Skip to main content

Advertisement

Log in

Cellular Localization and Distribution of TGF-β1, GDNF and PDGF-BB in the Adult Primate Central Nervous System

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The available data on the localization of transforming growth factor beta1 (TGF-β1), glial cell line-derived neurotrophic factor (GDNF), and platelet-derived growth factor-BB (PDGF-BB) in the adult primate and human central nervous system (CNS) are limited and lack comprehensive and systematic information. This study aimed to investigate the cellular localization and distribution of TGF-β1, GDNF, and PDGF-BB in the CNS of adult rhesus macaque (Macaca mulatta). Seven adult rhesus macaques were included in the study. The protein levels of TGF-β1, PDGF-BB, and GDNF in the cerebral cortex, cerebellum, hippocampus, and spinal cord were analyzed by western blotting. The expression and location of TGF-β1, PDGF-BB, and GDNF in the brain and spinal cord was examined by immunohistochemistry and immunofluorescence staining, respectively. The mRNA expression of TGF-β1, PDGF-BB, and GDNF was detected by in situ hybridization. The molecular weight of TGF-β1, PDGF-BB, and GDNF in the homogenate of spinal cord was 25 KDa, 30 KDa, and 34 KDa, respectively. Immunolabeling revealed GDNF was ubiquitously distributed in the cerebral cortex, hippocampal formation, basal nuclei, thalamus, hypothalamus, brainstem, cerebellum, and spinal cord. TGF-β1 was least distributed and found only in the medulla oblongata and spinal cord, and PDGF-BB expression was also limited and present only in the brainstem and spinal cord. Besides, TGF-β1, PDGF-BB, and GDNF were localized in the astrocytes and microglia of spinal cord and hippocampus, and their expression was mainly found in the cytoplasm and primary dendrites. The mRNA of TGF-β1, PDGF-BB, and GDNF was localized to neuronal subpopulations in the spinal cord and cerebellum. These findings suggest that TGF-β1, GDNF and PDGF-BB may be associated with neuronal survival, neural regeneration and functional recovery in the CNS of adult rhesus macaques, providing the potential insights into the development or refinement of therapies based on these factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Kajdaniuk D, Marek B, Borgiel-Marek H, Kos-Kudła B (2013) Transforming growth factor β1 (TGFβ1) in physiology and pathology. Endokrynol Pol 64(5):384–396

    Article  CAS  PubMed  Google Scholar 

  2. Ayanlaja AA, Zhang B, Ji G, Gao Y, Wang J, Kanwore K et al (2018) The reversible effects of glial cell line-derived neurotrophic factor (GDNF) in the human brain. Semin Cancer Biol 53:212–222

    Article  CAS  PubMed  Google Scholar 

  3. Zheng L, Ishii Y, Tokunaga A, Hamashima T, Shen J, Zhao QL et al (2010) Neuroprotective effects of PDGF against oxidative stress and the signaling pathway involved. J Neurosci Res 88(6):1273–1284

    CAS  PubMed  Google Scholar 

  4. Sil S, Periyasamy P, Thangaraj A, Chivero ET, Buch S (2018) PDGF/PDGFR axis in the neural systems. Mol Aspects Med 62:63–74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gonzalez-Aparicio R, Flores JA, Fernandez-Espejo E (2010) Antiparkinsonian trophic action of glial cell line-derived neurotrophic factor and transforming growth factor beta1 is enhanced after co-infusion in rats. Exp Neurol 226(1):136–147

    Article  CAS  PubMed  Google Scholar 

  6. Murata T, Koide N, Tsuboi M, Kohno S, Hikita K, Kaneda N (2008) Autocrine TGF-beta signaling is required for the GDNF/CNTF-induced neuronal differentiation of adrenal chromaffin tsAM5D cells expressing temperature-sensitive SV40 T-antigen. Neurosci Lett 438(1):42–47

    Article  CAS  PubMed  Google Scholar 

  7. Roberts AB, Anzano MA, Lamb LC, Smith JM, Sporn MB (1981) New class of transforming growth factors potentiated by epidermal growth factor: isolation from non-neoplastic tissues. Proc Natl Acad Sci U S A 78(9):5339–5343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Denis JF, Levesque M, Tran SD, Camarda AJ, Roy S (2013) Axolotl as a model to study Scarless Wound Healing in vertebrates: role of the transforming growth factor Beta Signaling Pathway. Adv Wound Care (New Rochelle) 2(5):250–260

    Article  PubMed  Google Scholar 

  9. Ohta M, Greenberger JS, Anklesaria P, Bassols A, Massague J (1987) Two forms of transforming growth factor-beta distinguished by multipotential haematopoietic progenitor cells. Nature 329(6139):539–541

    Article  CAS  PubMed  Google Scholar 

  10. Derynck R, Lindquist PB, Lee A, Wen D, Tamm J, Graycar JL et al (1988) A new type of transforming growth factor-beta, TGF-beta 3. EMBO J 7(12):3737–3743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhang S, Sun WY, Wu JJ, Wei W (2014) TGF-beta signaling pathway as a pharmacological target in liver diseases.Pharmacol Res.

  12. Massague J, Attisano L, Wrana JL (1994) The TGF-beta family and its composite receptors. Trends Cell Biol 4(5):172–178

    Article  CAS  PubMed  Google Scholar 

  13. Lin LF, Zhang TJ, Collins F, Armes LG (1994) Purification and initial characterization of rat B49 glial cell line-derived neurotrophic factor. J Neurochem 63(2):758–768

    Article  CAS  PubMed  Google Scholar 

  14. Lin LF, Doherty DH, Lile JD, Bektesh S, Collins F (1993) GDNF: a glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons. Science 260(5111):1130–1132

    Article  CAS  PubMed  Google Scholar 

  15. Gao X, Wang J, Wei X (2003) [Expressions of GDNF, GDNFR alpha and ret proteins in the brain of rats with seizures induced by pilocarpine]. Beijing Da Xue Xue Bao 35(3):296–298

    CAS  PubMed  Google Scholar 

  16. Zhou W, Liu H, Xie X (2000) [The expression of glial cell derived neurotrophic factor and its receptor GDNFR-alpha and GDNFR-beta mRNA in spinal cord, brainstem and frontal cortex during morphine withdrawal in rats]. Zhonghua Yi Xue Za Zhi 80(2):135–139

    CAS  PubMed  Google Scholar 

  17. Durbec P, Marcos-Gutierrez CV, Kilkenny C, Grigoriou M, Wartiowaara K, Suvanto P et al (1996) GDNF signalling through the ret receptor tyrosine kinase. Nature 381(6585):789–793

    Article  CAS  PubMed  Google Scholar 

  18. Araujo DM, Hilt DC, Miller PJ, Wen D, Jiao S, Lapchak PA (1997) Ret receptor tyrosine kinase immunoreactivity is altered in glial cell line-derived neurotrophic factor-responsive neurons following lesions of the nigrostriatal and septohippocampal pathways. Neuroscience 80(1):9–16

    CAS  PubMed  Google Scholar 

  19. Burazin TC, Gundlach AL (1998) Up-regulation of GDNFR-alpha and c-ret mRNA in facial motor neurons following facial nerve injury in the rat. Brain Res Mol Brain Res 55(2):331–336

    Article  CAS  PubMed  Google Scholar 

  20. Golden JP, Baloh RH, Kotzbauer PT, Lampe PA, Osborne PA, Milbrandt J et al (1998) Expression of neurturin, GDNF, and their receptors in the adult mouse CNS. J Comp Neurol 398(1):139–150

    Article  CAS  PubMed  Google Scholar 

  21. Widenfalk J, Nosrat C, Tomac A, Westphal H, Hoffer B, Olson L (1997) Neurturin and glial cell line-derived neurotrophic factor receptor-beta (GDNFR-beta), novel proteins related to GDNF and GDNFR-alpha with specific cellular patterns of expression suggesting roles in the developing and adult nervous system and in peripheral organs. J Neurosci 17(21):8506–8519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Brionne TC, Tesseur I, Masliah E, Wyss-Coray T (2003) Loss of TGF-beta 1 leads to increased neuronal cell death and microgliosis in mouse brain. Neuron 40(6):1133–1145

    Article  CAS  PubMed  Google Scholar 

  23. Rodriguez-Martinez G, Velasco I (2012) Activin and TGF-beta effects on brain development and neural stem cells. CNS Neurol Disord Drug Targets 11(7):844–855

    Article  CAS  PubMed  Google Scholar 

  24. Lorentzon M, Hoffer B, Ebendal T, Olson L, Tomac A (1996) Habrec1, a novel serine/threonine kinase TGF-beta type I-like receptor, has a specific cellular expression suggesting function in the developing organism and adult brain. Exp Neurol 142(2):351–360

    Article  CAS  PubMed  Google Scholar 

  25. Suwanabol PA, Seedial SM, Zhang F, Shi X, Si Y, Liu B et al (2012) TGF-beta and Smad3 modulate PI3K/Akt signaling pathway in vascular smooth muscle cells. Am J Physiol Heart Circ Physiol 302(11):H2211–H2219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Dellon AL (2011) Make no bones about it (regulation and control): NGF versus TGF-beta and BMP. Microsurgery 31(5):337–339

    Article  PubMed  Google Scholar 

  27. Joko M, Osuka K, Usuda N, Atsuzawa K, Aoyama M, Takayasu M (2013) Different modifications of phosphorylated Smad3C and Smad3L through TGF-beta after spinal cord injury in mice. Neurosci Lett 549:168–172

    Article  CAS  PubMed  Google Scholar 

  28. Sohrevardi SM, Ahmadinejad M, Said K, Sarafzadeh F, Zadeh SS, Yousefi M et al (2013) Evaluation of TGF beta1, IL-8 and nitric oxide in the serum of diffuse axonal injury patients and its association with clinical status and outcome. Turk Neurosurg 23(2):151–154

    PubMed  Google Scholar 

  29. Spitzbarth I, Bock P, Haist V, Stein VM, Tipold A, Wewetzer K et al (2011) Prominent microglial activation in the early proinflammatory immune response in naturally occurring canine spinal cord injury. J Neuropathol Exp Neurol 70(8):703–714

    Article  PubMed  Google Scholar 

  30. Xiyang YB, Lu BT, Ya Z, Yuan Z, Xia QJ, Zou Y et al (2014) Expressional difference, distributions of TGF-beta1 in TGF-beta1 knock down transgenic mouse, and its possible roles in injured spinal cord. Exp Biol Med (Maywood) 239(3):320–329

    Article  PubMed  Google Scholar 

  31. Yan H, Zhang HW, Wu QL, Zhang GB, Liu K, Zhi DS et al (2012) Increased leakage of brain antigens after traumatic brain injury and effect of immune tolerance induced by cells on traumatic brain injury. Chin Med J (Engl) 125(9):1618–1626

    CAS  PubMed  Google Scholar 

  32. Ansorena E, De Berdt P, Ucakar B, Simon-Yarza T, Jacobs D, Schakman O et al (2013) Injectable alginate hydrogel loaded with GDNF promotes functional recovery in a hemisection model of spinal cord injury. Int J Pharm 455(1–2):148–158

    Article  CAS  PubMed  Google Scholar 

  33. Eggers R, de Winter F, Hoyng SA, Roet KC, Ehlert EM, Malessy MJ et al (2013) Lentiviral vector-mediated gradients of GDNF in the injured peripheral nerve: effects on nerve coil formation, Schwann cell maturation and myelination. PLoS ONE 8(8):e71076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lin YC, Oh SJ, Marra KG (2013) Synergistic lithium chloride and glial cell line-derived neurotrophic factor delivery for peripheral nerve repair in a rodent sciatic nerve injury model. Plast Reconstr Surg 132(2):251e–62e

    Article  CAS  PubMed  Google Scholar 

  35. May F, Buchner A, Schlenker B, Gratzke C, Arndt C, Stief C et al (2013) Schwann cell-mediated delivery of glial cell line-derived neurotrophic factor restores erectile function after cavernous nerve injury. Int J Urol 20(3):344–348

    Article  CAS  PubMed  Google Scholar 

  36. Patel NK, Pavese N, Javed S, Hotton GR, Brooks DJ, Gill SS (2013) Benefits of putaminal GDNF infusion in Parkinson disease are maintained after GDNF cessation. Neurology 81(13):1176–1178

    Article  PubMed  PubMed Central  Google Scholar 

  37. Sun XL, Chen BY, Duan L, Xia Y, Luo ZJ, Wang JJ et al (2014) The proform of glia cell line-derived neurotrophic factor: a potentially biologically active protein. Mol Neurobiol 49(1):234–250

    Article  CAS  PubMed  Google Scholar 

  38. Tiwari SK, Chaturvedi RK (2014) Peptide therapeutics in neurodegenerative Disorders.Curr Med Chem.

  39. Wyse RD, Dunbar GL, Rossignol J (2014) Use of genetically modified mesenchymal stem cells to treat neurodegenerative diseases. Int J Mol Sci 15(2):1719–1745

    Article  PubMed  PubMed Central  Google Scholar 

  40. Kraus S, Lehner B, Reichhart N, Couillard-Despres S, Wagner K, Bogdahn U et al (2013) Transforming growth factor-beta1 primes proliferating adult neural progenitor cells to electrophysiological functionality. Glia 61(11):1767–1783

    Article  PubMed  Google Scholar 

  41. Mitchell K, Shah JP, Tsytsikova LV, Campbell AM, Affram K, Symes AJ (2014) LPS antagonism of TGF-beta signaling results in prolonged survival and activation of rat primary microglia. J Neurochem 129(1):155–168

    Article  CAS  PubMed  Google Scholar 

  42. Papadopoulos P, Tong XK, Hamel E (2014) Selective benefits of simvastatin in bitransgenic APPSwe,Ind/TGF-beta1 mice. Neurobiol Aging 35(1):203–212

    Article  CAS  PubMed  Google Scholar 

  43. Zhou X, Spittau B, Krieglstein K (2012) TGFbeta signalling plays an important role in IL4-induced alternative activation of microglia. J Neuroinflammation 9:210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ross R, Glomset J, Kariya B, Harker L (1974) A platelet-dependent serum factor that stimulates the proliferation of arterial smooth muscle cells in vitro. Proc Natl Acad Sci U S A 71(4):1207–1210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Antoniades HN, Hunkapiller MW (1983) Human platelet-derived growth factor (PDGF): amino-terminal amino acid sequence. Science 220(4600):963–965

    Article  CAS  PubMed  Google Scholar 

  46. Heldin CH, Westermark B (1999) Mechanism of action and in vivo role of platelet-derived growth factor. Physiol Rev 79(4):1283–1316

    Article  CAS  PubMed  Google Scholar 

  47. Hart CE, Forstrom JW, Kelly JD, Seifert RA, Smith RA, Ross R et al (1988) Two classes of PDGF receptor recognize different isoforms of PDGF. Science 240(4858):1529–1531

    Article  CAS  PubMed  Google Scholar 

  48. Heldin CH, Backstrom G, Ostman A, Hammacher A, Ronnstrand L, Rubin K et al (1988) Binding of different dimeric forms of PDGF to human fibroblasts: evidence for two separate receptor types. EMBO J 7(5):1387–1393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Matsui T, Heidaran M, Miki T, Popescu N, La Rochelle W, Kraus M et al (1989) Isolation of a novel receptor cDNA establishes the existence of two PDGF receptor genes. Science 243(4892):800–804

    Article  CAS  PubMed  Google Scholar 

  50. Sung JY, Lee SY, Min DS, Eom TY, Ahn YS, Choi MU et al (2001) Differential activation of phospholipases by mitogenic EGF and neurogenic PDGF in immortalized hippocampal stem cell lines. J Neurochem 78(5):1044–1053

    Article  CAS  PubMed  Google Scholar 

  51. Di Rocco F, Carroll RS, Zhang J, Black PM (1998) Platelet-derived growth factor and its receptor expression in human oligodendrogliomas. Neurosurgery 42(2):341–346

    Article  PubMed  Google Scholar 

  52. Shih AH, Holland EC (2006) Platelet-derived growth factor (PDGF) and glial tumorigenesis. Cancer Lett 232(2):139–147

    Article  CAS  PubMed  Google Scholar 

  53. Kokkinakis DM, Rushing EJ, Shareef MM, Ahmed MM, Yang S, Singha UK et al (2004) Physiology and gene expression characteristics of carcinogen-initiated and tumor-transformed glial progenitor cells derived from the CNS of methylnitrosourea (MNU)-treated Sprague-Dawley rats. J Neuropathol Exp Neurol 63(11):1182–1199

    Article  CAS  PubMed  Google Scholar 

  54. Unsicker K, Flanders KC, Cissel DS, Lafyatis R, Sporn MB (1991) Transforming growth factor beta isoforms in the adult rat central and peripheral nervous system. Neuroscience 44(3):613–625

    Article  CAS  PubMed  Google Scholar 

  55. Sasahara A, Kott JN, Sasahara M, Raines EW, Ross R, Westrum LE (1992) Platelet-derived growth factor B-chain-like immunoreactivity in the developing and adult rat brain. Brain Res Dev Brain Res 68(1):41–53

    Article  CAS  PubMed  Google Scholar 

  56. Trupp M, Belluardo N, Funakoshi H, Ibanez CF (1997) Complementary and overlapping expression of glial cell line-derived neurotrophic factor (GDNF), c-ret proto-oncogene, and GDNF receptor-alpha indicates multiple mechanisms of trophic actions in the adult rat CNS. J Neurosci 17(10):3554–3567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Bottner M, Krieglstein K, Unsicker K (2000) The transforming growth factor-betas: structure, signaling, and roles in nervous system development and functions. J Neurochem 75(6):2227–2240

    Article  CAS  PubMed  Google Scholar 

  58. Bosco P, Ferri R, Salluzzo MG, Castellano S, Signorelli M, Nicoletti F et al (2013) Role of the transforming-growth-Factor-beta1 gene in late-onset Alzheimer’s Disease: implications for the treatment. Curr Genomics 14(2):147–156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Flanders KC, Lippa CF, Smith TW, Pollen DA, Sporn MB (1995) Altered expression of transforming growth factor-beta in Alzheimer’s disease. Neurology 45(8):1561–1569

    Article  CAS  PubMed  Google Scholar 

  60. Kawamoto Y, Nakamura S, Matsuo A, Akiguchi I, Shibasaki H (2000) Immunohistochemical localization of glial cell line-derived neurotrophic factor in the human central nervous system. Neuroscience 100(4):701–712

    Article  CAS  PubMed  Google Scholar 

  61. Peiris TS, Machaalani R, Waters KA (2004) Brain-derived neurotrophic factor mRNA and protein in the piglet brainstem and effects of intermittent hypercapnic hypoxia. Brain Res 1029(1):11–23

    Article  CAS  PubMed  Google Scholar 

  62. Serra MP, Quartu M, Lai ML, Follesa P, Del Fiacco M (2002) Expression of glial cell line-derived neurotrophic factor mRNA in the human newborn and adult hippocampal formation. Brain Res 928(1–2):160–164

    Article  CAS  PubMed  Google Scholar 

  63. Liao MH, Liu SS, Peng IC, Tsai FJ, Huang HH (2014) The stimulatory effects of alpha1-adrenergic receptors on TGF-beta1, IGF-1 and hyaluronan production in human skin fibroblasts.Cell Tissue Res.

  64. Lee CM, Park JW, Cho WK, Zhou Y, Han B, Yoon PO et al (2014) Modifiers of TGF-beta1 effector function as novel therapeutic targets of pulmonary fibrosis. Korean J Intern Med 29(3):281–290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Sun Z, Lei H, Zhang Z (2013) Pre-B cell colony enhancing factor (PBEF), a cytokine with multiple physiological functions. Cytokine Growth Factor Rev 24(5):433–442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Fèvre-Montange M, Dumontel C, Chevallier P, Isnard AK, Guigard MP, Trouillas J (2004) Localization of transforming growth factors, TGFbeta1 and TGFbeta3, in hypothalamic magnocellular neurones and the neurohypophysis. J Neuroendocrinol 16(7):571–576

    Article  PubMed  Google Scholar 

  67. Bengtsson H, Soderstrom S, Ebendal T (1995) Expression of activin receptors type I and II only partially overlaps in the nervous system. NeuroReport 7(1):113–116

    Article  CAS  PubMed  Google Scholar 

  68. Bottner M, Unsicker K, Suter-Crazzolara C (1996) Expression of TGF-beta type II receptor mRNA in the CNS. NeuroReport 7(18):2903–2907

    Article  CAS  PubMed  Google Scholar 

  69. Katsuno M, Adachi H, Banno H, Suzuki K, Tanaka F, Sobue G (2011) Transforming growth factor-beta signaling in motor neuron diseases. Curr Mol Med 11(1):48–56

    Article  CAS  PubMed  Google Scholar 

  70. Martinou JC, Le Van Thai A, Valette A, Weber MJ (1990) Transforming growth factor beta 1 is a potent survival factor for rat embryo motoneurons in culture. Brain Res Dev Brain Res 52(1–2):175–181

    Article  CAS  PubMed  Google Scholar 

  71. Hunter KE, Sporn MB, Davies AM (1993) Transforming growth factor-betas inhibit mitogen-stimulated proliferation of astrocytes. Glia 7(3):203–211

    Article  CAS  PubMed  Google Scholar 

  72. Butovsky O, Jedrychowski MP, Moore CS, Cialic R, Lanser AJ, Gabriely G et al (2014) Identification of a unique TGF-beta-dependent molecular and functional signature in microglia. Nat Neurosci 17(1):131–143

    Article  CAS  PubMed  Google Scholar 

  73. Sugimoto K, Nishioka R, Ikeda A, Mise A, Takahashi H, Yano H et al (2014) Activated microglia in a rat stroke model express NG2 proteoglycan in peri-infarct tissue through the involvement of TGF-beta1. Glia 62(2):185–198

    Article  PubMed  Google Scholar 

  74. Englund-Johansson U, Mohlin C, Liljekvist-Soltic I, Ekstrom P, Johansson K (2010) Human neural progenitor cells promote photoreceptor survival in retinal explants. Exp Eye Res 90(2):292–299

    Article  CAS  PubMed  Google Scholar 

  75. Chacon PJ, Rodriguez-Tebar A (2012) Increased expression of the homologue of enhancer-of-split 1 protects neurons from beta amyloid neurotoxicity and hints at an alternative role for transforming growth factor beta1 as a neuroprotector. Alzheimers Res Ther 4(4):31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Martinez-Canabal A (2014) Potential neuroprotective role of transforming growth factor beta1 (TGFbeta1) in the brain.Int J Neurosci.

  77. Pina Serra M, Quartu M, Ambu R, Follesa P, Del Fiacco M (2002) Immunohistochemical localization of GDNF in the human hippocampal formation from prenatal life to adulthood. Brain Res 928(1–2):138–146

    Article  CAS  PubMed  Google Scholar 

  78. Springer JE, Mu X, Bergmann LW, Trojanowski JQ (1994) Expression of GDNF mRNA in rat and human nervous tissue. Exp Neurol 127(2):167–170

    Article  CAS  PubMed  Google Scholar 

  79. Pochon NA, Menoud A, Tseng JL, Zurn AD, Aebischer P (1997) Neuronal GDNF expression in the adult rat nervous system identified by in situ hybridization. Eur J Neurosci 9(3):463–471

    Article  CAS  PubMed  Google Scholar 

  80. Arenas E, Trupp M, Akerud P, Ibanez CF (1995) GDNF prevents degeneration and promotes the phenotype of brain noradrenergic neurons in vivo. Neuron 15(6):1465–1473

    Article  CAS  PubMed  Google Scholar 

  81. Lucini C, Maruccio L, Patruno M, Tafuri S, Staiano N, Mascarello F et al (2008) Glial cell line-derived neurotrophic factor expression in the brain of adult zebrafish (Danio rerio). Histol Histopathol 23(3):251–261

    CAS  PubMed  Google Scholar 

  82. Hidalgo-Figueroa M, Bonilla S, Gutiérrez F, Pascual A, López-Barneo J (2012) GDNF is predominantly expressed in the PV + neostriatal interneuronal ensemble in normal mouse and after injury of the nigrostriatal pathway. J Neurosci 32(3):864–872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Choi-Lundberg DL, Bohn MC (1995) Ontogeny and distribution of glial cell line-derived neurotrophic factor (GDNF) mRNA in rat. Brain Res Dev Brain Res 85(1):80–88

    Article  CAS  PubMed  Google Scholar 

  84. Wise SP, Jones EG (1977) Cells of origin and terminal distribution of descending projections of the rat somatic sensory cortex. J Comp Neurol 175(2):129–157

    Article  CAS  PubMed  Google Scholar 

  85. Tovar YRLB, Ramirez-Jarquin UN, Lazo-Gomez R, Tapia R (2014) Trophic factors as modulators of motor neuron physiology and survival: implications for ALS therapy. Front Cell Neurosci 8:61

    Google Scholar 

  86. Tereshchenko J, Maddalena A, Bahr M, Kugler S (2014) Pharmacologically controlled, discontinuous GDNF gene therapy restores motor function in a rat model of Parkinson’s disease. Neurobiol Dis 65:35–42

    Article  CAS  PubMed  Google Scholar 

  87. Chou AK, Yang MC, Tsai HP, Chai CY, Tai MH, Kwan AL et al (2014) Adenoviral-mediated glial cell line-derived neurotrophic factor gene transfer has a protective effect on sciatic nerve following constriction-induced spinal cord injury. PLoS ONE 9(3):e92264

    Article  PubMed  PubMed Central  Google Scholar 

  88. Cintron-Colon AF, Almeida-Alves G, VanGyseghem JM, Spitsbergen JM (2022) GDNF to the rescue: GDNF delivery effects on motor neurons and nerves, and muscle re-innervation after peripheral nerve injuries. Neural Regen Res 17(4):748–753

    Article  CAS  PubMed  Google Scholar 

  89. Duan X, Zhu T, Chen C, Zhang G, Zhang J, Wang L et al (2018) Serum glial cell line-derived neurotrophic factor levels and postoperative cognitive dysfunction after surgery for rheumatic heart disease. J Thorac Cardiovasc Surg 155(3):958–65e1

    Article  CAS  PubMed  Google Scholar 

  90. Zhu KY, Xu SL, Choi RC, Yan AL, Dong TT, Tsim KW (2013) Kai-xin-san, a chinese herbal decoction containing ginseng radix et rhizoma, polygalae radix, acori tatarinowii rhizoma, and poria, stimulates the expression and secretion of neurotrophic factors in cultured astrocytes. Evid Based Complement Alternat Med 2013:731385

    Article  PubMed  PubMed Central  Google Scholar 

  91. Gowing G, Shelley B, Staggenborg K, Hurley A, Avalos P, Victoroff J et al (2014) Glial cell line-derived neurotrophic factor-secreting human neural progenitors show long-term survival, maturation into astrocytes, and no tumor formation following transplantation into the spinal cord of immunocompromised rats. NeuroReport 25(6):367–372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Chen CH, Huang SY, Chen NF, Feng CW, Hung HC, Sung CS et al (2013) Intrathecal granulocyte colony-stimulating factor modulate glial cell line-derived neurotrophic factor and vascular endothelial growth factor A expression in glial cells after experimental spinal cord ischemia. Neuroscience 242:39–52

    Article  CAS  PubMed  Google Scholar 

  93. Wang J, Yang Z, Liu C, Zhao Y, Chen Y (2013) Activated microglia provide a neuroprotective role by balancing glial cell-line derived neurotrophic factor and tumor necrosis factor-alpha secretion after subacute cerebral ischemia. Int J Mol Med 31(1):172–178

    Article  CAS  PubMed  Google Scholar 

  94. Zlotnik A, Spittau B (2014) GDNF fails to inhibit LPS-mediated activation of mouse microglia. J Neuroimmunol 270(1–2):22–28

    Article  CAS  PubMed  Google Scholar 

  95. Airaksinen MS, Saarma M (2002) The GDNF family: signalling, biological functions and therapeutic value. Nat Rev Neurosci 3(5):383–394

    Article  CAS  PubMed  Google Scholar 

  96. Maeshima T, Shutoh F, Hamada S, Senzaki K, Hamaguchi-Hamada K, Ito R et al (1998) Serotonin2A receptor-like immunoreactivity in rat cerebellar purkinje cells. Neurosci Lett 252(1):72–74

    Article  CAS  PubMed  Google Scholar 

  97. Kruk JS, Vasefi MS, Liu H, Heikkila JJ, Beazely MA (2013) 5-HT(1A) receptors transactivate the platelet-derived growth factor receptor type beta in neuronal cells. Cell Signal 25(1):133–143

    Article  CAS  PubMed  Google Scholar 

  98. Smits A, Kato M, Westermark B, Nister M, Heldin CH, Funa K (1991) Neurotrophic activity of platelet-derived growth factor (PDGF): rat neuronal cells possess functional PDGF beta-type receptors and respond to PDGF. Proc Natl Acad Sci U S A 88(18):8159–8163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Zachrisson O, Zhao M, Andersson A, Dannaeus K, Häggblad J, Isacson R et al (2011) Restorative effects of platelet derived growth factor-BB in rodent models of Parkinson’s disease. J Parkinsons Dis 1(1):49–63

    Article  PubMed  Google Scholar 

  100. Yeh HJ, Silos-Santiago I, Wang YX, George RJ, Snider WD, Deuel TF (1993) Developmental expression of the platelet-derived growth factor alpha-receptor gene in mammalian central nervous system. Proc Natl Acad Sci U S A 90(5):1952–1956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Kahn MA, Ellison JA, Chang RP, Speight GJ, de Vellis J (1997) CNTF induces GFAP in a S-100 alpha brain cell population: the pattern of CNTF-alpha R suggests an indirect mode of action. Brain Res Dev Brain Res 98(2):221–233

    Article  CAS  PubMed  Google Scholar 

  102. Nishiyama A, Lin XH, Giese N, Heldin CH, Stallcup WB (1996) Co-localization of NG2 proteoglycan and PDGF alpha-receptor on O2A progenitor cells in the developing rat brain. J Neurosci Res 43(3):299–314

    Article  CAS  PubMed  Google Scholar 

  103. Simakajornboon N, Kuptanon T, Jirapongsuwan P (2010) The effect of prenatal nicotine exposure on PDGFR-mediated anti-apoptotic mechanism in the caudal brainstem of developing rat. Neurosci Lett 478(1):46–50

    Article  CAS  PubMed  Google Scholar 

  104. Tseng HC, Dichter MA (2005) Platelet-derived growth factor-BB pretreatment attenuates excitotoxic death in cultured hippocampal neurons. Neurobiol Dis 19(1–2):77–83

    Article  CAS  PubMed  Google Scholar 

  105. Galli R, Pagano SF, Gritti A, Vescovi AL (2000) Regulation of neuronal differentiation in human CNS stem cell progeny by leukemia inhibitory factor. Dev Neurosci 22(1–2):86–95

    Article  CAS  PubMed  Google Scholar 

  106. Dai C, Celestino JC, Okada Y, Louis DN, Fuller GN, Holland EC (2001) PDGF autocrine stimulation dedifferentiates cultured astrocytes and induces oligodendrogliomas and oligoastrocytomas from neural progenitors and astrocytes in vivo. Genes Dev 15(15):1913–1925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Krupinski J, Issa R, Bujny T, Slevin M, Kumar P, Kumar S et al (1997) A putative role for platelet-derived growth factor in angiogenesis and neuroprotection after ischemic stroke in humans. Stroke 28(3):564–573

    Article  CAS  PubMed  Google Scholar 

  108. Bethel-Brown C, Yao H, Hu G, Buch S (2012) Platelet-derived growth factor (PDGF)-BB-mediated induction of monocyte chemoattractant protein 1 in human astrocytes: implications for HIV-associated neuroinflammation. J Neuroinflammation 9:262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Masuda J, Tsuda M, Tozaki-Saitoh H, Inoue K (2009) Intrathecal delivery of PDGF produces tactile allodynia through its receptors in spinal microglia. Mol Pain 5:23

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Mr. Heng-Leong Chan for his comments on this manuscript.

Funding

This work was supported by a grant from the National Science foundation of China (No. 81271358, 81070991, 81260191).

Author information

Authors and Affiliations

Authors

Contributions

Ting-Hua Wang and De-Zhi Mu contributed to the study conception and design. Material preparation, data collection and analysis were performed by Hong-Tian Zhang and Yan-Jun Chen. The first draft of the manuscript was written by Hui Li and Qi-Qin Dan, and the manuscript was revised by Ting-Hua Wang, Hui Li, and Li Chen. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to De-Zhi Mu or Ting-Hua Wang.

Ethics declarations

Competing Interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Dan, QQ., Chen, YJ. et al. Cellular Localization and Distribution of TGF-β1, GDNF and PDGF-BB in the Adult Primate Central Nervous System. Neurochem Res 48, 2406–2423 (2023). https://doi.org/10.1007/s11064-023-03909-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-023-03909-9

Keywords

Navigation