):632–651

    Article  Google Scholar 

  • McDonald JF (2009) Calibration of a monocentric city model with mixed land use and congestion [J]. Reg Sci Urban Econ 39(1):90–96

    Article  Google Scholar 

  • Santé I, García AM, Miranda D et al (2010) Cellular automata models for the simulation of real-world urban processes: a review and analysis [J]. Landsc Urban Plan 96(2):108–122

    Article  Google Scholar 

  • Sheffi Y (1985) Urban transportation networks: equilibrium analysis with mathematical programming methods [J]. Transp Res Part A: Gen 20(1):76–77

    Google Scholar 

  • Sun H, Gao Z, Szeto WY, Long J, Zhao F (2014) A distributionally robust joint chance constrained optimization model for the dynamic network design problem under demand uncertainty [J]. Netw Spat Econ 14(3–4):409–433

    Article  Google Scholar 

  • Wagner DF (1997) Cellular automata and geographic information systems [J]. Environ Plan B 24:219–234

    Article  Google Scholar 

  • Wu J, Xu M, Gao Z (2013) Coevolution dynamics model of road surface and urban traffic structure [J]. Nonlinear Dynamics: 1–8

  • Xie XJ (2008) Calibration method and comparison of gravity model [J]. Commun Stand 8:17–20

    Google Scholar 

  • Xie F, Levinson D (2009) Modeling the growth of transportation networks: a comprehensive review [J]. Netw Spat Econ 9(3):291–307

    Article  Google Scholar 

  • Xu T, Wei H, Hu G (2009) Study on continuous network design problem using simulated annealing and genetic algorithm [J]. Expert Syst Appl 36(2):1322–1328

    Article  Google Scholar 

  • Yamins D, Rasmussen S, Fogel D (2003) Growing urban roads [J]. Netw Spat Econ 3(1):69–85

    Article  Google Scholar 

  • Zhang L, Levinson D (2005) Road pricing with autonomous links [J]. Transp Res Rec: J Transp Res Board 1932(1):147–155

    Article  Google Scholar 

  • Zhang L, Peng GX (2009) Simple method and application on calibration of the gravity model [J]. Technol Econ Areas Commun 11(1):106–108

    Google Scholar 

  • Zhang L, Xu W, Li M (2009) Co-evolution of transportation and land use: modeling historical dependencies in land use and transportation decision-making[R]

Download references

Acknowledgments

This paper is partly supported by the National Natural Science Foundation of China (71322102, 71271024), the National Basic Research Program of China (2012CB725401), Program for New Century Excellent Talents in University (NCET-12-0764), the Fundamental Research Funds for the Central Universities (2015YJS093).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tongfei Li or Jianjun Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, T., Wu, J., Sun, H. et al. Integrated Co-evolution Model of Land Use and Traffic Network Design. Netw Spat Econ 16, 579–603 (2016). https://doi.org/10.1007/s11067-015-9289-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11067-015-9289-3

Keywords

Navigation