Skip to main content
Log in

Detecting Braess Paradox Based on Stable Dynamics in General Congested Transportation Networks

  • Published:
Networks and Spatial Economics Aims and scope Submit manuscript

Abstract

This study examined the detection of the Braess Paradox by stable dynamics in general congested transportation networks. Stable dynamics, suggested by Nesterov and de Palma (2003), is a new model which describes and provides a stable state of congestion in urban transportation networks. In comparison with the user equilibrium model, which is based on the arc travel time function in analyzing transportation networks, stable dynamics requires few parameters and is coincident with intuitions and observations on congestion. It is therefore expected to be a useful analysis tool for transportation planners. The phenomenon whereby increasing network capacity, for example creating new routes, known as arcs, may decrease its performance is called the Braess Paradox. It has been studied intensively under user equilibrium models with the arc travel time function since it was first demonstrated by Braess (1968). However, the development of a general model to detect the Braess Paradox under stable dynamics models remains an open problem. In this study, we suggest a model to detect the paradox in general networks under stable dynamics. In our model, we decide whether the Braess Paradox will occur in a given network, detect Braess arcs or Braess crosses if the network permits the paradox, and present a numerical example of the application of the model to a given network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Akamatsu T (2000) A dynamic traffic equilibrium assignment paradox. Transp Res B34:515–531

    Article  Google Scholar 

  • Akamatsu T, Heydecker B (2003) Detecting dynamic traffic assignment capacity paradoxes in saturated networks. Transp Sci 37:123–138 doi:10.1287/trsc.37.2.123.15245

    Article  Google Scholar 

  • Beckmann M, McGuire C, Winsten C (1956) Studies in economics of transportation. Yale University Press, New Haven

    Google Scholar 

  • Bernstein DH, Smith TE (1994) Equilibria for networks with lower semicontinuous costs: with an application to congestion pricing. Transp Sci 28:221–235 doi:10.1287/trsc.28.3.221

    Article  Google Scholar 

  • Braess D (1968) Uber ein Paradoxon aus der Verkehrsplanung. Unternehmensforschung 12:258–268 (Translated into English: Braess, D., A. Nagurney and T. Wakolbinger. (2005). “On a Paradox of Traffic Planning. Transportation Science, 39, 446–450 doi:10.1287/trsc.1050.0127

    Article  Google Scholar 

  • Bureau of Public Roads (1964) Updated BPR parameters using HCM procedures, traffic engineering: Planning for traffic loads, Traffic Assignment Manual, Washington, D.C.

  • Burer S, Vandenbussche D (2008) A finite branch-and-bound algorithm for nonconvex quadratic programming via semidefinite relaxation. Math Program A113:259–282 doi:10.1007/s10107-006-0080-6

    Article  Google Scholar 

  • Catoni S, Pallottino S (1991) Traffic equilibrium paradoxes. Transp Sci 25:240–244 doi:10.1287/trsc.25.3.240

    Article  Google Scholar 

  • Clarke FH (1983) Optimization and Nonsmooth Analysis. Wiley & Sons

  • Dafermos S, Nagurney A (1984) On some traffic equilibrium theory paradoxes. Transp Res 18:101–110

    Article  Google Scholar 

  • Devarajan S (1981) A note on network equilibrium and noncooperative games. Transp Res B15:421–426

    Article  Google Scholar 

  • Fisk C (1979) More paradoxes in the equilibrium assignment problem. Transp Res B13:305–309

    Article  Google Scholar 

  • Frank M (1981) The Braess paradox. Math Program 20:283–302 doi:10.1007/BF01589354

    Article  Google Scholar 

  • Friesz TL (1985) Transportation network equilibrium, design and aggregation: key developments and research opportunities. Transp Res A19:413–427

    Google Scholar 

  • Harker PT (1988) Multiple equilibrium behaviors on networks. Transp Sci 22:39–46 doi:10.1287/trsc.22.1.39

    Article  Google Scholar 

  • Murchland JD (1970) Braess’s paradox of traffic flow. Transp Res 4:391–394 doi:10.1016/0041-1647(70)90196-6

    Article  Google Scholar 

  • Nagurney A (1993) Network economics: a variational inequality approach. Kluwer Academic, Dordrecht

    Google Scholar 

  • Nesterov Y, de Palma A (2000) Stable traffic equilibria: properties and applications. Optim Eng 1:29–50 doi:10.1023/A:1010042405534

    Article  Google Scholar 

  • Nesterov Y, de Palma A (2003) Stationary dynamics solutions in congested transportation networks: summary and perspectives. Networks Spatial Econ 3:371–395 doi:10.1023/A:1025350419398

    Article  Google Scholar 

  • Nesterov Y, de Palma A (2006) Park and ride for the day period and morning-evening commute. Mathematical and Computational Models for Congestion Charging (Applied Optimization 101, Springer US) 143-157

  • Pas EI, Principio SL (1997) Braess’ paradox: some new insights. Transp Res B31:265–276

    Article  Google Scholar 

  • Roughgarden T (2006) On the severity of Braess’s paradox: designing networks for selfish users is hard. J Comput Syst Sci 72:922–953 doi:10.1016/j.jcss.2005.05.009

    Article  Google Scholar 

  • Steinberg R, Zangwill W (1983) The prevalence of Braess paradox. Transp Sci 17:301–318 doi:10.1287/trsc.17.3.301

    Article  Google Scholar 

  • Wardrop JG (1952) Some theoretical aspects of road traffic research. Proceedings - Institution of Civil Engineers (Part II):325–378

  • Yang H, Bell GH (1998) A capacity paradox in network design and how to avoid it. Transp Res A32:539–545

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koohyun Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, K. Detecting Braess Paradox Based on Stable Dynamics in General Congested Transportation Networks. Netw Spat Econ 11, 207–232 (2011). https://doi.org/10.1007/s11067-009-9101-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11067-009-9101-3

Keywords

Navigation