Skip to main content

Advertisement

Log in

Renewable Portfolio Standards in the Presence of Green Consumers and Emissions Trading

  • Published:
Networks and Spatial Economics Aims and scope Submit manuscript

Abstract

Greenhouse gas (GHG) emissions trading, green pricing programs and renewable portfolio standards (RPS) are three concurrent policies implemented in the United States to reduce reliance on fossil fuel and GHG emissions. Despite their differences in policy targets, they are closely related and integrated with competitive electric markets. This paper examines the interactions among these three policies by considering two aspects of the RPS policy design: double-counting and bundling. Whereas the former grants utilities using the same MWh of renewable energy to meet RPS and to sell as green power, the latter allows them to bundle the renewable energy credits/certificates (RECs) with non-renewable electricity and sell as green power. This paper studies the policy designs by formulating each policy combination as a market model, which treats electricity as a differentiated product. We derive the conditions under which the REC price serves as the upper bound of the green premium or vice versa. The theoretical analysis shows that the bundling could be redundant in the presence of double counting. The policies that allow for double-counting appear to be a better choice, since they result in a higher social surplus. Most surplus gains are due to consumers surplus from green power sales. The framework we develop in this paper is capable of incorporating other detailed policy designs in the analysis such as strategic reserve and offset.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. In the United States, the electric power sector emits three-quarters of SO2 emissions, one-fifth of NOx emissions, one-third of mercury emissions, and two-fifths of GHG, with the latter fraction anticipated to rise significantly in the next two decades.

  2. ACESA includes (i) a clean energy provision to promote renewable energy through RPS, low-carbon transportation fuel, clean electric vehicles, smart grid technology etc., (ii) an energy efficiency provision to increase energy efficiency across economy sectors and (iii) a global warming provision to develop federal C&T programs to regulate GHG emissions.

  3. Consistent with the actual policies, the point-of-regulation for RPS and GHG C&T is on LSE and producers, respectively. Several GHG C&T programs, which differ by their point-of-regulation, were considered by California when implementing AB32 (e.g., source-based, load-based and first-jurisdictional approaches.) The motivation of the second and the third programs is to prevent the incidents of emissions leakage (Chen et al. 2011). These design features can be easily incorporated in the current models, but their interaction of the RPS and green pricing programs are beyond the scope of this paper.

  4. Although the recent setback of the Obama Administration in the midterm election may slowdown the development of a comprehensive federal climate or energy policy, the EPA (Environmental Protection Agency) has undertaken a strong leadership in regulating GHG emissions through the New Source Review (NSR) rules under the Clear Air Act. Unlike the fact that NSR has little impacts on existing facilities in regulating SO2 emissions, NSR for GHG or CO2 is expected to have significant financial impacts on the power sector (Burtraw et al. 2004).

  5. The term “double-counting” has also been defined differently in references (Bird and Lokey (2007); Holt and Wiser (2007)) as the same MWh of green energy being used to meet RPS in more than one state.

  6. Similar models based on complementarily formulations include electricity markets (Leuthold et al. 2010; Smeers 2003a, b) and gas markets (Gabriel et al. 2003).

  7. These parameters are defined in the numerical section mainly for illustrative purposes with partial reference to the actual market data. In reality, the endogeneity between prices and quantities makes the identification very difficult in most cases. A typical approach is to identify some exogenous shocks, demand (cost) shifters, that are perpendicular or unrelated to the supply (demand) conditions and use them as instrument variables in the analysis. A classic example is to estimate the demand of fish consumption in fish markets (Angrist et al. 2000). The paper illustrated using the weather conditions as an instrument variable for cost shifters since the fish demand in the market is unlikely to be affected by the bad weather conditions hundred or thousands of miles away.

  8. Of course, the green premium could also depend on the prices of ordinary electricity or the total consumptions. However, under these cases, the inverse demand function could be nonlinear, and the nice properties associated with LCPs cannot be applied. We thank one referee for noting this.

  9. This formulation is also used for modeling the economic and emissions implications of the load-based emissions trading program under the California AB32 (Chen et al. 2011). When (i) modeling electricity as homogeneous products (no green premium) and (ii) without considering RPS and C&T policies, the lines 2 and 4 in Eq. (9) and the Constraints (5) and (6) will be omitted. After substitutions of z variables for s variables, the first-order condition with respect to z becomes \(0 \leq \bot p_{\mathrm fihj}-(P^0_j-(P^0_j/Q^0_j)(z_j^{\rm O}+z_j^{\rm G}) \geq 0\), where the second term to the right of \(\bot\) defines the marginal benefit. This condition states that consumption in j will be up to the level when p fihj = marginal benefit, a standard result from the consumers theory.

  10. In a sense, we model the consumers and LSE jointly. The first three lines in the objective function (Eq. (3)) could be expanded to “consumers’ willingness-to-pay” —“consumers’ payments to the LSE” + “payments received by the LSE from consumers”—“payments to producers by the LSE.” The middle two terms are cancelled out because they become an internal wealth transfer between consumers and the LSE when modeling the consumers and LSE as a single entity.

  11. Of course, the power market could be dominated by a few producers (Bushnell et al. 2008), and a oligopoly formulation could be an alternative representation to the market conditions. However, the price-taking assumptions concerning the producers behavior allow us to isolate and understand the interactions among the three policies. For example, had market power in electricity markets been considered, we might find it difficult to disentangle the effects of bounding or double-counting from strategic manipulation. One possible extension is to model LSEs with market power by formulating their objective functions as “consumers’ payments to the LSE” minus “payments received by the LSE from consumers.” We leave these considerations to future research.

  12. We solve a linear program (LP) that minimizes the production cost subject to fixed demand to get the reference prices or the dual variables of nodal demand constraints. This is equivalent to the perfect competition assumption. We then construct the inverse demand curves with the assumed elasticity. Given that the demand is linear in the model, the demand elasticity will vary by the levels of the power consumptions. However, because of our price-taking assumption concerning producers, we would expect that the market outcomes would not be too sensitive to our assumption of elasticity.

References

  • Amundsen ES, Mortensen JB (2001) The Danish green certificate system: some simple analytical results. Energy Econ 23:489–509

    Article  Google Scholar 

  • Angrist J, Graddy K, Imbens G (2000) The interpretation of instrumental variables estimators in simultaneous equations models with an application to the demand for fish. Rev Econ Stud 67:499–527

    Article  Google Scholar 

  • Azevedo I, Morgan M, Lave L (2011) Residential and regional electricity consumption in the US and EU: How much will higher prices reduce CO2 emissions? Electr J 24:21–29

    Article  Google Scholar 

  • Bertsimas D, Tsitsiklis J (1997) Introduction to linear optimization. Athena Scientific

  • Bird LA, Lokey E (2007) Interaction of compliance and voluntary renewable energy market. Tech Rep NREL/TP-670-42096, National Renewable Energy Laboratory

  • Bird LA, Holt E, Carroll GL (2008) Implications of carbon cap-and-trade for US voluntary renewable energy markets. Energy Policy 36(6):2063–2073

    Article  Google Scholar 

  • Burtraw D, Palmer K, Kahn D (2004) Allocation of CO2 emissions allowances in the regional greenhouse gas cap-and-trade program. Tech Rep RfF Discussion Papers 05-25, Resources for the Future

  • Bushnell J (2003) A mixed complementarity model of hydro-thermal electricity competition in the Western US. Oper Res 51(1):81–93

    Article  Google Scholar 

  • Bushnell J, Mansur E, Saravia C (2008) Vertical arrangements, market structure and competition: an analysis of restructured US electricity markets. Am Econ Rev 98(1):237–266

    Article  Google Scholar 

  • California Air Resources Board (2007) Low-carbon fuel standard. http://www.energy.ca.gov/lowcarbonfuelstandard/index.html. Accessed Feb 2007

  • California Air Resources Board (2008) AB32 fact sheet—California Global Warming Solutions Act. http://www.arb.ca.gov/cc/factsheets/ab32factsheet.pdf. Accessed May 2008

  • Chen Y, Hobbs BF (2005) An oligopolistic power market model with tradable NOx permits. IEEE Trans Power Syst 20(1):119–129

    Article  Google Scholar 

  • Chen Y, Hobbs BF, Leyffer S, Munson T (2006) Solution of large-scale leader-follower market equilibrium problems: Electric power and NOx allowances markets. Comput Manag Sci 3(4):307–330

    Article  Google Scholar 

  • Chen Y, Liu A, Hobbs BF (2011) Economic and emissions implications of load-based, source-based and first-seller emissions trading programs under California AB32. Oper Res 59(3):696–712

    Article  Google Scholar 

  • Committe on Energy and Commerce (2008) Chairmen Waxman, Markey release discussion draft of new clean energy legislation

  • Convery F, Redmond L (2007) Market and price developments in the European Union Emissions Trading Schemes. Rev Environ Econ Policy 1:88–111

    Article  Google Scholar 

  • Database of State Incentives for Renewable and Efficiency (2008) New Jersey incentives for renewable energy. http://www.dsireusa.org/. Accessed June 2008

  • Espey JA, Espey M (2004) Turning on the lights: a meta-analysis of residual electricity turning on the lights: a meta-analysis of residual electricity demand elasticities. J Agric Appl Econ 36(1):65–81

    Google Scholar 

  • European Union (2008) Emissiosn trading scheme. http://ec.europa.eu/environment/climat/emission.htm. Accessed June 2008

  • Ferris M, Munson T (2000) Complementarity problems in GAMS and the PATH solver. J Econ Dyn Control 25:165–188

    Article  Google Scholar 

  • Gabriel SA, Manik J, Vikas S (2003) Computational experience with a large-scale, multi-period, spatial equilibriummodel of the north american natural gas system. Netw Spat Econ 3(2):97–122

    Article  Google Scholar 

  • Gillenwater M (2008a) Redefining RECs (part 1): untangling attributes and offsets. Energy Policy 36(6):2019–2219

    Google Scholar 

  • Gillenwater M (2008b) Redefining RECs (part 2): untangling certificates and emissions markets. Energy Policy 36(6):2120–2129

    Article  Google Scholar 

  • Hindsberger M, Nybrow MH, Ravn HF, Schmit R (2003) Co-existence of electricity, TEP and TGC markets in the Baltic Sea region. Energy Policy 31(1):85–96

    Article  Google Scholar 

  • Hobbs BF (2001) Linear complementarity models of Nash-Cournot competition in bilateral and POOLCO power markets. IEEE Trans Power Syst 16(2):194–202

    Article  Google Scholar 

  • Hobbs BF, Drayton G, Bartholomew E, Lise W (2008) Improved transmission representations in oligopolistic market models: quadratic losses, phase shifters, and DC lines. IEEE Trans Power Syst 23(3):1018–1029

    Article  Google Scholar 

  • Holt E, Wiser R (2007) The treatment of renewable energy certificates, emissions allowances, and green power programs in state renewable portfolio standards. Tech Rep LBNL-62574, Lawrence Berkeley National Laboratory

  • Jensen S, Skytte K (2002) Interactions between the power and green certificate markets. Energy Policy 30(5):425–435

    Article  Google Scholar 

  • Leuthold FU, Weigt H, von Hirschhausen C (2010) A large-scale spatial optimization model of the european electricity market. Nets Spat Econ 4(4):1–33

    Google Scholar 

  • Linares P, Santos FJ, Ventosa M (2008) Coordination of carbon reduction and renewable energy support policies. Cli Pol 8:377–394

    Article  Google Scholar 

  • Metzler C, Hobbs B, Pang JS (2003) Nash-Cournot equilibria in power markets on a linearized DC network with arbitrage: formulations and properties. Nets Spat Econ 3(2):123–150

    Article  Google Scholar 

  • Midwestern Greenhouse Gas Reduction Accord (2011) New direction, new energy, new jobs and a cleaner world. http://www.midwesternaccord.org/. Accessed July 2011

  • Mozumder P, Marathe A (2004) Gains from an integrated market for renewable energy credits. Ecol Econ 49:259–272

    Article  Google Scholar 

  • Regional Greenhouse Gas Initiative (2009) Auction results. http://www.rggi.org/co2-auctions/results. Accessed June 2009

  • Regional Greenhouse Gas Initiative (2011) Regional Greenhouse Gas Initiative: an initiative of the Northeast and Mid-Atlantic States of the US. http://www.westernclimateinitiative.org/. Accessed July 2011

  • Schweppe F, Caramanis M, Tabors R, Bohn R (1988) Spot pricing of electricity. Kluwer Academic Publihsers

  • Smeers Y (2003a) Market incompleteness in regional electricity transmission. part i: The forward market. Netw Spat Econ 3(2):154–174

    Google Scholar 

  • Smeers Y (2003b) Market incompleteness in regional electricity transmission. part ii: the forward and real time markets. Nets Spat Econ 3(2):175–196

    Article  Google Scholar 

  • Tsao CC, Campbell JE, Chen Y (2011) When renewable portfolio standards meet cap-and-trade regulations in the power sector: market interactions, profit implications, and policy redundancy. Energy Policy 39(7):3966–3974

    Article  Google Scholar 

  • US Department of Energy (2008) Green Power Network. http://www.eere.energy.gov/greenpower/markets/pricing.shtml?p%age=1. Accessed July 2008

  • Wei JY, Smeers Y (1999) Spatial oligopolistic electricity models with Cournot generators and regulated transmission price. Oper Res 47(1):102–112

    Article  Google Scholar 

  • Western Climate Initiative (2011) Western Climate Initiative. http://www.westernclimateinitiative.org/. Accessed July 2011

  • Wiser R, Barbose G (2007) Renewables portfolio standards in the United States: A status report with data through 2007. Tech rep, Lawrence Berkeley National Laboratory

  • Yao J, Adler L, Oren S (2008) Modeling and computing two-settlement oligopolistic equilibrium in a congested electricity network. Oper Res 56(1):34–47

    Article  Google Scholar 

Download references

Acknowledgement

The second author is partially supported by the National Science Foundation under the Award 0835989.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yihsu Chen.

Appendices

Appendix A: Equilibrium market models

Table 7 summarizes the corresponding sets of equilibrium conditions under each case. Notice that these are the concatenated conditions for all market participants, including consumers, LSEs, producers and the ISO. In the remainder of this section, we present the KKT conditions for each market participants: LSE, producers, and ISO.

Table 7 Summary of equilibrium market models

KKT for LSEs

Case 1

both double-counting and bundling are allowed.

$$\forall f,i,h \in H^{\rm O}_{\mathrm if}, j \leq z_{\mathrm fihj} \perp p_{\mathrm fihj} - \omega^{\rm O}_j \geq 0 \label{eq11}\\ $$
(25)
$$\forall f,i,h \in H^{\rm G}_{\mathrm if}, j \leq z_{\mathrm fihj} \perp p_{\mathrm fihj} - \omega^{\rm G}_j \geq 0 \label{eq12}\\ $$
(26)
$$\forall j \leq z_j^{\rm O} \perp \theta_j + R \phi_j + R \tau_j \geq 0 \label{eq11z}\\ $$
(27)
$$\forall j \leq z_j^{\rm G} \perp \theta_j + (R-1) \phi_j + (R -2) \tau_j - \delta_j \geq 0 \label{eq12z}\\ $$
(28)
$$\forall j \leq s_j^{\rm O} \perp - P^0_j + \frac{P^0_j}{Q^0_j}{\left(s_j^{\rm O}+s_j^{\rm G}\right)} - \theta_j \geq 0 \label{eq13}\\ $$
(29)
$$\begin{array}{lll}\forall j & 0 \leq s_j^{\rm G} \perp - P^0_j + \frac{P^0_j}{Q^0_j}{\left(s_j^{\rm O}+s_j^{\rm G}\right)} - P^{\rm G}_j + \frac{P^{\rm G}_j}{Q^{\rm G}_j}{s_j^{\rm G}}\\ & \qquad \qquad \qquad \qquad - \theta_j + \tau_j + \delta_j \geq 0 \label{eq14}\end{array} $$
(30)
$$\forall j \omega^{\rm O}_j \mathrm{ free} \perp z_j^{\rm O} = \sum_{f,i,h\in H^{\rm O}_{\mathrm if}}z_{\mathrm fihj} \label{eqzO} \\ $$
(31)
$$\forall j \omega^{\rm G}_j \mathrm{ free} \perp z_j^{\rm G} = \sum_{f,i,h\in H^{\rm G}_{\mathrm if}}z_{\mathrm fihj} \label{eqzG} \\ $$
(32)
$$\forall j s^{\rm {REC}}_j \mathrm{ free} \perp - p^{\rm {REC}} + \phi_j + \tau_j + \delta_j = 0 \label{eq15}\\ $$
(33)
$$\forall j \theta_j \mathrm{ free} \perp z_j^{\rm O} + z_j^{\rm G} = s_j^{\rm O} + s_j^{\rm G} \label{eq16} $$
(34)
$$ \forall j \leq \phi_j \perp z_j^{\rm G} - R\left(z_j^{\rm O}+z_j^{\rm G}\right) - s^{\rm {REC}}_j \geq 0 \label{eq17}\\ $$
(35)
$$\forall j \leq \tau_j \perp 2z_j^{\rm G} - s^{\rm {REC}}_j - R\left(z_j^{\rm O}+z_j^{\rm G}\right) - s^{\rm G}_j \geq 0 \label{eq18}\\[2pt] $$
(36)
$$\forall j \leq \delta_j \perp z_j^{\rm G} - s^{\rm {REC}}_j - s^{\rm G}_j \geq 0. \label{eq19} $$
(37)

Case 2

double-counting is allowed but bundling is not.

$$ \rm{Constraints\; (25)-(27),\; (29),\; (31)-(37) \label{eq20}} $$
(38)
$$\forall j \leq z_j^{\rm G} \perp \theta_j + (R-1) \phi_j + (R -2) \tau_j - \delta_j - \kappa_j \geq 0 \label{eq22}\\[2pt] $$
(39)
$$\forall j \leq s_j^{\rm G} p^0_j \frac{P^0_j}{Q^0_j}{\left(s_j^{\rm O} s_j^{\rm G}\right)} P^{\rm G}_j \frac{P^{\rm G}_j}{Q^{\rm G}_j}{s_j^{\rm G}} \theta_j \tau_j \delta_j \kappa_j \geq$$
(40)
$$\forall j \leq \kappa_j \perp z_j^{\rm G} - s^{\rm G}_j \geq 0. \label{eq210} $$
(41)

Case 3

bundling is allowed but double-counting is not.

$$ \rm{Constraints\; (25), \;(26), \;(29), \;(31),\; (32),\; (34),\; and\; (35) \label{eq30}} $$
(42)
$$\forall j \leq z_j^{\rm O} \perp \theta_j + R \phi_j + R \gamma_j \geq 0 \label{eq31}\\[2pt] $$
(43)
$$\forall j \leq z_j^{\rm G} \perp \theta_j + (R-1) \phi_j + (R -2) \gamma_j \geq 0 \label{eq32}\\[2pt] $$
(44)
$$\forall j \leq s_j^{\rm G} \perp - P^0_j + \frac{P^0_j}{Q^0_j}{\left(s_j^{\rm O}+s_j^{\rm G}\right)} - P^{\rm G}_j + \frac{P^{\rm G}_j}{Q^{\rm G}_j}s^{\rm G}_j - \theta_j + \gamma_j \geq 0 \label{eq34}\\[2pt] $$
(45)
$$\forall j s^{\rm {REC}}_j \mathrm{ free} \perp - p^{\rm {REC}} + \phi_j + \gamma_j = 0 \label{eq35}\\[2pt] $$
(46)
$$\forall j \leq \gamma_j \perp z_j^{\rm G} - s^{\rm {REC}}_j - R\left(z_j^{\rm O}+z_j^{\rm G}\right) - s^{\rm G}_j \geq 0. \label{eq38} $$
(47)

Case 4

neither double-counting nor bundling is allowed.

$$\rm{Constraints\; (25),\; (26), \;(29), \;(31), \;(32), \;(34), \;(35), \;(41), \;(43), \;(46),\; and \;(47) \label{eq40}} $$
(48)
$$\forall j \leq z_j^{\rm G} \perp \theta_j + (R-1) \phi_j + (R -1) \gamma_j - \kappa_j \geq 0 \label{eq42}\\ $$
(49)
$$\forall j \leq s_j^{\rm G} \perp - P^0_j + \frac{P^0_j}{Q^0_j}{\left(s_j^{\rm O}+s_j^{\rm G}\right)} - P^{\rm G}_j + \frac{P^{\rm G}_j}{Q^{\rm G}_j}s^{\rm G}_j - \theta_j + \gamma_j + \kappa_j \geq 0. \label{eq44} $$
(50)

KKT for Producers

$$\forall f,i,h \in H_{\mathrm if},j \leq x_{\mathrm fihj} \perp - p_{\mathrm fihj} + C_{\mathrm fih} + (w_j-w_i) + p^{\rm GHG}E_{\mathrm fih} + \rho_{\mathrm fih} \geq 0 \label{eq:producerfoc1}\\ $$
(51)
$$\forall f,i,h \in H_{\mathrm if},j \leq \rho_{\mathrm fih} \perp X_{\mathrm fih} - \sum\limits_jx_{\mathrm fihj} \geq 0. \label{eq:producerfoc2} $$
(52)

Condition (51) suggests that the price offered by a firm to LSE j is equal to the sum of the costs associated with fuel (C fih), transmissions (w j  − w i ), emissions (\(p^{\rm GHG}E_{\mathrm fih}\)) and the capacity scarcity rent (ρ fih.)

KKT for ISO

$$\forall i y_i \mathrm{ free} \perp \sum_k PTDF_{\mathrm ki} (\lambda_k^+ - \lambda_k^-) - w_i = 0 \label{eq:isofoc1}\\[3pt] $$
(53)
$$\forall k \leq \lambda^+_k \perp T_k - \sum_i PTDF_{\mathrm ki} y_i \geq 0. \label{eq:isofoc2}\\[3pt] $$
(54)
$$\forall k \leq \lambda^-_k \perp T_k + \sum_i PTDF_{\mathrm ki} y_i \geq 0. \label{eq:isofoc2} $$
(55)

Appendix B: Equivalent quadratic programming formulations

We construct four quadratic programs that are equivalent to the four cases in the sense that the KKT conditions of these quadratic programs are the same as the market equilibrium conditions outlined in Table 7. Since all four objectives are maximization of concave quadratic functions, a Nash equilibrium is a solution of the KKT conditions if and only if it is an optimal solution of the corresponding quadratic program. Notice that the objective function of the quadratic programs for all four cases is to maximize the social welfare. These formulations are useful for proving some of the propositions presented in Section 3.3.

Case 1

both double-counting and bundling are allowed.

$$\begin{array}{lll} \max \qquad &\Pi_1 = \sum_j \,\left[P^0_j \,\left(s_j^{\rm G} \,+\, s_j^{\rm O}\right)\, - \frac{P^0_j}{2Q^0_j}{\left(s_j^{\rm G} + s_j^{\rm O}\right)^2}\right]\\ &+ \sum_j \left[P^{\rm G}_j s_j^{\rm G} - \frac{P^{\rm G}_j}{2 Q^{\rm G}_j} \left(s_j^{\rm G}\right)^2 \right] & \label{qp2}\\ & - \sum_{f,i,h \in H_{\mathrm if}, j} C_{\mathrm fih} x_{\mathrm fihj} \end{array} $$
(56)
$$s.t. \forall j, z_j^{\rm G} - R\left(z_j^{\rm O}+z_j^{\rm G}\right) - s^{\rm {REC}}_j \geq 0 (\phi_j \geq 0) \label{qp3} $$
(57)
$$ \forall j, 2z_j^{\rm G} \,-\, R\left(z_j^{\rm O}\,+\,z_j^{\rm G}\right) \,-\, s^{\rm {REC}}_j - s^{\rm G}_j \geq 0 (\tau_j \geq 0) \label{qp4}\\ $$
(58)
$$ \forall j, z_j^{\rm G} - s^{\rm {REC}}_j - s^{\rm G}_j \geq 0 (\delta_j \geq 0) \label{qp5}\\ $$
(59)
$$ \forall f,i,h \in H_{\mathrm if}, X_{\mathrm fih} - \sum_jx_{\mathrm fihj} \geq 0 (\rho_{\mathrm fih} \geq 0) \label{qp6}\\ $$
(60)
$$ \forall k, T_k - \sum_i PTDF_{\mathrm ki}y_i \geq 0 (\lambda_k^+ \geq 0) \label{qp7}\\ $$
(61)
$$ \forall k, T_k + \sum_i PTDF_{\mathrm ki}y_i \geq 0 (\lambda_k^- \geq 0) \label{qp7-}\\ $$
(62)
$$ \sum_j s^{\rm {REC}}_j \geq 0 (p^{\rm {REC}} \geq 0) \label{qp8}\\ $$
(63)
$$ \overline{E}- \sum_{f,i,h\in H_{\rm if},j}E_{\rm {fih}} x_{\rm {fihj}} \geq 0 (p^{GHG} \geq 0) \label{qp9}\\ $$
(64)
$$ \forall f,i,h \in H_{\mathrm if},j, x_{\mathrm fihj} = z_{\rm {fihj}} (p_{\rm {fihj}} \rm{ {free}}) \label{qp10} $$
(65)
$$ \forall i, \sum_{f,h \in H_{\mathrm if},j}x_{\mathrm fihj} - s_i^{\rm O} - s_i^{\rm G} + y_i = 0 (w_i \mathrm{ free}) \label{qp11}\\ $$
(66)
$$ \forall j, s_j^{\rm O} + s_j^{\rm G} = z_j^{\rm O} + z_j^{\rm G} (\theta_j \mathrm{ free}) \label{qp12} $$
(67)
$$ \forall j, z_j^{\rm O} = \sum_{f,i,h\in H^{\rm O}_{\mathrm if}}z_{\mathrm fihj} (\omega^{\rm O}_j) \label{qpzO} \\ $$
(68)
$$\forall j, z_j^{\rm G} = \sum_{f,i,h\in H^{\rm G}_{\mathrm if}}z_{\mathrm fihj} (\omega^{\rm G}_j) \label{qpzG} \\ $$
(69)
$$\forall f,i,h,j, x_{\mathrm fihj}, z_j^{\rm O}, z_j^{\rm G}, s_j^{\rm O}, s_j^{\rm G} \geq 0; s_j^{\rm {REC}}, y_i \mathrm{ free.} \label{qp13} $$
(70)

Case 2

double-counting is allowed but bundling is not.

$$\begin{array}{lll} \max &\qquad \Pi_2 = \sum_j \left[P^0_j \left(s_j^{\rm G} + s_j^{\rm O}\right) - \frac{P^0_j}{2Q^0_j}{\left(s_j^{\rm G} + s_j^{\rm O}\right)^2}\right]\\ &+ \sum_j \left[P^{\rm G}_j s_j^{\rm G} - \frac{P^{\rm G}_j}{2 Q^{\rm G}_j} \left(s_j^{\rm G}\right)^2 \right] - \sum_{f,i,h \in H_{\mathrm if}, j} C_{fih} x_{fihj} \label{case2:0} \end{array} $$
(71)
$$s.t. \rm{Constraints\; (57)-(70)} \label{case2:1}\\ $$
(72)
$$ \forall j z_j^{\rm G} - s^{\rm G}_j \geq 0 (\kappa_j \geq 0). \label{case2:2} $$
(73)

Case 3

bundling is allowed but double-counting is not.

$$\max \Pi_3 = \sum_j \left[P^0_j \left(s_j^{\rm G} + s_j^{\rm O}\right) - \frac{P^0_j}{2Q^0_j}{\left(s_j^{\rm G} + s_j^{\rm O}\right)^2}\right] + \sum_j \left[P^{\rm G}_j s_j^{\rm G} - \frac{P^{\rm G}_j}{2 Q^{\rm G}_j} \left(s_j^{\rm G}\right)^2 \right]\\ $$
$$\begin{array}{lll}&\qquad\qquad\qquad\qquad\qquad\qquad - \sum_{f,i,h \in H_{\mathrm if}, j} C_{\mathrm fih} x_{\mathrm fihj} \\ s.t. \qquad\qquad\qquad& \rm{Constraints\; (57), (60)--(70)} \\ & \forall j z_j^{\rm G} - R\left(z_j^{\rm O}+z_j^{\rm G}\right) - s^{\rm {REC}}_j - s^{\rm G}_j \geq 0 (\gamma_j \geq 0). \label{case3:2} \end{array} $$
(74)

Case 4

neither double-counting nor bundling is allowed.

$$\begin{array}{lll} \max &\qquad \Pi_4 = \sum_j \left[P^0_j \left(s_j^{\rm G} + s_j^{\rm O}\right) - \frac{P^0_j}{2Q^0_j}{\left(s_j^{\rm G} + s_j^{\rm O}\right)^2}\right]\\ &+ \sum_j \left[P^{\rm G}_j s_j^{\rm G} - \frac{P^{\rm G}_j}{2 Q^{\rm G}_j} \left(s_j^{\rm G}\right)^2 \right] - \sum_{f,i,h \in H_{\mathrm if}, j} C_{\mathrm fih} x_{\mathrm fihj}\\ \end{array} $$
(75)
$$s.t. \rm{Constraints \;(57),\; (60)-(70), \;(73), \;(74).} \label{case4:2} $$
(76)

Appendix C: Proofs

1.1 Proposition 1

Proof

For Case 1. From \(s^{O}_j > 0\), Eqs. (29)–(33) and (35), we have \(p^{\rm {REC}} - p^{\rm G}_j \geq \phi_j \geq 0\). Suppose bundling occurs at firm j, which means \(s^{\rm G}_j > z_j^{\rm G} \geq 0\). From \(s^{\rm O}_j > 0\), Eqs. (30), and (33) we have \(p^{\rm {REC}} - \phi_j = p^{\rm G}_j\). From Eqs. (35) and (36) we have \(z_j^{\rm G} - R(z_j^{\rm O}+z_j^{\rm G}) - s^{\rm {REC}}_j = [2z_j^{\rm G} - s^{\rm {REC}}_j - R(z_j^{\rm O}+z_j^{\rm G}) - s^{\rm G}_j] + (s^{\rm G}_j- z_j^{\rm G})>0.\) Therefore, ϕ j  = 0 and \(p^{\rm {REC}} = p^{\rm G}_j\). The proof for Case 3 is similar with τ j  + δ j replaced by γ j in the demonstration.□

1.2 Proposition 2

Proof

For Case 2. From \(s^{REC}_j > 0\), Eqs. ( 34), ( 37) and ( 41), we have \(s^{O}_j = z_j^{O} + z_j^{G} - s^{G}_j \geq z_j^{G} - s^{G}_j \geq s^{REC}_j > 0\) and κ j  = 0. From Eqs. ( 29), ( 40), ( 33) and ( 35), we have \(p^{REC} - p^{G}_j \geq \phi_j \geq 0\). Moreover, if \(s^{G}_j > R(z_j^{O}+z_j^{G})\), then \(p^{REC} - p^{G}_j = \phi_j = 0\). The last equation is because in Eq. ( 35) \(z_j^{G} - R(z_j^{O}+z_j^{G}) - s^{REC}_j = z_j^{G} - s^{REC}_j - s^{G}_j + [s^{G}_j - R(z_j^{O}+z_j^{G})] > 0\), using Eq. ( 37). The proof for Case 4 is similar with τ j  + δ j replaced by γ j in the demonstration.□

1.3 Proposition 3

Proof

We show that for any Case 1 solution \((s_j^{\rm G}, s_j^{\rm O}, x_{\mathrm fihj}, z_{\mathrm fihj}, y_i, s_j^{\rm {REC}})\), there exists a Case 2 solution \((\hat{s}_j^{\rm G}, \hat{s}_j^{\rm O}, \hat{x}_{\mathrm fihj}, \hat{z}_{\mathrm fihj}, \hat{y}_i, \hat{s}_j^{\rm {REC}})\) that satisfies the following constraints:

$$ \forall j, \hat{s}_j^{\rm G} = s_j^{\rm G} \label{new1}\\[2pt] $$
(77)
$$ \forall j, \hat{s}_j^{\rm O} = s_j^{\rm O} \label{new2}\\[2pt] $$
(78)
$$\forall i, \hat{y}_i = y_i \label{new7}\\[2pt] $$
(79)
$$\forall f,i,h\in H_{\mathrm if}, \sum_j \hat{x}_{\mathrm fihj} = \sum_j x_{\mathrm fihj} \label{new3}\\[2pt] $$
(80)
$$\forall f,i,h\in H_{\mathrm if}, \hat{x}_{\mathrm fihj} = \hat{z}_{\mathrm fihj} \label{new4}\\[2pt] $$
(81)
$$ \forall j, \hat{z}_j^{\rm G} := \sum_{f,i,h\in H^{\rm G}_{\mathrm if}} \hat{z}_{\mathrm fihj} \label{new5}\\[2pt] $$
(82)
$$ \forall j, \hat{z}_j^{\rm O} := \sum_{f,i,h\in H^{\rm O}_{\mathrm if}} \hat{z}_{\mathrm fihj} \label{new6}\\[2pt] $$
(83)
$$ \forall j, \hat{z}_j^{\rm G} - R\left(z_j^{\rm O}+z_j^{\rm G}\right) - \hat{s}^\mathrm{\mathrm REC}_j \geq 0 (\phi_j \geq 0) \label{new7}\\[2pt] $$
(84)
$$ \forall j, \hat{z}_j^{\rm G} - R\left(z_j^{\rm O}+z_j^{\rm G}\right) - \hat{s}^\mathrm{\mathrm REC}_j - s^{\rm G}_j \geq 0 (\tau_j \geq 0) \label{new8}\\[2pt] $$
(85)
$$ \forall j, \hat{z}_j^{\rm G} - \hat{s}^\mathrm{\mathrm REC}_j - s^{\rm G}_j \geq 0 (\delta_j \geq 0) \label{new9}\\[2pt] $$
(86)
$$ \sum_j \hat{s}^\mathrm{\mathrm REC}_j \geq 0 (p^\mathrm{\mathrm REC} \geq 0) \label{new10} \\[2pt]$$
(87)
$$ \forall j, \hat{z}_j^{\rm G} + \hat{z}_j^{\rm O} = s_j^{\rm G} + s_j^{\rm O} (\theta_j \mathrm{ free}) \label{new11}\\[2pt ] $$
(88)
$$ \forall j, \hat{z}_j^{\rm O} \geq 0, \hat{z}_j^{\rm G} \geq 0, \hat{s}_j^{\rm {REC}} \mathrm{ free} \label{new12}\\[2pt] $$
(89)
$$ \forall j, \hat{z}_j^{\rm G} \geq s_j^{\rm G} (\kappa_j \geq 0). \label{new13} $$
(90)

It is easy to see that, given \((x_{\mathrm fihj}, \hat{z}_j^{\rm G}, \hat{z}_j^{\rm O})\), there exists a solution (possibly among infinitely many others) \((\hat{x}_{\mathrm fihj}, \hat{z}_{\mathrm fihj})\) that satisfies Eqs. (80)–(83). For any given Case 1 solution \((s_j^{\rm G}, z_j^{\rm G}, z_j^{\rm O})\), we prove the existence of \((\hat{z}_j^{\rm O}, \hat{z}_j^{\rm G}, \hat{s}_j^{\rm {REC}})\) that satisfies Eqs. (84)–(90) by showing the non-existence of a solution to the following constraints:

$$\begin{array}{lll} &\qquad \sum_j \Bigl[R\left(z_j^{\rm O}+z_j^{\rm G}\right) (\phi_j+\tau_j)\\[4pt] & +\, s^{G}_j \left(\tau_j+\delta_j+\theta_j+\kappa_j\right) + s^{O}_j \theta_j\Bigr] > 0 & \label{dual1} \end{array} $$
(91)
$$\forall j, \phi_j + 2 \tau_j + \delta_j + \theta_j + \kappa_j \leq 0 (z_j^{\rm G} \geq 0) \label{dual2} \\[4pt] $$
(92)
$$\forall j, \theta_j \leq 0 (z_j^{\rm O} \geq 0) \label{dual3} \\[4pt] $$
(93)
$$\forall j, \phi_j - \tau_j - \delta_j + p^{\rm {REC}} \leq 0 (s_j^{\rm {REC}} \mathrm{ free}) \label{dual4} \\[4pt] $$
(94)
$$\forall j, \phi_j, \tau_j, \delta_j, \kappa_j, p^{\rm {REC}} \geq 0; \theta_j \mathrm{ free}. \label{dual5} $$
(95)

According to Farkas’ lemma (Bertsimas and Tsitsiklis 1997), for any A ∈ ℝm ×n and b ∈ ℝm ×1, exactly one of these two sets is empty: {x ∈ ℝn ×1: A x ≥ b, x ≥ 0} and {y ∈ ℝ. In this context, Farkas’ lemma means that Eqs. (84)–(90) possesses a solution if and only if the set of Eqs. (91)–(95) does not. We prove the infeasibility of Eqs. (91)–(95) by contradiction. Suppose \((\phi_j^0, \tau_j^0, \delta_j^0, \kappa_j^0, p^\mathrm{REC0}, \theta_j^0)\) satisfies Eqs. (91)–(95), then it is easy to see that \((\phi_j = \phi_j^0, \tau_j = \tau_j^0, \delta_j = \delta_j^0 + \kappa_j^0, \kappa_j = 0, p^{\rm {REC}} = p^\mathrm{REC0}, \theta_j = \theta_j^0)\) also satisfies Eqs. (91)–(95). However, the latter further implies, also by Farkas’ lemma, that Eqs. (84)–(89) is infeasible, which contradicts the fact that \((\hat{z}_j^{\rm O} = z_j^{\rm O}, \hat{z}_j^{\rm G} = z_j^{\rm G}, \hat{s}_j^{\rm {REC}} = s_j^{\rm {REC}})\) satisfies Eqs. (84)–(89). As a result, the \(\hat{p}^{\rm G}_j\) and \(\hat{\Pi}\) for Case 2 will be the same with those in Case 1.

We prove that \(\hat{p}^{\rm {REC}} \leq p^{\rm {REC}}\) as follows:

$$\hat{p}^{\rm {REC}} - p^{\rm {REC}}\\[4pt] $$
(96)
$$= \hat{\phi}_j + \hat{\tau}_j + \hat{\delta}_j - (\phi_j + \tau_j + \delta_j), \forall j \label{p1}\\[4pt] $$
(97)
$$= \hat{\tau}_j + \hat{\delta}_j - (\tau_j + \delta_j), \forall j: s_j^{\rm G} > z_j^{\rm G} \label{p2}\\[4pt] $$
(98)
$$= - \hat{\kappa}_j \leq 0, \forall j: s_j^{\rm G} > z_j^{\rm G}, s_j^{\rm O} > 0. \label{p3} $$
(99)

Here, Eq. (97) is from Eq. (33). Equation (98) is because in Eqs. (35) and (36) we have

$$\begin{array}{lll} && z_j^{\rm G} - R\left(z_j^{\rm O}+z_j^{\rm G}\right) - s^{\rm {REC}}_j\\[4pt] &&{\kern12pt} = \left[2z_j^{\rm G} - s^{\rm {REC}}_j - R\left(z_j^{\rm O}+z_j^{\rm G}\right) - s_j^{\rm G}\right] + (s_j^{\rm G} - z_j^{\rm G})> 0. \end{array}$$

Therefore, ϕ j  = 0, and similarly \(\hat{\phi}_j = 0\). Equation (99) is due to Eqs. (29), (30), and (40), which yield that \(\tau_j + \delta_j = \hat{\tau}_j + \hat{\delta}_j + \hat{\kappa}_j\).□

1.4 Proposition 4

Proof

The first part of the proof is similar to that of Proposition 3, except that Eqs. (85) and (86) are substituted with

$$\forall j, \hat{z}_j^{\rm G} - R\left(z_j^{\rm O}+z_j^{\rm G}\right) - \hat{s}^{\rm {REC}}_j - s^{\rm G}_j \geq 0 (\gamma_j \geq 0). \label{new894} $$
(100)

Using a similar argument, we can prove that Eqs. (87)–(90) and (100) possesses a solution if and only if the following set of Eqs. (101)–(105) does not.

$$\begin{array}{lll} &\qquad \sum_j \Big[R\left(z_j^{\rm O}+z_j^{\rm G}\right)\\ & \gamma_j + s^{\rm G}_j (\gamma_j+\delta_j+\theta_j+\kappa_j) + s^{\rm O}_j \theta_j\Big] > 0 & \label{dual14} \end{array} $$
(101)
$$\forall j, \gamma_j + \delta_j + \theta_j + \kappa_j \leq 0 (z_j^{\rm G} \geq 0) \label{dual24} \\ $$
(102)
$$\forall j, \theta_j \leq 0 (z_j^{\rm O} \geq 0) \label{dual34} \\ $$
(103)
$$\forall j, \gamma_j - \delta_j + p^{\rm {REC}} \leq 0 (s_j^{\rm {REC}} \mathrm{ free}) \label{dual44} \\ $$
(104)
$$\forall j, \delta_j, \kappa_j, p^{\rm {REC}} \geq 0; \gamma_j, \theta_j \mathrm{ free}. \label{dual54} $$
(105)

It is easy to see that the \(\hat{p}^{\rm G}_j\) and \(\hat{\Pi}\) for Case 4 will be the same with those in Case 3. We prove that \(\hat{p}^{\rm {REC}} \leq p^{\rm {REC}}\) as follows:

$$\hat{p}^{\rm {REC}} - p^{\rm {REC}}\\ $$
(106)
$$= \hat{\phi}_j + \hat{\gamma}_j - (\phi_j + \gamma_j), \forall j \label{p14}\\ $$
(107)
$$= \hat{\gamma}_j - \gamma_j, \forall j: s_j^{\rm G} > 0 \label{p24}\\ $$
(108)
$$= -\hat{\kappa}_j \leq 0, \forall j: s_j^{\rm G} > 0, s_j^{\rm O} > 0. \label{p34} $$
(109)

Here, Eq. (107) is from Eq. (46). Equation (108) is because in Eqs. (35) and (47) we have

$$\begin{array}{lll} && z_j^{\rm G} - R\left(z_j^{\rm O}+z_j^{\rm G}\right) - s^{\rm {REC}}_j\\ &&{\kern12pt} = \left[z_j^{\rm G} - s^{\rm {REC}}_j - R\left(z_j^{\rm O}+z_j^{\rm G}\right) - s_j^{\rm G}\right] + s_j^{\rm G} > 0. \end{array}$$

Therefore, ϕ j  = 0, and similarly \(\hat{\phi}_j = 0\). Equation (109) is due to Eqs. (29), (45), and (50), which yield that \(\gamma_j = \hat{\gamma}_j + \hat{\kappa}_j\).□

1.5 Proposition 5

Proof

From Propositions 3 and 4, we have that Π 1 = Π 2 and Π 3 = Π 4, respectively. Moreover, any feasible solution to Case 3 is also feasible to Case 1, since Constraint (74) is tighter than Eq. (58), which is the only difference between the two cases. Therefore, Π 1 ≥ Π 3.□

Appendix D: Data

Table 8 Assumptions of generation characteristics
Table 9 Derived power transfer distribution factor and transmission thermal limit
Table 10 Assumptions of the inverse demand curves

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, Y., Wang, L. Renewable Portfolio Standards in the Presence of Green Consumers and Emissions Trading. Netw Spat Econ 13, 149–181 (2013). https://doi.org/10.1007/s11067-012-9176-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11067-012-9176-0

Keywords

Navigation