Skip to main content

Advertisement

Log in

Supply Chain Network Designs Developed for Deteriorating Items Under Conditions of Trade Credit and Partial Backordering

  • Published:
Networks and Spatial Economics Aims and scope Submit manuscript

Abstract

Deteriorating items, trade credit, and partial backordering are common in today’s business. However, no previous study on supply chain network design has considered these business aspects together. In this paper, we present supply chain networks designed for deteriorating items under trade credit and two conditions: (a) no shortage and (b) partial backordering of goods. We also present 2 algorithms based on nonlinear optimization that were developed in order to optimize the influence area and the joint replenishment-cycle time in the no-shortage case, and to identify the optimal shortage level in the partial-backordering case. The numerical examples presented herein illustrate how the solution procedure works. The effects of various values of the tested parameters on decisions and costs are also discussed. Our results could be used as a reference by managers when making business decisions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aggarwal P, Jaggi CK (1995) Ordering policies of deteriorating items under permissible delay in payments. J Oper Res Soc 46:458–662

    Article  Google Scholar 

  • Ata AT, David WP, Mohammad SJ, Mirbahedor A (2012) An EOQ model with partial delayed in payment and partial backordering. Omega 41:354–368

    Google Scholar 

  • Chang HJ, Dye CY (1999) An EOQ model for deteriorating items with time varying demand and partial backlogging. J Oper Res Soc 50(11):1176–1182

    Article  Google Scholar 

  • Chang HJ, Dye CY (2010) An inventory model for deteriorating items with partial backlogging and permissible delay in payments. Int J Syst Sci 32(3):345–352

    Article  Google Scholar 

  • Chang CT, Teng JT, Chern MS (2010) Optimal manufacturer’s replenishment policies for deteriorating items in a supply chain with up-stream and down-stream trade credits. Int J Prod Econ 127(1):197–202

    Article  Google Scholar 

  • Chen SC, Leopoldo ECB, Teng JT (2014a) Retailer’s economic order quantity when the supplier offers conditionally permissible delay in payments lint to order quantity. Int J Prod Econ 155:284–291

  • Chen SC, Teng JT, Skouri K (2014b) Economic production quantity models for deteriorating items with up-stream full trade credit and down-stream partial trade credit. Int J Prod Econ 155:302–309

  • Correia I, Nickel S, Saldanha-da-Gama F (2014) Multi-product capacitated single-allocation hub location problems: formulations and inequalities. Netw Spat Econ 14:1–25

    Article  Google Scholar 

  • Ghaderi A (2015) Heuristic algorithms for solving an integrated dynamic center facility location - network design model. Netw Spat Econ 15:43–69

    Article  Google Scholar 

  • Goyal SK (1985) Economics order quantity under conditions of permissible delay in payments. J Oper Res Soc 36:335–338

    Article  Google Scholar 

  • Hamad R, Fares Gualda N (2008) Model for facilities or vendors location in a global scale considering several echelons in the chain. Netw Spat Econ 8:297–307

    Article  Google Scholar 

  • Hu F, Liu D (2010) Optimal replenishment policy for the EPQ model with permissible delay in payments and allowable shortages. Appl Math Model 34:3108–3117

    Article  Google Scholar 

  • Huang YF (2003) Optimal retailer’s ordering policies in the EOQ model under trade credit financing. J Oper Res Soc 54:1011–1015

    Article  Google Scholar 

  • Jamal AMM, Sarker BR, Wang S (1997) An ordering policy for deteriorating items with allowable shortage and permissible delay in payment. J Oper Res Soc 48:826–833

    Article  Google Scholar 

  • Jamal AMM, Sarker BR, Wang S (2000) Optimal payment time for e retailer under permitted delay of payment by the wholesaler. Int J Prod Econ 66:59–66

    Article  Google Scholar 

  • Li Y, Shu J, Wang X, Xiu N, Xu D, Zhang J (2013) Approximation algorithms for integrated distribution network design problems. INFORMS J Comput 25–3:572–584

    Article  Google Scholar 

  • Liao JJ, Huang KN (2010) Deterministic inventory model for deteriorating items with trade credit financing and capacity constraints. Comput Ind Eng 59(4):611–618

    Article  Google Scholar 

  • Mahata GC (2012) An EPQ-based inventory model for exponentially deteriorating items under retailer partial trade credit policy in supply chain. Exp Syst Appl 39(3):3537–3550

    Article  Google Scholar 

  • Miranda PA, Garrio RA (2006) A Simultaneous inventory control and facility location model with stochastic capacity constraints. Netw Spat Econ 6–1:39–53

    Article  Google Scholar 

  • Mousavi SM, Alikar N, Niaki STA, Bahreininejad A (2015) Optimizing a location allocation-inventory problem in a two-echelon supply chain network: a modified fruit fly optimization algorithm. Comput Ind Eng 87:543–560

    Article  Google Scholar 

  • Nasiri GR, Davoudpour H, Karimi B (2010) The impact of integrated analysis on supply chain management: a coordinated approach for inventory control policy. Supply Chain Manag Int J 15(4):277–289

    Article  Google Scholar 

  • Ouyang LY, Chang CT (2013) Optimal production lot with imperfect production process under permissible delay in payments and complete backlogging. Int J Prod Econ 144–2:610–617

    Article  Google Scholar 

  • Ouyang LY, Chang CT, Teng JT (2006) An EOQ model for deteriorating items under trade credit. J Oper Res Soc 56:719–726

    Article  Google Scholar 

  • Ouyang LY, Teng JT, Chen LH (2009) Optimal ordering policy for deteriorating items with partial backlogging under permissible delay in payments. J Glob Optim 34:245–271

    Article  Google Scholar 

  • Pujari NA, Hale TS, Huq F (2008) A continuous approximation procedure for determining inventory distribution schemas within supply chains. Eur J Oper Res 186(1):405–422

    Article  Google Scholar 

  • Romeijin HE, Shu L, Teo CP (2007) Designing two-echelon supply chain networks. Eur J Oper Res 178–2:449–462

    Article  Google Scholar 

  • Roson G, Hubert F (2015) Bargaining power and value sharing in distribution networks: a cooperative game theory approach. Netw Spat Econ 15:71–87

    Article  Google Scholar 

  • Sainathuni B, Parikh PJ, Zhang X, Kong N (2014) The warehouse-inventory-transportation problem for supply chains. Eur J Oper Res 237–2:690–700

    Article  Google Scholar 

  • Shahabi M, Akbarinasaji S, Unnikrishnan A, James R (2013) Integrated inventory control and facility location decisions in a multi-echelon supply chain network with hubs. Netw Spat Econ 13:497–514

    Article  Google Scholar 

  • Shen ZM, Counllard C, Daskin MS (2003) A Joint location-inventory model. Transp Sci 37(1):40–55

    Article  Google Scholar 

  • Shu J (2010) An efficient greedy heuristic for warehouse-retailer network design optimization. Transp Sci 44–2:183–192

    Article  Google Scholar 

  • Shu J, Teo CP, Shen M (2005) Stochastic transportation-inventory network design problem. Oper Res 53–1:48–60

    Article  Google Scholar 

  • Silva F, Gao L (2013) A joint replenishment inventory-location model. Netw Spat Econ 13:107–122

    Article  Google Scholar 

  • Soni HN (2013) Optimal replenishment policies for non-instantaneous deteriorating items with price and stock sensitive demand under permissible delay in payment. Int J Prod Econ 146–1:259–268

    Article  Google Scholar 

  • Teng JT (2002) On the economic order quantity under conditions of permissible delay in payments. J Oper Res Soc 53:915–918

    Article  Google Scholar 

  • Teng JT (2009) Optimal ordering policies for a retailer who offers distinct trade credits to its good and bad credit customers. Int J Prod Econ 119:415–423

    Article  Google Scholar 

  • Teng JT, Goyal SK (2007) Optimal ordering policies for a retailer in a supply chain with up-stream and down-stream trade credits. J Oper Res Soc 58:1252–1255

    Article  Google Scholar 

  • Teng JT, Min J, Pan QH (2012) Economic order quantity model with trade credit financing for non-decreasing demand. Omega 40–3:328–335

    Article  Google Scholar 

  • Teo CP, Shu J (2004) Warehouse-retailer network design problem. Oper Res 52–3:396–408

    Article  Google Scholar 

  • Tsao YC (2009) Retailer’s optimal ordering and discounting policies under advance booking discount and trade credits. Comput Ind Eng 56(1):208–215

    Article  Google Scholar 

  • Tsao YC (2010) Two-phase pricing and inventory management for deteriorating and fashion goods under trade credit. Math Meth Oper Res 72–1:107–127

    Article  Google Scholar 

  • Tsao YC (2012) A continuous approximation approach for the integrated facility-inventory allocation problem. Eur J Oper Res 222:216–228

    Article  Google Scholar 

  • Tsao YC (2013) Distribution center network design under trade credit. Appl Math Comput 222:356–364

    Google Scholar 

  • Wang WC, Teng JT, Lou KR (2014) Seller’s optimal period and cycle time in a supple chain for deteriorating items with maximum lifetime. Eur J Oper Res 232–2:315–321

    Article  Google Scholar 

  • Wu J, Skouri K, Teng JT, Ouyang LY (2014) A note on “optimal replenishment policies for non-instantaneous deteriorating items with price and stock sensitive demand under permissible delay in payment”. Int J Prod Econ 155:324–329

    Article  Google Scholar 

Download references

Acknowledgments

The authors express their gratitude to the Editor-in-Chief, area editor and the anonymous reviewers for their detailed comments and valuable suggestions to improve the exposition of this paper. This paper is supported in part by the Ministry of Science and Technology under grants MOST 102-2410-H-011-029-MY3 and 102-2221-E-011-159-MY3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Chung Tsao.

Appendix

Appendix

For total network cost function to be convex, the following sufficient conditions should be contented:

$$ H=\left|\begin{array}{cc}\hfill \frac{\partial^2TC\left({A}_1,{A}_2\dots {A}_n,T,s\right)}{\partial {s}^2}\hfill & \hfill \frac{\partial^2TC\left({A}_1,{A}_2\dots {A}_n,T,s\right)}{\partial s\partial {A}_i}\hfill \\ {}\hfill \frac{\partial^2TC\left({A}_1,{A}_2\dots {A}_n,T,s\right)}{\partial s\partial {A}_i}\hfill & \hfill \frac{\partial^2TC\left({A}_1,{A}_2\dots {A}_n,T,s\right)}{\partial {A_i}^2}\hfill \end{array}\right|>o\kern0.5em \mathrm{and}\kern0.5em \frac{\partial^2TC\left({A}_1,{A}_2\dots {A}_n,T,s\right)}{\partial {s}^2}>0. $$

By taking the second derivative of Eq. (1) with respect to A i , s, we get

$$ \frac{\partial^2T{C}_1\left({A}_1,{A}_2\dots {A}_n,T,s\right)}{\partial {s}^2}={\displaystyle \sum_{i=1}^N}\frac{hT\zeta {c}_i^2{\delta}_i{\lambda}_i}{A_i}+{\displaystyle \sum_{i=1}^N}\frac{bT\beta \zeta {c}_i^2{\delta}_i{\lambda}_i}{A_i}+{\displaystyle \sum_{i=1}^N}\frac{cT\zeta \theta {c}_i^2{\delta}_i{\lambda}_i}{A_i}+{\displaystyle \sum_{i=1}^N}\frac{cT\zeta {i}_p{c}_i^2{\delta}_i{\lambda}_i}{A_i}+{\displaystyle \sum_{i=1}^N}\frac{c{T}^2\beta \zeta {C}_i^2{\delta}_i{\lambda}_i}{A_i}, $$
(A1)
$$ \begin{array}{l}\frac{\partial^2T{C}_1\left({A}_1,{A}_2\dots {A}_n,T,s\right)}{\partial {A_i}^2}=\left|\begin{array}{l}{\displaystyle \sum_{i=1}^N}\frac{2F{c}_i}{A_i^3}+{\displaystyle \sum_{i=1}^N}\frac{2O{c}_i}{T{A}_i^3}+{\displaystyle \sum_{i=1}^N}\frac{h{\left(1-s\right)}^2T\zeta {c}_i^2{\delta}_i{\lambda}_i}{A_i^3}+{\displaystyle \sum_{i=1}^N}\frac{2gs\left(1-\beta \right)\zeta {c}_i^2{\delta}_i{\lambda}_i}{A_i^3}+{\displaystyle \sum_{i=1}^N}\frac{b{s}^2T\beta \zeta {c}_i^2{\delta}_i{\lambda}_i}{A_i^3}\\ {}+{\displaystyle \sum_{i=1}^N}\frac{c{\left(1-s\right)}^2T\zeta \theta {c}_i^2{\delta}_i{\lambda}_i}{A_i^3}+{\displaystyle \sum_{i=1}^N}\frac{2c\zeta \left(1-s+\frac{1}{2}\left(1-s\right)T\theta \right){c}_i{C}_i{\delta}_i{\lambda}_i}{A_i^3}+{\displaystyle \sum_{i=1}^N}\frac{c{s}^2{T}^2\beta \zeta {C}_i^2{\delta}_i{\lambda}_i}{A_i^3}\\ {}+{\displaystyle \sum_{i=1}^N}-\frac{\zeta {c}_i{c}_r{f}_r{\delta}_i{\lambda}_i}{4{A}_i^{3/2}}+{\displaystyle \sum_{i=1}^N}\frac{c\zeta {\mathrm{i}}_p{c}_i^2{\left(\left(1-s\right)T-{t}_c\right)}^2{\delta}_i{\lambda}_i}{T{A}_i^3}-{\displaystyle \sum_{i=1}^N}\frac{w\zeta {\mathrm{i}}_e{c}_i^2{t}_c^2{\delta}_i{\lambda}_i}{T{A}_i^3}\end{array}\right|,\\ {}\end{array} $$
(A2)
$$ \begin{array}{l}\frac{\partial^2T{C}_1\left({A}_1,{A}_2\dots {A}_n,T,s\right)}{\partial s\partial {A}_i}=\left|\begin{array}{l}{\displaystyle \sum_{i=1}^N}\frac{h\left(1-s\right)T\zeta {c}_i^2{\delta}_i{\lambda}_i}{A_i^2}+{\displaystyle \sum_{i=1}^N}-\frac{g\left(1-\beta \right)\zeta {c}_i^2{\delta}_i{\lambda}_i}{A_i^2}+{\displaystyle \sum_{i=1}^N}-\frac{bsT\beta \zeta {c}_i^2{\delta}_i{\lambda}_i}{A_i^2}+{\displaystyle \sum_{i=1}^N}\frac{c\left(1-s\right)T\zeta \theta {c}_i^2{\delta}_i{\lambda}_i}{A_i^2}\\ {}-{\displaystyle \sum_{i=1}^N}-\frac{Tw\zeta {\mathrm{i}}_e{c}_i^2{\delta}_i{\lambda}_i}{2{A}_i^2}+{\displaystyle \sum_{i=1}^N}-\frac{c\zeta \left(-1-\frac{T\theta }{2}\right){c}_i{C}_i{\delta}_i{\lambda}_i}{A_i^2}+{\displaystyle \sum_{i=1}^N}-\frac{cs{T}^2\beta \zeta {C}_i^2{\delta}_i{\lambda}_i}{A_i^2}\end{array}\right|.\\ {}\end{array} $$
(A3)

With the stable point (A * i1 , s *1 ), we check for convexity. The sufficient optimal conditions for minimizing TC 1(A 1, A 2 … A n , T, s) are

$$ \frac{\partial^2T{C}_1\left({A}_1,{A}_2\dots {A}_n,T,s\right)}{\partial {s}^2}>0\ \forall\ {A}_1,{A}_2\dots {A}_n,T,s $$
(A4)
$$ \begin{array}{l}H=\left(\frac{\partial^2T{C}_1\left({A}_1,{A}_2\dots {A}_n,T,s\right)}{\partial {s}^2}\right)*\left(\frac{\partial^2T{C}_1\left({A}_1,{A}_2\dots {A}_n,T,s\right)}{\partial {A_i}^2}\right)-{\left(\frac{\partial^2T{C}_1\left({A}_1,{A}_2\dots {A}_n,T,s\right)}{\partial {A}_i\partial s}\right)}^2\\ {}=\left|\begin{array}{l}{\displaystyle \sum_{i=1}^N}\frac{\zeta {\lambda}_i{\delta}_i{C}_i^3}{4{A}_i^4}\left(4\zeta {\lambda}_i{\delta}_i{C}_i\left({g}^2{\left(1-\beta \right)}^2+2gT\left(1-\beta \right)\left(h+c\theta \right)+b{T}^2\beta \left(h+c\theta \right)-w\left(h+b\beta +c\theta \right){I}_e{t}_c^2\right.\right)\\ {}+{\displaystyle \sum_{i=1}^N}\frac{\zeta {\lambda}_i{\delta}_i{C}_i^3}{4{A}_i^4}\left(h+b\beta +c\theta \right)\left(8\left(O+FT\right)-T{A}_i^{\frac{3}{2}}{C}_r{f}_r\zeta {\lambda}_i{\delta}_i\right)+{\displaystyle \sum_{i=1}^N}\frac{\zeta {\lambda}_i{\delta}_i{C}_i^3}{4{A}_i^4}\left(c\left(-1+s\right)T\zeta \left(2+T\theta \right){C}_i{\delta}_i{\lambda}_i\right)\\ {}+{\displaystyle \sum_{i=1}^N}\frac{\zeta {\lambda}_i{\delta}_i{C}_i^3}{4{A}_i^4}\left(c{I}_p\left(8O+8FT-T{A}_i^{\frac{3}{2}}{C}_r{f}_r\zeta {\lambda}_i{\delta}_i+4\zeta {\lambda}_i{\delta}_i{C}_i\left(T\left(2g\left(1-\beta \right)+b\beta T\right)+\left(h+b\beta +c\theta +w{I}_e\right){t}_c^2\right)\right)\right)\end{array}\right|\\ {}\end{array} $$
$$ \mathrm{And}\kern0.5em H>0\ \forall\ {A}_1,{A}_2\dots {A}_n,\mathrm{T},\mathrm{s}\kern0.5em . $$
(A5)

Thus, we know that inequalities equations (A4) and (A5) satisfy the sufficient condition. Now, we prove that TC 2(A 1, A 2 … A n , T, s) is a convex function in A i , s.

Likewise, by taking the second derivative of Eq. (2) with respect to both of selling price, we get

$$ \frac{\partial^2T{C}_2\left({A}_1,{A}_2\dots {A}_n,T,s\right)}{\partial {s}^2}={\displaystyle \sum_{i=1}^N}\frac{hT\zeta {c}_i^2{\delta}_i{\lambda}_i}{A_i}+{\displaystyle \sum_{i=1}^N}\frac{bT\beta \zeta {c}_i^2{\delta}_i{\lambda}_i}{A_i}+{\displaystyle \sum_{i=1}^N}\frac{cT\zeta \theta {c}_i^2{\delta}_i{\lambda}_i}{A_i}+{\displaystyle \sum_{i=1}^N}\frac{c{T}^2\beta \zeta {C}_i^2{\delta}_i{\lambda}_i}{A_i} $$
(A6)
$$ \begin{array}{l}\frac{\partial^2T{C}_2\left({A}_1,{A}_2\dots {A}_n,T,s\right)}{\partial {A_i}^2}=\left|\begin{array}{l}{\displaystyle \sum_{i=1}^N}\frac{2F{c}_i}{A_i^3}+{\displaystyle \sum_{i=1}^N}\frac{2O{c}_i}{T{A}_i^3}+{\displaystyle \sum_{i=1}^N}\frac{h{\left(1-s\right)}^2T\zeta {c}_i^2{\delta}_i{\lambda}_i}{A_i^3}+{\displaystyle \sum_{i=1}^N}\frac{2gs\left(1-\beta \right)\zeta {c}_i^2{\delta}_i{\lambda}_i}{A_i^3}\\ {}+{\displaystyle \sum_{i=1}^N}\frac{b{s}^2T\beta \zeta {c}_i^2{\delta}_i{\lambda}_i}{A_i^3}+{\displaystyle \sum_{i=1}^N}\frac{c{\left(1-s\right)}^2T\zeta \theta {c}_i^2{\delta}_i{\lambda}_i}{A_i^3}+{\displaystyle \sum_{i=1}^N}\frac{2c\zeta \left(1-s+\frac{1}{2}\left(1-s\right)T\theta \right){c}_i{C}_i{\delta}_i{\lambda}_i}{A_i^3}\\ {}+{\displaystyle \sum_{i=1}^N}\frac{c{s}^2{T}^2\beta \zeta {C}_i^2{\delta}_i{\lambda}_i}{A_i^3}+{\displaystyle \sum_{i=1}^N}-\frac{\zeta {c}_i{c}_r{f}_r{\delta}_i{\lambda}_i}{4{A}_i^{3/2}}-{\displaystyle \sum_{i=1}^N}\frac{2w\zeta {i}_e{c}_i^2\left(-\frac{1}{2}\left(1-s\right)T+{t}_c\right){\delta}_i{\lambda}_i}{A_i^3}\end{array}\right|\\ {}\end{array} $$
(A7)
$$ \frac{\partial^2T{C}_2\left({A}_1,{A}_2\dots {A}_n,T,s\right)}{\partial s\partial {A}_i}=\left|\begin{array}{l}{\displaystyle \sum_{i=1}^N}\frac{h\left(1-s\right)T\zeta {c}_i^2{\delta}_i{\lambda}_i}{A_i^2}+{\displaystyle \sum_{i=1}^N}-\frac{g\left(1-\beta \right)\zeta {c}_i^2{\delta}_i{\lambda}_i}{A_i^2}+{\displaystyle \sum_{i=1}^N}-\frac{bsT\beta \zeta {c}_i^2{\delta}_i{\lambda}_i}{A_i^2}\\ {}+{\displaystyle \sum_{i=1}^N}\frac{c\left(1-s\right)T\zeta \theta {c}_i^2{\delta}_i{\lambda}_i}{A_i^2}-{\displaystyle \sum_{i=1}^N}-\frac{Tw\zeta {\mathrm{i}}_e{c}_i^2{\delta}_i{\lambda}_i}{2{A}_i^2}+{\displaystyle \sum_{i=1}^N}-\frac{c\zeta \left(-1-\frac{T\theta }{2}\right){c}_i{C}_i{\delta}_i{\lambda}_i}{A_i^2}\\ {}+{\displaystyle \sum_{i=1}^N}-\frac{cs{T}^2\beta \zeta {C}_i^2{\delta}_i{\lambda}_i}{A_i^2}\end{array}\right|. $$
(A8)

We can see that

$$ \frac{\partial^2T{C}_2\left({A}_1,{A}_2\dots {A}_n,T,s\right)}{\partial {s}^2}>0\ \forall\ {A}_1,{A}_2\dots {A}_n,T,s $$
(A9)
$$ \begin{array}{l}H=\left(\frac{\partial^2T{C}_2\left({A}_1,{A}_2\dots {A}_n,T,s\right)}{\partial {s}^2}\right)*\left(\frac{\partial^2T{C}_2\left({A}_1,{A}_2\dots {A}_n,T,s\right)}{\partial {A_i}^2}\right)-{\left(\frac{\partial^2T{C}_2\left({A}_1,{A}_2\dots {A}_n,T,s\right)}{\partial {A}_i\partial s}\right)}^2\\ {}\kern1.5em =\left|\begin{array}{l}{\displaystyle \sum_{i=1}^N}\frac{\zeta {\lambda}_i{\delta}_i{C}_i^3}{4{A}_i^4}{\left(4\zeta {\lambda}_i{\delta}_i{C}_i\left(g\left(1-\beta \right)+T\right.\left(h-hs-bs\beta +c\theta -cs\theta \right)+T{w}_e\right)}^2\\ {}+{\displaystyle \sum_{i=1}^N}\frac{\zeta {\lambda}_i{\delta}_i{C}_i^3}{4{A}_i^4}\left(h+b\beta +c\theta \right)\left(8O+8FT-T{A}_i^{\frac{3}{2}}{C}_r{f}_r\zeta {\lambda}_i{\delta}_i\right)+{\displaystyle \sum_{i=1}^N}\frac{\zeta {\lambda}_i{\delta}_i{C}_i^3}{4{A}_i^4}\left(cT\zeta \left(2+T\theta \right){C}_i{\delta}_i{\lambda}_i\right)\\ {}+{\displaystyle \sum_{i=1}^N}\frac{\zeta {\lambda}_i{\delta}_i{C}_i^3}{4{A}_i^4}\left(h+b\beta +c\theta \right)\left(4\zeta {\lambda}_i{\delta}_i{C}_i\left(T\left(2g\left(1-\beta \right)+Y\left(h{\left(-1+s\right)}^2\theta \right.\right)+\left(\left.T-sT+2{t}_c\right)w{I}_e\right){t}_c^2\right)\right)\end{array}\right|\end{array} $$
$$ \mathrm{And}\ H>0\ \forall\ {A}_1,{A}_2\dots {A}_n,\mathrm{T},\mathrm{s}\;. $$
(A10)

Then, we find that inequalities (A9) and (A10) satisfy the following sufficient conditions. The total network function TC(A 1, A 2 … A n , T, s) is also a convex function in A i , s.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsao, YC., Linh, V.T. Supply Chain Network Designs Developed for Deteriorating Items Under Conditions of Trade Credit and Partial Backordering. Netw Spat Econ 16, 933–956 (2016). https://doi.org/10.1007/s11067-015-9304-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11067-015-9304-8

Keywords

Navigation