Skip to main content
Log in

Mir155hg Accelerates Hippocampal Neuron Injury in Convulsive Status Epilepticus by Inhibiting Microglial Phagocytosis

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Convulsive status epilepticus (CSE) is a common critical neurological condition that can lead to irreversible hippocampal neuron damage and cognitive dysfunction. Multiple studies have demonstrated the critical roles that long non-coding RNA Mir155hg plays in a variety of diseases. However, less is known about the function and mechanism of Mir155hg in CSE. Here we investigate and elucidate the mechanism underlying the contribution of Mir155hg to CSE-induced hippocampal neuron injury. By applying high-throughput sequencing, we examined the expression of differentially expressed genes in normal and CSE rats. Subsequent RT-qPCR enabled us to measure the level of Mir155hg in rat hippocampal tissue. Targeted knockdown of Mir155hg was achieved by the AAV9 virus. Additionally, we utilized HE and Tunel staining to evaluate neuronal injury. Immunofluorescence (IF), Golgi staining, and brain path clamping were also used to detect the synaptic plasticity of hippocampal neurons. Finally, through IF staining and Sholl analysis, we assessed the degree of microglial phagocytic function. It was found that the expression of Mir155hg was elevated in CSE rats. HE and Tunel staining results showed that Mir155hg knockdown suppressed the hippocampal neuron loss and apoptosis followed CSE. IF, Golgi staining and brain path clamp data found that Mir155hg knockdown enhanced neuronal synaptic plasticity. The results from IF staining and Sholl analysis showed that Mir155hg knockdown enhanced microglial phagocytosis. Our findings suggest that Mir155hg promotes CSE-induced hippocampal neuron injury by inhibiting microglial phagocytosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

All datasets generated in this study were included in the manuscript. The authors supported the original data in this manuscript will be available to any qualified researcher without undue reservation.

References

  1. Seinfeld S, Goodkin HP, Shinnar S (2016) Status epilepticus. Cold Spring Harb Perspect Med 6:a022830

    Article  PubMed  PubMed Central  Google Scholar 

  2. Sanchez S, Rincon F (2016) Status epilepticus: epidemiology and public health needs. J Clin Med 5:71

    Article  PubMed  PubMed Central  Google Scholar 

  3. Migdady I, Rosenthal ES, Cock HR (2022) Management of status epilepticus: a narrative review. Anaesthesia 77(1):78–91

    Article  PubMed  Google Scholar 

  4. Lee PY, Platt CD, Weeks S, Grace RF, Maher G, Gauthier K, Devana S, Vitali S, Randolph AG, McDonald DR, Geha RS, Chou J (2020) Immune dysregulation and multisystem inflammatory syndrome in children (MIS-C) in individuals with haploinsufficiency of SOCS1. J Allergy Clin Immunol 146(1194–1200):e1191

    Google Scholar 

  5. Rai S, Drislane FW (2018) Treatment of refractory and super-refractory status epilepticus. Neurotherapeutics 15:697–712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sanchez Fernandez I, Goodkin HP, Scott RC (2019) Pathophysiology of convulsive status epilepticus. Seizure 68:16–21

    Article  PubMed  Google Scholar 

  7. Walker MC (2018) Pathophysiology of status epilepticus. Neurosci Lett 667:84–91

    Article  CAS  PubMed  Google Scholar 

  8. Tan TH, Perucca P, O’Brien TJ, Kwan P, Monif M (2021) Inflammation, ictogenesis, and epileptogenesis: an exploration through human disease. Epilepsia 62:303–324

    Article  PubMed  Google Scholar 

  9. Shetty AK (2014) Hippocampal injury-induced cognitive and mood dysfunction, altered neurogenesis, and epilepsy: can early neural stem cell grafting intervention provide protection? Epilepsy Behav 38:117–124

    Article  PubMed  PubMed Central  Google Scholar 

  10. Zhu X, Yao Y, Yang J, Ge Q, Niu D, Liu X, Zhang C, Gan G, Zhang A, Yao H (2020) Seizure-induced neuroinflammation contributes to ectopic neurogenesis and aggressive behavior in pilocarpine-induced status epilepticus mice. Neuropharmacology 170:108044

    Article  CAS  PubMed  Google Scholar 

  11. Leng F, Edison P (2021) Neuroinflammation and microglial activation in Alzheimer disease: where do we go from here? Nat Rev Neurol 17:157–172

    Article  PubMed  Google Scholar 

  12. Kothur K, Bandodkar S, Wienholt L, Chu S, Pope A, Gill D, Dale RC (2019) Etiology is the key determinant of neuroinflammation in epilepsy: elevation of cerebrospinal fluid cytokines and chemokines in febrile infection-related epilepsy syndrome and febrile status epilepticus. Epilepsia 60:1678–1688

    Article  CAS  PubMed  Google Scholar 

  13. Mathy NW, Chen XM (2017) Long non-coding RNAs (lncRNAs) and their transcriptional control of inflammatory responses. J Biol Chem 292:12375–12382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hu F, Shao L, Zhang J, Zhang H, Wen A, Zhang P (2020) Knockdown of ZFAS1 inhibits hippocampal neurons apoptosis and autophagy by activating the PI3K/AKT pathway via up-regulating miR-421 in epilepsy. Neurochem Res 45:2433–2441

    Article  CAS  PubMed  Google Scholar 

  15. Gan J, Huang L, Qu Y, Luo R, Cai Q, Zhao F, Mu D (2020) Expression and functional analysis of lncRNAs in the hippocampus of immature rats with status epilepticus. J Cell Mol Med 24:149–159

    Article  CAS  PubMed  Google Scholar 

  16. Zhou L, Li J, Liao M, Zhang Q, Yang M (2022) LncRNA MIR155HG induces M2 macrophage polarization and drug resistance of colorectal cancer cells by regulating ANXA2. Cancer Immunol Immunother 71:1075–1091

    Article  CAS  PubMed  Google Scholar 

  17. Peng L, Chen Z, Chen Y, Wang X, Tang N (2019) MIR155HG is a prognostic biomarker and associated with immune infiltration and immune checkpoint molecules expression in multiple cancers. Cancer Med 8:7161–7173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wang B, Mou H, Liu M, Ran Z, Li X, Li J, Ou Y (2021) Multiomics characteristics of neurogenesis-related gene are dysregulated in tumor immune microenvironment. NPJ Genom Med 6:37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Buainain RP, Boschiero MN, Camporeze B, de Aguiar PHP, Marson FAL, Ortega MM (2021) Single-nucleotide variants in microRNAs sequences or in their target genes might influence the risk of epilepsy: a review. Cell Mol Neurobiol. https://doi.org/10.1007/s10571-021-01058-7

    Article  PubMed  Google Scholar 

  20. Li N, Liu Y, Cai J (2019) LncRNA MIR155HG regulates M1/M2 macrophage polarization in chronic obstructive pulmonary disease. Biomed Pharmacother 117:109015

    Article  CAS  PubMed  Google Scholar 

  21. Deng X, Wang M, Hu S, Feng Y, Shao Y, Xie Y, Wu M, Chen Y, Shi X (2019) The neuroprotective effect of astaxanthin on pilocarpine-induced status epilepticus in rats. Front Cell Neurosci 13:123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wang M, Xie Y, Shao Y, Chen Y (2022) LncRNA Snhg5 attenuates status epilepticus induced inflammation through regulating NF-kappaBeta signaling pathway. Biol Pharm Bull 45:86–93

    Article  CAS  PubMed  Google Scholar 

  23. Du F (2019) Golgi-cox staining of neuronal dendrites and dendritic spines with FD rapid GolgiStain kit. Curr Protoc Neurosci 88:e69

    Article  PubMed  Google Scholar 

  24. Ishii C, Shibano N, Yamazaki M, Arima T, Kato Y, Ishii Y, Shinoda Y, Fukazawa Y, Sadakata T, Sano Y, Furuichi T (2021) CAPS1 is involved in hippocampal synaptic plasticity and hippocampus-associated learning. Sci Rep 11:8656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wu Z, Liu X, Liu L, Deng H, Zhang J, Xu Q, Cen B, Ji A (2014) Regulation of lncRNA expression. Cell Mol Biol Lett 19:561–575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wang M, Xie Y, Shao Y, Chen Y (2022) Long non-coding RNA Tug1 regulates inflammation in microglia and in status epilepticus rats through the NF-κB signaling pathway. Acta Epileptol. https://doi.org/10.1186/s42494-022-00080-6

    Article  Google Scholar 

  27. Yang B, Liang RS, Wu XY, Lin YJ (2020) LncRNA TUG1 inhibits neuronal apoptosis in status epilepticus rats via targeting the miR-421/mTOR axis. Cell Signal 76:109787

    Article  CAS  PubMed  Google Scholar 

  28. Xie Y, Wang M, Shao Y, Chen Y (2022) LncRNA H19 regulates P-glycoprotein expression through the NF-kappaB signaling pathway in the model of status epilepticus. Neurochem Res. https://doi.org/10.1007/s11064-022-03803-w

    Article  PubMed  PubMed Central  Google Scholar 

  29. Niu L, Lou F, Sun Y, Sun L, Cai X, Liu Z, Zhou H, Wang H, Wang Z, Bai J, Yin Q, Zhang J, Chen L, Peng D, Xu Z, Gao Y, Tang S, Fan L, Wang H (2020) A micropeptide encoded by lncRNA MIR155HG suppresses autoimmune inflammation via modulating antigen presentation. Sci Adv 6:eaaz2059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mycko MP, Cichalewska M, Cwiklinska H, Selmaj KW (2015) miR-155-3p drives the development of autoimmune demyelination by regulation of heat shock protein 40. J Neurosci 35:16504–16515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Holzer FJ, Seeck M, Korff CM (2014) Autoimmunity and inflammation in status epilepticus: from concepts to therapies. Expert Rev Neurother 14:1181–1202

    Article  CAS  PubMed  Google Scholar 

  32. Gorter JA, van Vliet EA, Aronica E (2015) Status epilepticus, blood-brain barrier disruption, inflammation, and epileptogenesis. Epilepsy Behav 49:13–16

    Article  PubMed  Google Scholar 

  33. Huang LG, Zou J, Lu QC (2018) Silencing rno-miR-155-5p in rat temporal lobe epilepsy model reduces pathophysiological features and cell apoptosis by activating Sestrin-3. Brain Res 1689:109–122

    Article  CAS  PubMed  Google Scholar 

  34. Wu P, Hong S, Zhong M, Guo Y, Chen H, Jiang L (2016) Effect of sodium valproate on cognitive function and hippocampus of rats after convulsive status epilepticus. Med Sci Monit 22:5197–5205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kumar M, Modi M, Sandhir R (2017) Hydrogen sulfide attenuates homocysteine-induced cognitive deficits and neurochemical alterations by improving endogenous hydrogen sulfide levels. BioFactors 43:434–450

    Article  CAS  PubMed  Google Scholar 

  36. Elton TS, Selemon H, Elton SM, Parinandi NL (2013) Regulation of the MIR155 host gene in physiological and pathological processes. Gene 532:1–12

    Article  CAS  PubMed  Google Scholar 

  37. Thompson K (2022) Status epilepticus and early development: neuronal injury, neurodegeneration, and their consequences. Epilepsia Open. https://doi.org/10.1002/epi4.12601

    Article  PubMed  PubMed Central  Google Scholar 

  38. Tanaka K, Jimenez-Mateos EM, Matsushima S, Taki W, Henshall DC (2010) Hippocampal damage after intra-amygdala kainic acid-induced status epilepticus and seizure preconditioning-mediated neuroprotection in SJL mice. Epilepsy Res 88:151–161

    Article  CAS  PubMed  Google Scholar 

  39. Foster KA, McLaughlin N, Edbauer D, Phillips M, Bolton A, Constantine-Paton M, Sheng M (2010) Distinct roles of NR2A and NR2B cytoplasmic tails in long-term potentiation. J Neurosci 30:2676–2685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Muller T, Albrecht D, Gebhardt C (2009) Both NR2A and NR2B subunits of the NMDA receptor are critical for long-term potentiation and long-term depression in the lateral amygdala of horizontal slices of adult mice. Learn Mem 16:395–405

    Article  PubMed  Google Scholar 

  41. Bartlett TE, Bannister NJ, Collett VJ, Dargan SL, Massey PV, Bortolotto ZA, Fitzjohn SM, Bashir ZI, Collingridge GL, Lodge D (2007) Differential roles of NR2A and NR2B-containing NMDA receptors in LTP and LTD in the CA1 region of two-week old rat hippocampus. Neuropharmacology 52:60–70

    Article  CAS  PubMed  Google Scholar 

  42. Li YH, Wang J (2013) Membrane insertion of new AMPA receptors and LTP induced by glycine is prevented by blocking NR2A-containing NMDA receptors in the rat visual cortex in vitro. Curr Neurovasc Res 10:70–75

    Article  PubMed  Google Scholar 

  43. Xu W (2011) PSD-95-like membrane associated guanylate kinases (PSD-MAGUKs) and synaptic plasticity. Curr Opin Neurobiol 21:306–312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Liu Q, Zhang Y, Liu S, Liu Y, Yang X, Liu G, Shimizu T, Ikenaka K, Fan K, Ma J (2019) Cathepsin C promotes microglia M1 polarization and aggravates neuroinflammation via activation of Ca(2+)-dependent PKC/p38MAPK/NF-kappaB pathway. J Neuroinflammation 16:10

    Article  PubMed  PubMed Central  Google Scholar 

  45. Meng J, Han L, Zheng N, Wang T, Xu H, Jiang Y, Wang Z, Liu Z, Zheng Q, Zhang X, Luo H, Can D, Lu J, Xu H, Zhang YW (2022) Microglial Tmem59 deficiency impairs phagocytosis of synapse and leads to autism-like behaviors in mice. J Neurosci 42:4958–4979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lituma PJ, Woo E, O’Hara BF, Castillo PE, Sibinga NES, Nandi S (2021) Altered synaptic connectivity and brain function in mice lacking microglial adapter protein Iba1. Proc Natl Acad Sci USA. https://doi.org/10.1073/pnas.2115539118

    Article  PubMed  PubMed Central  Google Scholar 

  47. Hansen DV, Hanson JE, Sheng M (2018) Microglia in Alzheimer’s disease. J Cell Biol 217:459–472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Baik SH, Kang S, Lee W, Choi H, Chung S, Kim JI, Mook-Jung I (2019) A breakdown in metabolic reprogramming causes microglia dysfunction in Alzheimer’s disease. Cell Metab 30(493–507):e496

    Google Scholar 

  49. Wang N, Mi X, Gao B, Gu J, Wang W, Zhang Y, Wang X (2015) Minocycline inhibits brain inflammation and attenuates spontaneous recurrent seizures following pilocarpine-induced status epilepticus. Neuroscience 287:144–156

    Article  CAS  PubMed  Google Scholar 

  50. Song J, Wang Q, Zong L (2020) LncRNA MIR155HG contributes to smoke-related chronic obstructive pulmonary disease by targeting miR-128–5p/BRD4 axis. Biosci Rep. https://doi.org/10.1042/BSR20192567

Download references

Funding

This research was funded by the National Natural Science Foundation of China (Grant numbers 81971209 and 82101518).

Author information

Authors and Affiliations

Authors

Contributions

Conceived and designed the experiments: WM, CYH and YG. Analyzed the data: WM and XBY. Performed the experiments: WM, XBY, and XYM. Wrote the manuscript: WM and XBY. All authors contributed to this paper and have approved its contents.

Corresponding authors

Correspondence to Ge Yao or Yinghui Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical Approval

All animal experiments were operated according with protocols and guidelines approved by the Chinese Academy of Sciences Animal Experiment Guide. The animal experiments were approved by the Ethics Committee of Shanghai public health center of Fudan University (Certificate No. 20141601).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, M., Xu, B., Xie, Y. et al. Mir155hg Accelerates Hippocampal Neuron Injury in Convulsive Status Epilepticus by Inhibiting Microglial Phagocytosis. Neurochem Res (2024). https://doi.org/10.1007/s11064-024-04131-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11064-024-04131-x

Keywords

Navigation