Skip to main content
Log in

A Credit-Based Congestion Management Scheme in General Two-Mode Networks with Multiclass Users

  • Published:
Networks and Spatial Economics Aims and scope Submit manuscript

Abstract

This paper examines the design of the credit-based congestion management schemes that achieve Pareto-improving outcome in general two-mode networks. It is assumed that transit is a slower but cheaper alternative to driving alone. The distributional welfare effects of congestion pricing on users with the different value of time (VOT) in Liu and Nie (Trans Res Board 2283:34–43, 2012) are used in developing Pareto-improving credit schemes. We show that, similar to the single-mode model, the sufficient and necessary condition for the existence of a discriminatory Pareto-improving credit scheme is the reduction in the total system cost. A sufficient condition for the existence of an anonymous Pareto-improving credit scheme is also derived. A cross-OD subsidization scheme is proposed when the sufficient condition is not satisfied for each origin-destination (O-D) pair. Numerical experiments on the expanded Sioux Falls networks with a log-normal VOT distribution demonstrate that the proposed Pareto-improving scheme can generate positive net revenue in the presence of good transit coverage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. Of the 2008 net revenues (about US $222 million) of congestion pricing at London, 82 percent went for bus improvements, 9 percent for roads and bridges, and the remaining 9 percent for road safety (Arnold et al. 2010).

  2. For the case where toll can be charged on all links in the network, Yang and Huang (2004) provides a method to obtain anonymous tolls for time-based SO. However, this method is not applicable in our study because toll is not allowed on transit links.

  3. From the computational performance point of view, this may not be the most efficient strategy. It is very likely that classes with similar VOT would use the exactly same bush, and consequently, the number of bushes actually needed per origin is far less than the number of classes. We leave this refinement to a future algorithmic study.

  4. We note that the direct comparison may be infeasible if VOT is continuously distributed.

  5. Note that the operating cost in our model is not affected by route choice, which is certainly not the case in reality. However, our focus here is to examine the the impact of operating cost on the mode choice.

  6. The second-best pricing problem has gained ample interests in the literature, that is how much toll to impose on the roads when much of network is liable to remain untolled.

References

  • Adler JL, Cetin M (2001) A direct redistribution model of congestion pricing. Trans Res Part B 35(5):447–460

    Article  Google Scholar 

  • Arnold R, Smith VC, Doan JQ, Barry RN, Blakesley JL, DeCorla-Souza PT, Muriello MF, Murthy GN, Rubstello PK, Thompson NA (2010) Reducing congestion and funding transportation using road pricing in Europe and Singapore, Technical report

  • Arnott R, De Palma A, Lindsey R (1994) The welfare effects of congestion tolls with heterogeneous commuters. J Trans Econ Policy 28(2):139–161

    Google Scholar 

  • Arnott R, Kraus M (1998) When are anonymous congestion charges consistent with marginal cost pricing?. J Public Econ 67:45–64

    Article  Google Scholar 

  • Bar-Gera H (2010) xTraffic assignment by paired alternative segments. Transx Res Part B 8-9:1022–1046

    Article  Google Scholar 

  • Bar-Gera H, Nie Y, Boyce D, Hu Y, Liu Y (2010) Consistent route flows and the condition of proportionality. In: The proceedings of the 89th annual meeting of transportation research board, CD-ROM

  • Beckmann M, McGuire CB, Winsten CB (1956) Studies in the economics of transportation. Yale University Press, New Haven, Connecticut

    Google Scholar 

  • Daganzo CF, Garcia RC (2000) A pareto improving strategy for the time-dependent morning commute problem. Trans Sci 3:303–311

    Article  Google Scholar 

  • DeCorla-Souza P (1995) Applying the cashing out approach to congestion pricing. Trans Res Rec 1450:34–37

    Google Scholar 

  • Dial RB (2006) A path-based user-equilibrium traffic assignment algorithm that obviates path storage and enumeration. Trans Res Part B 40(10):917–936

    Article  Google Scholar 

  • Eliasson J (2001) Road pricing with limited information and heterogeneous users: A successful case. Ann Reg Sci 35(4):595–604

    Article  Google Scholar 

  • Evans AW (1992) Road congestion pricing: when is it a good policy?. J Trans Econ Policy 26(3):213–244

    Google Scholar 

  • Guo X, Yang H (2010) Pareto-improving congestion pricing and revenue refunding with fixed demand. Trans Res Part B 44(8-9):972–982

    Article  Google Scholar 

  • Hau TD (1998) Road pricing, traffic congestion and the environment. Edward Elgar, Cheltenham, 31 UK, chapter Congestion Pricing and Road Investment, pp 39–78

  • Kockelman KM, Kalmanje S (2005) Credit-based congestion pricing: a policy proposal and the public’s response. Trans Res Part A 39(7-9):671–690

    Google Scholar 

  • Lam TC, Small K (2001) A The value of time and reliability: measurement from a value pricing experiment. Trans Res Part E 37(2-3):231–251

    Article  Google Scholar 

  • Lawphongpanich S, Yin Y (2010) Solving the pareto-improving toll problem via manifold suboptimization. Trans Res Part C: Emerg Technol 18(2):234–246

    Article  Google Scholar 

  • Lawphongpanich S, Yin Y, Hearn DW (2004) Congestion pricing: gaining public acceptance. In: TRISTAN VI: the 6th triennal symposium on transportation analysis

  • Liu Y, Guo X, Yang H (2009) Pareto-improving and revenue-neutral congestion pricing schemes in two-mode traffic networks. NETNOMICS: Econ Res Electron Netw 10(1):123–140

    Article  Google Scholar 

  • Liu Y, Nie Y (2011) Morning commute problem considering route choice, user heterogeneity and multi-criteria system optimum. Trans Res Part B 45(4):619–642

    Article  Google Scholar 

  • Liu Y, Nie Y (2012) Welfare effects of congestion pricing and transit services in multi-class multi-modal networks. Trans Res Board 2283:34–43

    Article  Google Scholar 

  • Nie Y (2010) A class of bush-based algorithms for the traffic assignment problem. Trans Res Part B 44:73–89

    Article  Google Scholar 

  • Nie Y, Liu Y (2010) Existence of self-financing and Pareto-improving congestion pricing: Impact of value of time distribution. Trans Res Part A 44(1):39–51

    Google Scholar 

  • Nie YM, Yin Y (2013) Managing rush hour travel choices with tradable credit scheme. Trans Res Part B: Methodol 50:1–19

    Article  Google Scholar 

  • Pigou AC (1920) The economics of welfare, 1st edn. Macmillan and Company, London

    Google Scholar 

  • Sheffi Y (1985) Urban transportation networks: Equilibrium analysis with mathematical programming methods. Prentice Hall, Englewood Cliffs, NJ

    Google Scholar 

  • Shu L, Nie Y (2010) Stability of user-equilibrium route flow solutions for the traffic assignment problem. Trans Res Part B 44(4):609–617

    Article  Google Scholar 

  • Small KA (1992) Using the revenue from congestion pricing. Transportation 19(4):359–381

    Article  Google Scholar 

  • Van den Berg VAC, Verhoef ET (2011) Winning or losing from dynamic bottleneck congestion pricing?: the distributional effects of road pricing with heterogeneity in values of time and schedule delay. J Public Econ 95(7–8):983–992

  • Verhoef ET (1996) The economics of regulating road transport. U.K., Cheltenham

    Google Scholar 

  • Verhoef ET, Small KA (2004) Product differentiation on roads: constrained congestion pricing with heterogeneous users. J Trans Econ Policy 38(1):127–156

    Google Scholar 

  • Vickrey WS (1969) Congestion theory and transport investment. Am Econ Rev 59(2):251–261

    Google Scholar 

  • Wu D, Yin Y, Lawphongpanich S (2011) Pareto-improving congestion pricing on multimodal transportation networks. Eur J Oper Res 210(3):660–669

    Article  Google Scholar 

  • Wu D, Yin Y, Lawphongpanich S, Yang H (2012) Design of more equitable congestion pricing and tradable credit schemes for multimodal transportation networks. Trans Res Part B: Methodol 46(9):1273–1287

    Article  Google Scholar 

  • Xiao F, Qian ZS, Zhang HM (2013) Managing bottleneck congestion with tradable credits. Trans Res Part B: Methodol 56:1–14

    Article  Google Scholar 

  • Xiao F, Zhang H (2013) Pareto-improving and self-sustainable pricing for the morning commute with nonidentical commuters. Trans Sci 48(2):159–169

    Article  Google Scholar 

  • Yang H, Huang H-J (2004) The multi-class, multi-criteria traffic network equilibrium and systems optimum problem. Trans Res Part B 38(1):1–15

    Article  Google Scholar 

  • Yang H, Huang HJ (2005) Mathematical and economic theory of road pricing. Elsevier Science, New York

    Book  Google Scholar 

  • Yang H, Wang X (2011) Managing network mobility with tradable credits. Trans Res Part B: Methodol 45(3):580–594

    Article  Google Scholar 

  • Zheng N, Rérat G, Geroliminis N (2016) Time-dependent area-based pricing for multimodal systems with heterogeneous users in an agent-based environment. Trans Res Part C: Emer Technol 62:133–148

    Article  Google Scholar 

  • Zhu D-L, Yang H, Li C-M, Wang X-L (2014) Properties of the multiclass traffic network equilibria under a tradable credit scheme. Trans Sci 49(3):519–534

    Article  Google Scholar 

Download references

Acknowledgments

The work was partially supported by National Science Foundation under the award number CMMI-1256021, and by Singapore Ministry of Education Academic Research Fund Tier 1 (WBS No. R-266-000-084-133).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Liu.

Appendix

Appendix

Proof

Proof of Proposition 3

Necessity

According to Definition 1, at the tolled equilibrium, for those who stay on highway, Pareto-improving scheme requires that:

$$\beta_{m}\mu_{rs}^{m}-\pi_{rs}^{m}=\beta_{m} c_{rs}^{k}+\nu_{rs}^{k}+o_{rs}^{C}-\pi_{rs}^{m}\leq \beta_{m}\bar{c}_{rs}+o_{rs}^{C}=\beta_{m}\bar{\mu}_{rs}^{m} \Rightarrow\nu_{rs}^{k} \le \beta_{m}\bar{c}_{rs} - \beta_{m} c_{rs}^{k}+ \pi_{rs}^{m},\forall f_{rs}^{km}>0$$

Multiplying \(f_{rs}^{km} >0\) on both sides and summing all the inequalities over m and k yields

$$ R_{rs}= \sum\limits_{m}\sum\limits_{k} f_{rs}^{km} \nu_{rs}^{k} \le \bar{c}_{rs}{\sum}_{m} \beta_{m} \sum\limits_{k} f_{rs}^{km} - \sum\limits_{m}\beta_{m}\sum\limits_{k} f_{rs}^{km} c_{rs}^{k}+ \sum\limits_{m}\pi_{rs}^{m}\sum\limits_{k} f_{rs}^{km} $$
(27)

where \(R_{rs}={\sum }_{m}{\sum }_{k} \nu _{rs}^{k}f_{rs}^{km} \), defined as the total credits collected between rs; the demand of class m \(d_{rs}^{m}={\sum }_{k} f_{rs}^{km}\) here because those users choose highway (\(q_{rs}^{m}=0\)).

We now turn to those “priced-out” users, the transit users at the tolled equilibrium who use highway at NTE. \(q_{rs}^{m}-\bar {q}_{rs}^{m}\) represents the number of class m users tolled off from highway, and the aggregated users can be denoted by \(q_{rs} - \bar {q}_{rs}\), where \(q_{rs}^{m}\) and \(\bar {q}_{rs}\) specifies the number of transit users of class m at tolled and no-toll equilibrium. To ensure Pareto-improving result requires:

$$\beta_{m}\gamma_{rs} + o_{rs}^{T} - \pi_{rs}^{m} \le \beta_{m} \bar{c}_{rs} + o_{rs}^{C}, \forall m \; \text{such that} \; e\le m\le p \Rightarrow 0\le\beta_{m} \bar{c}_{rs}-\beta_{m}\gamma_{rs}+\pi_{rs}^{m}+{\Delta}_{rs} $$

where \({\Delta }_{rs} = o_{rs}^{C} - o_{rs}^{T}\). Multiplying \(q_{rs}^{m}-\bar {q}_{rs}^{m}\) on both sides and adding all inequalities over m together yields

$$ 0\leq \sum\limits_{m}(q_{rs}^{m}-\bar{q}_{rs}^{m})\beta_{m} \bar{c}_{rs}-\sum\limits_{m}(q_{rs}^{m}-\bar{q}_{rs}^{m})\beta_{m}\gamma_{rs}+ \sum\limits_{m}\pi_{rs}^{m}(q_{rs}^{m} - \bar{q}_{rs}^{m}) +(q_{rs} - \bar{q}_{rs}){\Delta}_{rs} $$
(28)

Finally, for those who always use transit regardless of toll, the following is always satisfied,

$$\beta_{m}\gamma_{rs} - \pi_{rs}^{m} \le \beta_{m}\gamma_{rs}, \forall m \leq e $$

Multiplying \(\bar {q}_{rs}^{m}\) on both sides and adding up all inequalities over all the classes sticking to transit:

$$ 0\leq \sum\limits_{m} \bar{q}_{rs}^{m} \beta_{m}\gamma_{rs}-\sum\limits_{m}\bar{ q}_{rs}^{m}\beta_{m}\gamma_{rs}+\pi_{rs}^{m} \bar{q}_{rs} $$
(29)

Summing up inequalities (27 – 29):

$$\begin{array}{@{}rcl@{}} \Rightarrow R_{rs} &\le& \left[ \bar{c}_{rs}{\sum}_{m} \beta_{m}\left( {\sum}_{k} f_{rs}^{km}+q_{rs}^{m}-\bar{q}_{rs}^{m}\right)+\gamma_{rs}{\sum}_{m} \beta_{m}\bar{q}_{rs}^{m}\right]- \left[ {\sum}_{m} \beta_{m}{\sum}_{k} f_{rs}^{km}c_{rs}^{k}\right. \end{array} $$
(30)
$$\begin{array}{@{}rcl@{}} &&\left.+\gamma_{rs}{\sum}_{m} \beta_{m}q_{rs}^{m}\right] +(q_{rs} - \bar{q}_{rs}){\Delta}_{rs} + {\Pi}_{rs} \end{array} $$
(31)

where \({\Pi }_{rs} \equiv {\sum }_{m}\pi _{rs}^{m} (q_{rs}^{m}+ {\sum }_{k} f_{rs}^{km}) = {\sum }_{m}\pi _{rs}^{m}d_{rs}^{m}\) is defined as the total credits issued between rs. Let \(\bar {f}_{rs}^{km}\) specify the path flow of class m. Recalling the demand constraint (1) for both no-toll and tolled equilibrium: \(d_{rs}^{m}={\sum }_{k} f_{rs}^{km}+q_{rs}^{m}={\sum }_{k}\bar {f}_{rs}^{km}+\bar {q}_{rs}^{m},\Rightarrow f_{rs}^{km}+q_{rs}^{m}-\bar {q}_{rs}^{m}={\sum }_{k}\bar {f}_{rs}^{km}\) , and the term \((q_{rs} - \bar {q}_{rs}){\Delta }_{rs}\) is equivalent to the difference of total operating cost between no-toll and tolled equilibrium: \(\bar {w}_{rs}o_{rs}^{C}+\bar {q}_{rs}o_{rs}^{T}-w_{rs}o_{rs}^{C}-q_{rs}o_{rs}^{T}\), the inequality (31) can be simplified as:

$$\begin{array}{@{}rcl@{}} R_{rs} &\le& \left[\bar{c}_{rs}\sum\limits_{m}\beta_{m}\sum\limits_{k} \bar{f}_{rs}^{km}+\gamma_{rs}\sum\limits_{m}\beta_{m}\bar{q}_{rs}^{m}+\bar{w}_{rs}o_{rs}^{C}+\bar{q}_{rs}o_{rs}^{T}\right]\\ &&- \left[ \sum\limits_{m} \beta_{m}\sum\limits_{k} f_{rs}^{km}c_{rs}^{k}+\gamma_{rs}\sum\limits_{m} \beta_{m}q_{rs}^{m}+w_{rs}o_{rs}^{C}+q_{rs}o_{rs}^{T}\right] + {\Pi}_{rs}\\ \Rightarrow R_{rs} &\le& \bar{C}_{rs} - C_{rs} + {\Pi}_{rs} \end{array} $$
(32)

where C r s and \(\bar {c}_{rs}\) are defined in (8) as the system cost at tolled and no-toll equilibrium respectively. In the most favorable case where all revenues should be issued as credits i.e., R r s r s , Pareto-improving requires toll scheme reduces system cost:

$$\bar{C}_{rs} \ge C_{rs} $$

Sufficiency

The sufficiency can be proven by designing a Pareto-improving credit scheme, in which each class m user receives the equal lump-sum credits π r s = R r s /d r s and the extra class-specific credits.

We now construct the following discriminatory credit scheme. Namely, in addition to π r s , class m receives an extra subsidy \(\phi _{rs}^{m}\) (positive or negative) and each user within the class receives \(\phi _{rs}^{m}/d_{rs}^{m}\):

$$ \phi_{rs}^{m} = \beta_{m}\mu_{rs}^{m} d_{rs}^{m}-\pi_{rs}d_{rs}^{m}- \beta_{m}\bar{\mu}_{rs}^{m} d_{rs}^{m} + \alpha_{rs}^{m}(\bar{C}_{rs}-C_{rs}); \sum\limits_{m}\alpha_{rs}^{m} = 1, \alpha_{rs}^{m} \ge 0, \forall m $$
(33)

The reader can verify that \({\sum }_{m}\phi _{rs}^{m} = 0\), i.e., the class-specific scheme proposed is revenue-neutral (zero net revenue). Now for any class m in O-D pair rs, we have

$$\begin{array}{@{}rcl@{}} \beta_{m}\mu_{rs}^{m} -\pi_{rs} -\frac{ \phi_{rs}^{m}} {d_{rs}^{m}} &=& \beta_{m}\bar{\mu}_{rs}^{m} - \frac{\alpha_{rs}^{m}(\bar{C}_{rs} - C_{rs})}{d_{rs}^{m}} \le \beta_{m}\bar{\mu}_{rs}^{m} \end{array} $$

This completes the proof. □

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Nie, Y.(. A Credit-Based Congestion Management Scheme in General Two-Mode Networks with Multiclass Users. Netw Spat Econ 17, 681–711 (2017). https://doi.org/10.1007/s11067-017-9340-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11067-017-9340-7

Keywords

Navigation