Skip to main content

TGF-β in Brain Disorders

  • Chapter
  • First Online:
TGF-β in Human Disease

Abstract

Transforming growth factor beta (TGF-β) is known to regulate numerous cell functions in the nervous system development, adult maintenance, and degeneration. TGF-β carries roles in neurons and glia and is involved in the regulation of proliferation, differentiation, neuron survival and death, as well as orchestrating its response to lesion. In the context of brain disorders the current understanding of TGF-β action is discussed for brain tumors, neurodegenerative disease, such as Alzheimers’ and Parkinson’s disease, in insults such as ischemia, stroke, and vascular damage, as well as changes in neuronal activity, such as hyperactivity as seen in epilepsy, or in neuronal depression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Aβ:

Amyloid β

AD:

Alzheimer’s disease

Alk:

Activin-receptor like kinase

ALS:

Amyotrophic lateral sclerosis

APP:

Amyloid precursos protein

BBB:

Blood–brain barrier

BDNF:

Brain-derived neurotrophic factor

Cdk:

Cyclin-dependent kinase

CNS:

Central nervous system

CNTF:

Ciliary neurotrophic factor

CSF:

Cerebrospinal fluid

E:

Embryonic day

ECM:

Extracellular matrix

EGF:

Epidermal growth factor

FGF:

Fibroblast growth factor

Fox:

Forkhead box

GDNF:

Glial cell line-derived neurotrophic factor

GFAP:

Glial fibrillary acidic protein

GFRα:

GDNF receptor

Id4:

Inhibitors of DNA binding/differentiation

TIEG:

TGF-β immediate early gene

IL:

Interleukin

Kir:

Inward recitfying potassium channels

MGP:

Matrix GLA protein

MHC:

Major histocompatobility class

MMP:

Matrix metalloproteinase

MPP+:

1-methyl-4-phenylpyridinium

MPTP:

1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine

MS:

Multiples sclerosis

NGF:

Nerve growth factor

PAI:

Plasminogen activator inhibitor

PD:

Parkinson’s disease

PDGF:

Platelet-derived growth factor

PNS:

Peripheral nervous system

SOD:

Superoxide dismutase

TGF- β:

Transforming growth factor β

TβR:

TGF-β receptor

TNF-α:

Tumor necrosis factor α

TRAF:

TNF-α receptor associated factor

t-PA:

Tissue plasminogen activator

VEGF:

Vascular endothelial growth factor

References

  • Abbott NJ, Rönnbäck L, Hansson E (2006) Astrocyte-endothelial interactions at the blood–brain barrier. Nat Rev Neurosci 7:41–53

    PubMed  CAS  Google Scholar 

  • Abe K, Chu PJ, Ishihara A, Saito H (1996) Transforming growth factor-β 1 promotes re-elongation of injured axons of cultured rat hippocampal neurons. Brain Res 723:206–209

    PubMed  CAS  Google Scholar 

  • Aderka D, Le JM, Vilcek J (1989) IL-6 inhibits lipopolysaccharide-induced tumor necrosis factor production in cultured human monocytes, U937 cells, and in mice. J Immunol 143:3517–3523

    PubMed  CAS  Google Scholar 

  • Aigner L, Bogdahn U (2008) TGF-β in neural stem cells and in tumors of the central nervous system. Cell Tissue Res 331:225–241

    PubMed  Google Scholar 

  • Anchan RM, Reh TA (1995) Transforming growth factor-β-3 is mitogenic for rat retinal progenitor cells in vitro. J Neurobiol 28:133–145

    PubMed  CAS  Google Scholar 

  • Araria-Goumidi L, Lambert JC, Mann DM, Lendon C, Frigard B, Iwatsubo T, Cottel D, Amouyel P, Chartier-Harlin MC (2002) Association study of three polymorphisms of TGF-β1 gene with Alzheimer’s disease. J Neurol Neurosurg Psychiatry 73:62–64

    PubMed  CAS  Google Scholar 

  • Atanasoski S, Notterpek L, Lee HY, Castagner F, Young P, Ehrengruber MU, Meijer D, Sommer L, Stavnezer E, Colmenares C, Suter U (2004) The protooncogene Ski controls Schwann cell proliferation and myelination. Neuron 43:499–511

    PubMed  CAS  Google Scholar 

  • Awatramani R, Shumas S, Kamholz J, Scherer SS (2002) TGFβ1 modulates the phenotype of Schwann cells at the transcriptional level. Mol Cell Neurosci 19:307–319

    PubMed  CAS  Google Scholar 

  • Baghdassarian D, Toru-Delbauffe D, Gavaret JM, Pierre M (1993) Effects of transforming growth factor-β1 on the extracellular matrix and cytoskeleton of cultured astrocytes. Glia 7:193–202

    PubMed  CAS  Google Scholar 

  • Bartholin L, Vincent DF, Valcourt U (2013) TGF-β as tumor suppressor: in vitro mechanistic aspects of growth inhibition. In: Moustakas A, Miyazawa K (eds) TGF-β in human disease. Springer, Tokyo, pp 113–138.

    Google Scholar 

  • Beck K, Schachtrup C (2012) Vascular damage in the central nervous system: a multifaceted role for vascular-derived TGF-β. Cell Tissue Res 347:187–201

    PubMed  CAS  Google Scholar 

  • Bertram L, Lill CM, Tanzi RE (2010) The genetics of Alzheimer disease: back to the future. Neuron 68:270–281

    PubMed  CAS  Google Scholar 

  • Björklund A, Lindvall O (2000) Parkinson’s disease gene therapy moves towards the clinic. Nat Med 6:1207–1208

    PubMed  Google Scholar 

  • Boche D, Cunningham C, Gauldie J, Perry VH (2003) Transforming growth factor-β 1-mediated neuroprotection against excitotoxic injury in vivo. J Cereb Blood Flow Metab 23:1174–118

    PubMed  CAS  Google Scholar 

  • Bodmer S, Strommer K, Frei K, Siepl C, de Tribolet N, Heid I, Fontana A (1989) Immunosuppression and transforming growth factor-β in glioblastoma. Preferential production of transforming growth factor-β 2. J Immunol 143:3222–3229

    PubMed  CAS  Google Scholar 

  • Bonnon C, Atanasoski S (2012) c-Ski in health and disease. Cell Tissue Res 347:51–64

    PubMed  CAS  Google Scholar 

  • Böttner M, Krieglstein K, Unsicker K (2000) The transforming growth factor-βs: structure, signaling, and roles in nervous system development and functions. J Neurochem 75:2227–2240

    PubMed  Google Scholar 

  • Braak H, Ghebremedhin E, Rub U, Bratzke H, Del Tredici K (2004) Stages in the development of Parkinson’s disease-related pathology. Cell Tissue Res 318:121–134

    PubMed  Google Scholar 

  • Buisson A, Lesne S, Docagne F, Ali C, Nicole O, MacKenzie ET, Vivien D (2003) Transforming growth factor-β and ischemic brain injury. Cell Mol Neurobiol 23:539–550

    PubMed  CAS  Google Scholar 

  • Burton T, Liang B, Dibrov A, Amara F (2002) Transcriptional activation and increase in expression of Alzheimer’s β-amyloid precursor protein gene is mediated by TGF-β in normal human astrocytes. Biochem Biophys Res Commun 295:702–712

    PubMed  CAS  Google Scholar 

  • Cacheaux LP, Ivens S, David Y, Lakhter AJ, Bar-Klein G, Shapira M, Heinemann U, Friedman A, Kaufer D (2009) Transcriptome profiling reveals TGF-β signaling involvement in epileptogenesis. J Neurosci 29:8927–8935

    PubMed  CAS  Google Scholar 

  • Cameron JS, Dryer L, Dryer SE (1999) Regulation of neuronal K(+) currents by target-derived factors: opposing actions of two different isoforms of TGFβ. Development 126:4157–4164

    PubMed  CAS  Google Scholar 

  • Caraci F, Battaglia G, Busceti C, Biagioni F, Mastroiacovo F, Bosco P, Drago F, Nicoletti F, Sortino MA, Copani A (2008) TGF-β 1 protects against Aβ-neurotoxicity via the phosphatidylinositol-3-kinase pathway. Neurobiol Dis 30:234–242

    PubMed  CAS  Google Scholar 

  • Caraci F, Spampinato S, Sortino MA, Bosco P, Battaglia G, Bruno V, Drago F, Nicoletti F, Copani A (2012) Dysfunction of TGF-β1 signaling in Alzheimer’s disease: perspectives for neuroprotection. Cell Tissue Res 347:291–301

    PubMed  CAS  Google Scholar 

  • Chalmers KA, Love S (2007a) Neurofibrillary tangles may interfere with Smad 2/3 signaling in neurons. J Neuropathol Exp Neurol 66:158–167

    PubMed  CAS  Google Scholar 

  • Chalmers KA, Love S (2007b) Phosphorylated Smad 2/3 colocalizes with phospho-tau inclusions in Pick disease, progressive supranuclear palsy, and corticobasal degeneration but not with alpha-synuclein inclusions in multiple system atrophy or dementia with lewy bodies. J Neuropathol Exp Neurol 66:1019–1026

    PubMed  CAS  Google Scholar 

  • Chin J, Angers A, Cleary LJ, Eskin A, Byrne JH (2002) Transforming growth factor β1 alters synapsin distribution and modulates synaptic depression in Aplysia. J Neurosci 22:RC220

    PubMed  CAS  Google Scholar 

  • Csuka E, Morganti-Kossmann MC, Lenzlinger PM, Joller H, Trentz O, Kossmann T (1999) IL-10 levels in cerebrospinal fluid and serum of patients with severe traumatic brain injury: relationship to IL-6, TNF-α, TGF-β1 and blood–brain barrier function. J Neuroimmunol 101:211–221

    PubMed  CAS  Google Scholar 

  • Cunningham JJ, Roussel MF (2001) Cyclin-dependent kinase inhibitors in the development of the central nervous system. Cell Growth Differ 12:387–396

    PubMed  CAS  Google Scholar 

  • DaCosta BS, Major C, Laping NJ, Roberts AB (2004) SB-505124 is a selective inhibitor of transforming growth factor-β type I receptors ALK4, ALK5, and ALK7. Mol Pharmacol 65:744–752

    Google Scholar 

  • Day WA, Koishi K, Nukuda H, McLennan IS (2005) Transforming growth factor-β 2 causes an acute improvement in the motor performance of transgenic ALS mice. Neurobiol Dis 19:323–330

    PubMed  CAS  Google Scholar 

  • Day WA, Koishi K, McLennan IS (2003) Transforming growth factor β 1 may regulate the stability of mature myelin sheaths. Exp Neurol 184:857–864

    PubMed  CAS  Google Scholar 

  • De Strooper B, Vassar R, Golde T (2010) The secretases: enzymes with therapeutic potential in Alzheimer disease. Nat Rev Neurol 6:99–107

    PubMed  Google Scholar 

  • Decressac M, Ulusoy A, Mattsson B, Georgievska B, Romero-Ramos M, Kirik D, Björklund A (2011) GDNF fails to exert neuroprotection in a rat α-synuclein model of Parkinson’s disease. Brain 134:2302–2311

    PubMed  Google Scholar 

  • Dell’Orso S, Ganci F, Strano S, Blandino G, Fontemaggi G (2010) ID4: a new player in the cancer arena. Oncotarget 1:48–58

    PubMed  Google Scholar 

  • Derynck R, Jarrett JA, Chen EY, Eaton DH, Bell JR, Assoian RK, Roberts AB, Sporn MB (1985) Human transforming growth factor-β cDNA sequence and expression in tumor cell lines. Nature 316:701–705

    PubMed  CAS  Google Scholar 

  • Dhandapani KM, Brann DW (2003) Transforming growth factor-β: a neuroprotective factor in cerebral ischemia. Cell Biochem Biophys 39:13–22

    PubMed  CAS  Google Scholar 

  • Dobolyi A, Vincze C, Pál G, Lovas G (2012) The neuroprotective functions of transforming growth factor β proteins. Int J Mol Sci 13:8219–8258

    PubMed  CAS  Google Scholar 

  • Docagne F, Nicole O, Marti HH, MacKenzie ET, Buisson A, Vivien D (1999) Transforming growth factor-β1 as a regulator of the serpins/t-PA axis in cerebral ischemia. FASEB J 13:1315–1324

    PubMed  CAS  Google Scholar 

  • Dong Y, Tang L, Letterio JJ, Benveniste EN (2001) The Smad3 protein is involved in TGF-β inhibition of class II transactivator and class II MHC expression. J Immunol 167:311–319

    PubMed  CAS  Google Scholar 

  • Dryer SE, Lhuillier L, Cameron JS, Martin-Caraballo M (2003) Expression of K(Ca) channels in identified populations of developing vertebrate neurons: role of neurotrophic factors and activity. J Physiol Paris 97:49–58

    PubMed  CAS  Google Scholar 

  • Dunker N, Krieglstein K (2003) Reduced programmed cell death in the retina and defects in lens and cornea of Tgfβ2(−/−) Tgfβ3(−/−) double-deficient mice. Cell Tissue Res 313:1–10

    PubMed  Google Scholar 

  • Dunker N, Schmitt K, Krieglstein K (2002) TGF-β is required for programmed cell death in interdigital webs of the developing mouse limb. Mech Dev 113:111–120

    PubMed  CAS  Google Scholar 

  • Dunker N, Schuster N, Krieglstein K (2001) TGF-β modulates programmed cell death in the retina of the developing chick embryo. Development 128:1933–1942

    PubMed  CAS  Google Scholar 

  • Dunnett SB, Björklund A (1999) Prospects for new restorative and neuroprotective treatments in Parkinson’s disease. Nature 399:A32–A39

    PubMed  CAS  Google Scholar 

  • Fernandez-Espejo E, Armengol JA, Flores JA, Galan-Rodriguez B, Ramiro S (2005) Cells of the sympathoadrenal lineage: biological properties as donor tissue for cell-replacement therapies for Parkinson’s disease. Brain Res Brain Res Rev 49:343–354

    PubMed  CAS  Google Scholar 

  • Flanders KC, Lippa CF, Smith TW, Pollen DA, Sporn MB (1995) Altered expression of transforming growth factor-β in Alzheimer’s disease. Neurology 45:1561–1569

    PubMed  CAS  Google Scholar 

  • Flanders KC, Ludecke G, Engels S, Cissel DS, Roberts AB, Kondaiah P, Lafyatis R, Sporn MB, Unsicker K (1991) Localization and actions of transforming growth factor-β s in the embryonic nervous system. Development 113:183–191

    PubMed  CAS  Google Scholar 

  • Flanders KC, Lüdecke G, Renzig J, Hamm C, Cissel DS, Unsicker K (1993) Effect of TGF-βs and bFGF on astroglial cell growth and gene expression in vitro. Mol Cell Neurosci 4:406–417

    PubMed  CAS  Google Scholar 

  • Flanders KC, Ren RF, Lippa CF (1998) Transforming growth factor-βs in neurodegenerative disease. Prog Neurobiol 54:71–85

    PubMed  CAS  Google Scholar 

  • Fogarty MP, Kessler JD, Wechsler-Reya RJ (2005) Morphing into cancer: the role of developmental signaling pathways in brain tumor formation. J Neurobiol 64:458–475

    PubMed  CAS  Google Scholar 

  • Fong SW, McLennan IS, McIntyre A, Reid J, Shennan KI, Bewick GS (2010) TGF-β2 alters the characteristics of the neuromuscular junction by regulating presynaptic quantal size. Proc Natl Acad Sci USA 107:13515–13519

    PubMed  CAS  Google Scholar 

  • Forno LS (1996) Neuropathology of Parkinson’s disease. J Neuropathol Exp Neurol 55:259–272

    PubMed  CAS  Google Scholar 

  • Friedman A (2011) Blood–brain barrier dysfunction, status epilepticus, seizures, and epilepsy: a puzzle of a chicken and egg? Epilepsia 52(Suppl 8):19–20

    PubMed  Google Scholar 

  • Fukushima T, Liu RY, Byrne JH (2007) Transforming growth factor-β2 modulates synaptic efficacy and plasticity and induces phosphorylation of CREB in hippocampal neurons. Hippocampus 17:5–9

    PubMed  CAS  Google Scholar 

  • Gaertner RF, Wyss-Coray T, Von Euw D, Lesne S, Vivien D, Lacombe P (2005) Reduced brain tissue perfusion in TGF-β 1 transgenic mice showing Alzheimer’s disease-like cerebrovascular abnormalities. Neurobiol Dis 19:38–46

    PubMed  CAS  Google Scholar 

  • Gasser T, Hardy J, Mizuno Y (2011) Milestones in PD genetics. Mov Disord 26:1042–1048

    PubMed  Google Scholar 

  • Gross CE, Bednar MM, Howard DB, Sporn MB (1993) Transforming growth factor-β 1 reduces infarct size after experimental cerebral ischemia in a rabbit model. Stroke 24:558–562

    PubMed  CAS  Google Scholar 

  • Hahn SA, Schutte M, Hoque AT, Moskaluk CA, da Costa LT, Rozenblum E, Weinstein CL, Fischer A, Yeo CJ, Hruban RH, Kern SE (1996) DPC4, a candidate tumor suppressor gene at human chromosome 18q21.1. Science 271:350–353

    PubMed  CAS  Google Scholar 

  • Hanashima C, Shen L, Li SC, Lai E (2002) Brain factor-1 controls the proliferation and differentiation of neocortical progenitor cells through independent mechanisms. J Neurosci 22:6526–6536

    PubMed  CAS  Google Scholar 

  • Hau P, Jachimczak P, Bogdahn U (2009) Treatment of malignant gliomas with TGF-β2 antisense oligonucleotides. Expert Rev Anticancer Ther 9:1663–1674

    PubMed  CAS  Google Scholar 

  • Hau P, Jachimczak P, Schlaier J, Bogdahn U (2011) TGF-β2 signaling in high-grade gliomas. Curr Pharm Biotechnol 12:2150–2157

    PubMed  CAS  Google Scholar 

  • Huang Y, Mucke L (2012) Alzheimer mechanisms and therapeutic strategies. Cell 148:1204–1222

    PubMed  CAS  Google Scholar 

  • Hunter KE, Sporn MB, Davies AM (1993) Transforming growth factor-βs inhibit mitogen-stimulated proliferation of astrocytes. Glia 7:203–211

    PubMed  CAS  Google Scholar 

  • Ishihara A, Saito H, Abe K (1994) Transforming growth factor-β 1 and -β 2 promote neurite sprouting and elongation of cultured rat hippocampal neurons. Brain Res 639:21–25

    PubMed  CAS  Google Scholar 

  • Ivens S, Kaufer D, Flores LP, Bechmann I, Zumsteg D, Tomkins O, Seiffert E, Heinemann U, Friedman A (2007) TGF-β receptor-mediated albumin uptake into astrocytes is involved in neocortical epileptogenesis. Brain 130(Pt 2):535–547

    PubMed  Google Scholar 

  • Jachimczak P, Bogdahn U, Schneider J, Behl C, Meixensberger J, Apfel R, Dorries R, Schlingensiepen KH, Brysch W (1993) The effect of transforming growth factor-β 2-specific phosphorothioate-anti-sense oligodeoxynucleotides in reversing cellular immunosuppression in malignant glioma. J Neurosurg 78:944–951

    PubMed  CAS  Google Scholar 

  • Johns LD, Babcock G, Green D, Freedman M, Sriram S, Ransohoff RM (1992) Transforming growth factor-β 1 differentially regulates proliferation and MHC class-II antigen expression in forebrain and brainstemastrocyte primary cultures. Brain Res 585:229–236

    PubMed  CAS  Google Scholar 

  • Joseph JV, Balasubramaniyan V, Walenkamp A, Kruyt FA (2013) TGF-β as a therapeutic target in high grade gliomas—promises and challenges. Biochem Pharmacol 85:478–485

    PubMed  CAS  Google Scholar 

  • Juraskova B, Andrys C, Holmerova I, Solichova D, Hrnciarikova D, Vankova H, Vasatko T, Krejsek J (2010) Transforming growth factor β and soluble endoglin in the healthy senior and in Alzheimer’s disease patients. J Nutr Health Aging 14:758–761

    PubMed  CAS  Google Scholar 

  • Klempt ND, Sirimanne E, Gunn AJ, Klempt M, Singh K, Williams C, Gluckman PD (1992) Hypoxia-ischemia induces transforming growth factor β 1 mRNA in the infant rat brain. Brain Res Mol Brain Res 13:93–101

    PubMed  CAS  Google Scholar 

  • Knuckey NW, Finch P, Palm DE, Primiano MJ, Johanson CE, Flanders KC, Thompson NL (1996) Differential neuronal and astrocytic expression of transforming growth factor β isoforms in rat hippocampus following transient forebrain ischemia. Brain Res Mol Brain Res 40:1–14

    PubMed  CAS  Google Scholar 

  • Konig HG, Kogel D, Rami A, Prehn JH (2005) TGF-{β}1 activates two distinct type I receptors in neurons: implications for neuronal NF-{κ}B signaling. J Cell Biol 168:1077–1086

    PubMed  Google Scholar 

  • Krieglstein K (2006) Transforming growth factor-βs in the brain. In: Lin R (ed) Handbook of neurochemistry and molecular neurobiology, neuroactive proteins and peptides. Springer, Heidelberg, pp 123–141

    Google Scholar 

  • Krieglstein K, Farkas L, Unsicker K (1998a) TGF-β regulates the survival of ciliary ganglionic neurons synergistically with ciliary neurotrophic factor and neurotrophins. J Neurobiol 37:563–572

    PubMed  CAS  Google Scholar 

  • Krieglstein K, Henheik P, Farkas L, Jaszai J, Galter D, Krohn K, Unsicker K (1998b) Glial cell line-derived neurotrophic factor requires transforming growth factor-β for exerting its full neurotrophic potential on peripheral and CNS neurons. J Neurosci 18:9822–9834

    PubMed  CAS  Google Scholar 

  • Krieglstein K, Richter S, Farkas L, Schuster N, Dunker N, Oppenheim RW, Unsicker K (2000) Reduction of endogenous transforming growth factors β prevents ontogenetic neuron death. Nat Neurosci 3:1085–1090

    PubMed  CAS  Google Scholar 

  • Krieglstein K, Suter-Crazzolara C, Fischer WH, Unsicker K (1995) TGF-β superfamily members promote survival of midbrain dopaminergic neurons and protect them against MPP+ toxicity. EMBO J 14:736–742

    PubMed  CAS  Google Scholar 

  • Krieglstein K, Unsicker K (1994) Transforming growth factor-β promotes survival of midbrain dopaminergic neurons and protects them against N-methyl-4-phenylpyridinium ion toxicity. Neuroscience 63:1189–1196

    PubMed  CAS  Google Scholar 

  • Krieglstein K, Unsicker K (1996) Distinct modulatory actions of TGF-β and LIF on neurotrophin-mediated survival of developing sensory neurons. Neurochem Res 21:843–850

    PubMed  CAS  Google Scholar 

  • Krieglstein K, Zheng F, Unsicker K, Alzheimer C (2011) More than being protective: functional roles for TGF-β/activin signaling pathways at central synapses. Trends Neurosci 34:421–429

    PubMed  CAS  Google Scholar 

  • Labourdette G, Janet T, Laeng P, Perraud F, Lawrence D, Pettmann B (1990) Transforming growth factor type β 1 modulates the effects of basic fibroblast growth factor on growth and phenotypic expression of rat astroblasts in vitro. J Cell Physiol 144:473–484

    PubMed  CAS  Google Scholar 

  • Lacmann A, Hess D, Gohla G, Roussa E, Krieglstein K (2007) Activity-dependent release of transforming growth factor-β in a neuronal network in vitro. Neuroscience 150:647–657

    PubMed  CAS  Google Scholar 

  • Lahn M, Kloeker S, Berry BS (2005) TGF-β inhibitors for the treatment of cancer. Expert Opin Investig Drugs 14:629–643

    PubMed  CAS  Google Scholar 

  • Lee HG, Ueda M, Zhu X, Perry G, Smith MA (2006) Ectopic expression of phospho-Smad2 in Alzheimer’s disease: uncoupling of the transforming growth factor-β pathway? J Neurosci Res 84:1856–1861

    PubMed  CAS  Google Scholar 

  • Leof EB, Proper JA, Goustin AS, Shipley GD, DiCorleto PE, Moses HL (1986) Induction of c-sis mRNA and activity similar to platelet-derived growth factor by transforming growth factor β: a proposed model for indirect mitogenesis involving autocrine activity. Proc Natl Acad Sci USA 83:2453–2457

    PubMed  CAS  Google Scholar 

  • Lindholm D, Castren D, Kiefer R, Zafra F, Thoenen H (1992) Transforming growth factor-β1 in the rat brain: increase after injury and inhibition of astrocyte proliferation. J Cell Biol 117:395–400

    PubMed  CAS  Google Scholar 

  • Lippa CF, Smith TW, Flanders KC (1995) Transforming growth factor-β: neuronal and glial expression in CNS degenerative diseases. Neurodegeneration 4:425–432

    PubMed  CAS  Google Scholar 

  • Logan A, Green J, Hunter A, Jackson R, Berry M (1999) Inhibition of glial scarring in the injured rat brain by a recombinant human monoclonal antibody to transforming growth factor-β2. Eur J Neurosci 11:2367–2374

    PubMed  CAS  Google Scholar 

  • Lou E (2004) Oncolytic viral therapy and immunotherapy of malignant brain tumors: two potential new approaches of translational research. Ann Med 36:2–8

    PubMed  CAS  Google Scholar 

  • Lyons RM, Gentry LE, Purchio AF, Moses HL (1990) Mechanism of activation of latent recombinant transforming growth factor β 1 by plasmin. J Cell Biol 110:1361–1367

    PubMed  CAS  Google Scholar 

  • Markowitz S, Wang J, Myeroff L, Parsons R, Sun L, Lutterbaugh J, Fan RS, Zborowska E, Kinzler KW, Vogelstein B, Brattain M, Willson JKV (1995) Inactivation of the type II TGF-β receptor in colon cancer cells with microsatellite instability. Science 268:1336–1338

    PubMed  CAS  Google Scholar 

  • Martini M, Cenci T, D’Alessandris GQ, Cesarini V, Cocomazzi A, Ricci-Vitiani L, De Maria R, Pallini R, Maria Larocca L (2012) Epigenetic silencing of Id4 identifies a glioblastoma subgroup with a better prognosis as a consequence of an inhibition of angiogenesis. Cancer 119:1004–1012

    PubMed  Google Scholar 

  • Martinou JC, Le Van TA, Valette A, Weber MJ (1990) Transforming growth factor β 1 is a potent survival factor for rat embryo motoneurons in culture. Brain Res Dev Brain Res 52:175–181

    PubMed  CAS  Google Scholar 

  • Massague J (2000) How cells read TGF-β signals. Nat Rev Mol Cell Biol 1:169–178

    PubMed  CAS  Google Scholar 

  • McKinnon RD, Piras G, Ida JA Jr, Dubois-Dalcq M (1993) A role for TGF-β in oligodendrocyte differentiation. J Cell Biol 121:1397–1407

    PubMed  CAS  Google Scholar 

  • McLennan IS, Koishi K (2002) The transforming growth factor-βs: multifaceted regulators of the development and maintenance of skeletal muscles, motoneurons and Schwann cells. Int J Dev Biol 46:559–567

    PubMed  CAS  Google Scholar 

  • Mocali A, Cedrola S, Della Malva N, Bontempelli M, Mitidieri VA, Bavazzano A, Comolli R, Paoletti F, La Porta CA (2004) Increased plasma levels of soluble CD40, together with the decrease of TGF β 1, as possible differential markers of Alzheimer disease. Exp Gerontol 39:1555–1561

    PubMed  CAS  Google Scholar 

  • Morganti-Kossmann MC, Hans VH, Lenzlinger PM, Dubs R, Ludwig E, Trentz O, Kossmann T (1999) TGF-β is elevated in the CSF of patients with severe traumatic brain injuries and parallels blood–brain barrier function. J Neurotrauma 16:617–628

    PubMed  CAS  Google Scholar 

  • Nagatsu T, Mogi M, Ichinose H, Togari A (2000) Changes in cytokines and neurotrophins in Parkinson’s disease. J Neural Transm Suppl 60:277–290

    PubMed  Google Scholar 

  • Nieder C, Schlegel J, Andratschke N, Thamm R, Grosu AL, Molls M (2003) The role of growth factors in central nervous system tumors. Anticancer Res 23:1681–1686

    PubMed  CAS  Google Scholar 

  • Packard M, Mathew D, Budnik V (2003) Wnts and TGF β in synaptogenesis: old friends signalling at new places. Nat Rev Neurosci 4:113–120

    PubMed  CAS  Google Scholar 

  • Pál G, Vincze C, Renner E, Wappler EA, Nagy Z, Lovas G, Dobolyi A (2012) Time course, distribution and cell types of induction of transforming growth factor βs following middle cerebral artery occlusion in the rat brain. PLoS One 7:e46731

    PubMed  Google Scholar 

  • Parkinson DB, Dong Z, Bunting H, Whitfield J, Meier C, Marie H, Mirsky R, Jessen KR (2001) Transforming growth factor β (TGFβ) mediates Schwann cell death in vitro and in vivo: examination of c-Jun activation, interactions with survival signals, and the relationship of TGFβ-mediated death to Schwann cell differentiation. J Neurosci 21:8572–8585

    PubMed  CAS  Google Scholar 

  • Pelton RW, Johnson MD, Perkett EA, Gold LI, Moses HL (1991a) Expression of transforming growth factor-β 1, -β 2, and -β 3 mRNA and protein in the murine lung. Am J Respir Cell Mol Biol 5:522–530

    PubMed  CAS  Google Scholar 

  • Pelton RW, Saxena B, Jones M, Moses HL, Gold LI (1991b) Immunohistochemical localization of TGF β 1, TGF β 2, and TGF β 3 in the mouse embryo: expression patterns suggest multiple roles during embryonic development. J Cell Biol 115:1091–1105

    PubMed  CAS  Google Scholar 

  • Peterziel H, Paech T, Strelau J, Unsicker K, Krieglstein K (2007) Specificity in the crosstalk of TGFβ/GDNF family members is determined by distinct GFR α receptors. J Neurochem 103:2491–2504

    PubMed  CAS  Google Scholar 

  • Peterziel H, Unsicker K, Krieglstein K (2002) TGFβ induces GDNF responsiveness in neurons by recruitment of GFRα1 to the plasma membrane. J Cell Biol 159:157–167

    PubMed  CAS  Google Scholar 

  • Platten M, Wick W, Weller M (2001) Malignant glioma biology: role for TGF-β in growth, motility, angiogenesis, and immune escape. Microsc Res Tech 52:401–410

    PubMed  CAS  Google Scholar 

  • Poulsen KT, Armanini MP, Klein RD, Hynes MA, Phillips HS, Rosenthal A (1994) TGF β 2 and TGF β 3 are potent survival factors for midbrain dopaminergic neurons. Neuron 13:1245–1252

    PubMed  CAS  Google Scholar 

  • Prehn JH, Backhauss C, Krieglstein J (1993) Transforming growth factor-β 1 prevents glutamate neurotoxicity in rat neocortical cultures and protects mouse neocortex from ischemic injury in vivo. J Cereb Blood Flow Metab 13:521–525

    PubMed  CAS  Google Scholar 

  • Prehn JH, Bindokas VP, Marcuccilli CJ, Krajewski S, Reed JC, Miller RJ (1994) Regulation of neuronal Bcl2 protein expression and calcium homeostasis by transforming growth factor type β confers wide-ranging protection on rat hippocampal neurons. Proc Natl Acad Sci USA 91:12599–12603

    PubMed  CAS  Google Scholar 

  • Rahhal B, Dunker N, Combs S, Krieglstein K (2004) Isoform-specific role of transforming growth factor-β2 in the regulation of proliferation and differentiation of murine adrenal chromaffin cells in vivo. J Neurosci Res 78:493–498

    PubMed  CAS  Google Scholar 

  • Rich JN (2003) The role of transforming growth factor-β in primary brain tumors. Front Biosci 8:e245–e260

    PubMed  CAS  Google Scholar 

  • Rich JN, Zhang M, Datto MB, Bigner DD, Wang XF (1999) Transforming growth factor-β-mediated p15(INK4B) induction and growth inhibition in astrocytes is SMAD3-dependent and a pathway prominently altered in human glioma cell lines. J Biol Chem 274:35053–35058

    PubMed  CAS  Google Scholar 

  • Roberts AB, Sporn MB (1990) The transforming growth factor-β. In: Sporn MB, Roberts AB (eds) Handbook of experimental pharmacology, vol 95. Springer, Heidelberg, pp 419–472

    Google Scholar 

  • Roberts AB, Anzano MA, Lamb LC, Smith JM, Sporn MB (1981) New class of transforming growth factors potentiated by epidermal growth factor: isolation from non-neoplastic tissues. Proc Natl Acad Sci USA 78:5339–5343

    PubMed  CAS  Google Scholar 

  • Roberts AB, Wakefield LM (2003) The two faces of transforming growth factor β in carcinogenesis. Proc Natl Acad Sci USA 100:8621–8623

    PubMed  CAS  Google Scholar 

  • Rooprai HK, Rucklidge GJ, Panou C, Pilkington GJ (2000) The effects of exogenous growth factors on matrix metalloproteinase secretion by human brain tumour cells. Br J Cancer 82:52–55

    PubMed  CAS  Google Scholar 

  • Roth P, Eisele G, Weller M (2012) Immunology of brain tumors. Handb Clin Neurol 104:45–51

    PubMed  Google Scholar 

  • Roussa E, von Bohlen und Halbach O, Krieglstein K (2009) TGF-β in dopamine neuron development, maintenance and neuroprotection. Adv Exp Med Biol 651:81–90

    PubMed  CAS  Google Scholar 

  • Roussa E, Farkas LM, Krieglstein K (2004) TGF-β promotes survival on mesencephalic dopaminergic neurons in cooperation with Shh and FGF-8. Neurobiol Dis 16:300–310

    PubMed  CAS  Google Scholar 

  • Salinas PC (2005) Signaling at the vertebrate synapse: new roles for embryonic morphogens? J Neurobiol 64:435–445

    PubMed  CAS  Google Scholar 

  • Sanchez-Capelo A (2005) Dual role for TGF-β1 in apoptosis. Cytokine Growth Factor Rev 16:15–34

    PubMed  CAS  Google Scholar 

  • Schachtrup C, Ryu JK, Helmrick MJ, Vagena E, Galanakis DK, Degen JL, Margolis RU, Akassoglou K (2010) Fibrinogen triggers astrocyte scar formation by promoting the availability of active TGF-β after vascular damage. J Neurosci 30:5843–5854

    PubMed  CAS  Google Scholar 

  • Schober A, Peterziel H, von Bartheld CS, Simon H, Krieglstein K (2007) Unsicker K GDNF applied to the MPTP-lesioned nigrostriatal system requires TGF-β for its neuroprotective action. Neurobiol Dis 25:378–391

    PubMed  CAS  Google Scholar 

  • Schober A, Hertel R, Arumae U, Farkas L, Jaszai J, Krieglstein K, Saarma M, Unsicker K (1999) Glial cell line-derived neurotrophic factor rescues target-deprived sympathetic spinal cord neurons but requires transforming growth factor-β as cofactor in vivo. J Neurosci 19:2008–2015

    PubMed  CAS  Google Scholar 

  • Schulz R, Vogel T, Mashima T, Tsuruo T, Krieglstein K (2009) Involvement of Fractin in TGF-β-induced apoptosis in oligodendroglial progenitor cells. Glia 57:1619–1629

    PubMed  Google Scholar 

  • Schuster N, Bender H, Philippi A, Subramaniam S, Strelau J, Wang Z, Krieglstein K (2002) TGF-β induces cell death in the oligodendroglial cell line OLI-neu. Glia 40:95–108

    PubMed  Google Scholar 

  • Schuster N, Krieglstein K (2002) Mechanisms of TGF-β-mediated apoptosis. Cell Tissue Res 307:1–14

    PubMed  CAS  Google Scholar 

  • Seoane J (2006) Escaping from the TGFβ anti-proliferative control. Carcinogenesis 27:2148–2156

    PubMed  CAS  Google Scholar 

  • Seoane J, Le HV, Shen L, Anderson SA, Massague J (2004) Integration of Smad and forkhead pathways in the control of neuroepithelial and glioblastoma cell proliferation. Cell 117:211–223

    PubMed  CAS  Google Scholar 

  • Shrikant P, Lee SJ, Kalvakolanu I, Ransohoff RM, Benveniste EN (1996) Stimulus-specific inhibition of intracellular adhesion molecule-1 gene expression by TGF-β. J Immunol 157:892–900

    PubMed  CAS  Google Scholar 

  • Sorrentino A, Thakur N, Grimsby S, Marcusson A, von Bulow V, Schuster N, Zhang S, Heldin CH, Landström M (2008) The type I TGF-β receptor engages TRAF6 to activate TAK1 in a receptor kinase-independent manner. Nat Cell Biol 10:1199–1207

    PubMed  CAS  Google Scholar 

  • Specht H, Peterziel H, Bajohrs M, Gerdes HH, Krieglstein K, Unsicker K (2003) Transforming growth factor β2 is released from PC12 cells via the regulated pathway of secretion. Mol Cell Neurosci 22:75–86

    PubMed  CAS  Google Scholar 

  • Spillantini MG, Crowther RA, Jakes R, Hasegawa M, Goedert M (1998) Alpha-synuclein in filamentous inclusions of lewy bodies from Parkinson’s disease and dementia with lewy bodies. Proc Natl Acad Sci USA 95:6469–6473

    PubMed  CAS  Google Scholar 

  • Spittau B, Zhou X, Ming M, Krieglstein K (2012) IL6 protects MN9D cells and midbrain dopaminergic neurons from MPP(+)-induced neurodegeneration. Neuromolecular Med 14:317–327

    PubMed  CAS  Google Scholar 

  • Tesseur I, Zhang H, Brecht W, Corn J, Gong JS, Yanagisawa K, Michikawa M, Weisgraber K, Huang Y, Wyss-Coray T (2009) Bioactive TGF-β can associate with lipoproteins and is enriched in those containing apolipoprotein E3. J Neurochem 110:1254–1262

    PubMed  CAS  Google Scholar 

  • Tesseur I, Zou K, Esposito L, Bard F, Berber E, Can JV, Lin AH, Crews L, Tremblay P, Mathews P, Mucke L, Masliah E, Wyss-Coray T (2006) Deficiency in neuronal TGF-β signaling promotes neurodegeneration and Alzheimer’s pathology. J Clin Invest 116:3060–3069

    PubMed  CAS  Google Scholar 

  • Thoenen H (1995) Neurotrophins and neuronal plasticity. Science 270:593–598

    PubMed  CAS  Google Scholar 

  • Toepfer M, Fischer P, Abicht A, Lochmuller H, Pongratz D, Muller-Felber W (1999) Localization of transforming growth factor β in association with neuromuscular junctions in adult human muscle. Cell Mol Neurobiol 19:297–300

    PubMed  CAS  Google Scholar 

  • Ueberham U, Ueberham E, Gruschka H, Arendt T (2006) Altered subcellular location of phosphorylated Smads in Alzheimer’s disease. Eur J Neurosci 24:2327–2334

    PubMed  Google Scholar 

  • Uhm JH, Gladson CL, Rao JS (1999) The role of integrins in the malignant phenotype of gliomas. Front Biosci 4:D188–D199

    PubMed  CAS  Google Scholar 

  • Ulusoy A, Decressac M, Kirik D, Björklund A (2010) Viral vector-mediated overexpression of α-synuclein as a progressive model of Parkinson’s disease. Prog Brain Res 184:89–111

    PubMed  CAS  Google Scholar 

  • Unsicker K, Flanders KC, Cissel DS, Lafyatis R, Sporn MB (1991) Transforming growth factor β isoforms in the adult rat central and peripheral nervous system. Neuroscience 44:613–625

    PubMed  CAS  Google Scholar 

  • Valente EM, Arena G, Torosantucci L, Gelmetti V (2012) Molecular pathways in sporadic PD. Parkinsonism Relat Disord 18(Suppl 1):S71–S73

    PubMed  Google Scholar 

  • van der Wal EA, Gomez-Pinilla F, Cotman CW (1993) Transforming growth factor-β 1 is in plaques in Alzheimer and Down pathologies. Neuroreport 4:69–72

    PubMed  Google Scholar 

  • Vogel T, Ahrens S, Büttner N, Krieglstein K (2010) Transforming growth factor β promotes neuronal cell fate of mouse cortical and hippocampal progenitors in vitro and in vivo: identification of Nedd9 as an essential signaling component. Cereb Cortex 20:661–671

    PubMed  Google Scholar 

  • Wachs FP, Winner B, Couillard-Despres S, Schiller T, Aigner R, Winkler J, Bogdahn U, Aigner L (2006) Transforming growth factor-β1 is a negative modulator of adult neurogenesis. J Neuropathol Exp Neurol 65:358–370

    PubMed  CAS  Google Scholar 

  • Wahl SM, Chen W (2003) TGF-β: how tolerant can it be? Immunol Res 28:167–179

    PubMed  CAS  Google Scholar 

  • Wang H, Liu J, Zong Y, Xu Y, Deng W, Zhu H, Liu Y, Ma C, Huang L, Zhang L, Qin C (2010) miR-106b aberrantly expressed in a double transgenic mouse model for Alzheimer’s disease targets TGF-β type II receptor. Brain Res 1357:166–174

    PubMed  CAS  Google Scholar 

  • Wendt KM, Schiemann WP (2013) The multifunctional roles of TGF-β in navigating the metastatic cascade. In: Moustakas A, Miyazawa K (eds) TGF-β in human disease. Springer, Tokyo, pp 169–188

    Google Scholar 

  • Wibrand K, Messaoudi E, Håvik B, Steenslid V, Løvlie R, Steen VM, Bramham CR (2006) Identification of genes co-upregulated with Arc during BDNF-induced long-term potentiation in adult rat dentate gyrus in vivo. Eur J Neurosci 23:1501–1511

    PubMed  Google Scholar 

  • Wyss-Coray T, Borrow P, Brooker MJ, Mucke L (1997a) Astroglial overproduction of TGF-β 1 enhances inflammatory central nervous system disease in transgenic mice. J Neuroimmunol 77:45–50

    PubMed  CAS  Google Scholar 

  • Wyss-Coray T, Lin C, Yan F, Yu GQ, Rohde M, McConlogue L, Masliah E, Mucke L (2001) TGF-β1 promotes microglial amyloid-β clearance and reduces plaque burden in transgenic mice. Nat Med 7:612–618

    PubMed  CAS  Google Scholar 

  • Wyss-Coray T, Masliah E, Mallory M, McConlogue L, Johnson-Wood K, Lin C, Mucke L (1997b) Amyloidogenic role of cytokine TGF-β1 in transgenic mice and in Alzheimer’s disease. Nature 389:603–606

    PubMed  CAS  Google Scholar 

  • Xuan S, Baptista CA, Balas G, Tao W, Soares VC, Lai E (1995) Winged helix transcription factor BF-1 is essential for the development of the cerebral hemispheres. Neuron 14:1141–1152

    PubMed  CAS  Google Scholar 

  • Yamashita K, Gerken U, Vogel P, Hossmann K, Wiessner C (1999) Biphasic expression of TGF-β1 mRNA in the rat brain following permanent occlusion of the middle cerebral artery. Brain Res 836:139–145

    PubMed  CAS  Google Scholar 

  • Yi JJ, Barnes AP, Hand R, Polleux F, Ehlers MD (2010) TGF-β signaling specifies axons during brain development. Cell 142:144–157

    PubMed  CAS  Google Scholar 

  • Yingling JM, Blanchard KL, Sawyer JS (2004) Development of TGF-β signalling inhibitors for cancer therapy. Nat Rev Drug Discov 3:1011–1022

    PubMed  CAS  Google Scholar 

  • Zhang F, Endo S, Cleary LJ, Eskin A, Byrne JH (1997a) Role of transforming growth factor-β in long-term synaptic facilitation in Aplysia. Science 275:1318–1320

    PubMed  CAS  Google Scholar 

  • Zhang JM, Hoffmann R, Sieber-Blum M (1997b) Mitogenic and anti-proliferative signals for neural crest cells and the neurogenic action of TGF-β1. Dev Dyn 208:375–386

    PubMed  CAS  Google Scholar 

  • Zhu Y, Ahlemeyer B, Bauerbach E, Krieglstein J (2001) TGF-β1 inhibits caspase-3 activation and neuronal apoptosis in rat hippocampal cultures. Neurochem Int 38:227–235

    PubMed  Google Scholar 

  • Zhu Y, Culmsee C, Klumpp S, Krieglstein J (2004) Neuroprotection by transforming growth factor-β1 involves activation of nuclear factor-κB through phosphatidylinositol-3-OH kinase/Akt and mitogen-activated protein kinase-extracellular-signal regulated kinase1,2 signaling pathways. Neuroscience 123:897–906

    PubMed  CAS  Google Scholar 

  • Zhu Y, Roth-Eichhorn S, Braun N, Culmsee C, Rami A, Krieglstein J (2000) The expression of transforming growth factor-β1 (TGF-β1) in hippocampal neurons: a temporary upregulated protein level after transient forebrain ischemia in the rat. Brain Res 866:286–298

    PubMed  CAS  Google Scholar 

  • Zhu Y, Yang GY, Ahlemeyer B, Pang L, Che XM, Culmsee C, Klumpp S, Krieglstein J (2002) Transforming growth factor-β 1 increases bad phosphorylation and protects neurons against damage. J Neurosci 22:3898–3909

    PubMed  CAS  Google Scholar 

  • Zindy F, Cunningham JJ, Sherr CJ, Jogal S, Smeyne RJ, Roussel MF (1999) Postnatal neuronal proliferation in mice lacking Ink4d and Kip1 inhibitors of cyclin-dependent kinases. Proc Natl Acad Sci USA 96:13462–13467

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Work from the author’s laboratory is supported by grants from the Deutsche Forschungsgemeinschaft (including SFB780, Kr1477/10 and 11).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kerstin Krieglstein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer

About this chapter

Cite this chapter

Krieglstein, K. (2013). TGF-β in Brain Disorders. In: Moustakas, A., Miyazawa, K. (eds) TGF-β in Human Disease. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54409-8_17

Download citation

Publish with us

Policies and ethics