Skip to main content

Advertisement

Log in

The Effects of Chronic Marijuana Administration on 6-OHDA-Induced Learning & Memory Impairment and Hippocampal Dopamine and Cannabinoid Receptors Interaction in Male Rats

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

There are general inhibitory effects of exo-cannabinoids on dopamine-mediated behaviors. Many studies suggested the interaction between cannabinoid receptors and dopamine receptors in the brain that affect cognition behaviors. In this paper, we investigate the effects of marijuana on 6-OHDA-induced cognitive impairments and the expression of dopamine and cannabinoid receptors in the hippocampus of male rats. 42 rats were divided into six groups. 6-hydroxy dopamine (6-OHDA) was administrated into the substantia nigra. Marijuana (60 mg/kg; i.p.) was administered 28 days, one week after the 6-OHDA injection. Morris water maze (MWM) and novel object recognition tests were performed. The hippocampal expression levels of cannabinoid receptors and D1 and D2 dopamine receptors evaluate by real-time PCR. The results showed marijuana improved the spatial learning and memory disorders caused by 6-OHDA in the MVM task and novel object recognition test. Additionally, the level of both D1 and D2 mRNA was decreased in 6-OHDA-treated animals and marijuana consumption only increased the hippocampal level of D1 mRNA. Moreover, the level of hippocampal CB1 mRNA in 6-OHDA- treated rats was higher than in control rats. However, the hippocampal level of CB2 mRNA was decreased in 6-OHDA- treated rats. Marijuana consumption caused a significant decrease in CB1 mRNA level and an increase in CB2 mRNA level in 6-OHDA + marijuana group. Therefore, marijuana may be helpful for learning & memory disorders, D1, and D2 dopamine receptors, and cannabinoid receptor alteration in patients with Parkinson’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available on request from the corresponding author.

Abbreviations

PD:

Parkinson’s disease

6-OHDA:

6-hydroxy dopamine

SNc:

substantia nigra pars compacta

D1R:

dopamine D1 receptors

D1R:

dopamine D1 receptors

CB1:

cannabinoid receptor1

CB2:

cannabinoid receptor2

THC:

Δ9-tetrahydrocannabinol

DA:

dopamine

MWM:

Morris Water Maze

NOR:

novel object recognition

References

  1. Galvan A, Wichmann T (2008) Pathophysiology of parkinsonism. Clin Neurophysiol 119:1459–1474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Esmaeili-Mahani S, Haghparast E, Nezhadi A, Abbasnejad M, Sheibani V (2021) Apelin-13 prevents hippocampal synaptic plasticity impairment in parkinsonism rats. J Chem Neuroanat 111:101884

    Article  CAS  PubMed  Google Scholar 

  3. Müller B, Assmus J, Herlofson K, Larsen JP, Tysnes O-B (2013) Importance of motor vs. non-motor symptoms for health-related quality of life in early Parkinson’s disease. Parkinsonism Relat Disord 19:1027–1032

    Article  PubMed  Google Scholar 

  4. Latoo J, Mistry M, Dunne FJ (2013) Often overlooked neuropsychiatric syndromes in Parkinson’s disease,British Journal of Medical Practitioners,6

  5. Murray RM, Morrison PD, Henquet C (2007) Di Forti, Cannabis, the mind and society: the hash realities. Nat Rev Neurosci 8:885–895

    Article  CAS  PubMed  Google Scholar 

  6. D’souza DC, Ranganathan M, Braley G, Gueorguieva R, Zimolo Z, Cooper T, Perry E, Krystal J (2008) Blunted psychotomimetic and amnestic effects of ∆-9-tetrahydrocannabinol in frequent users of cannabis. Neuropsychopharmacology 33:2505–2516

    Article  PubMed  Google Scholar 

  7. Ballard ME, Gallo DA, de Wit H (2013) Pre-encoding administration of amphetamine or THC preferentially modulates emotional memory in humans. Psychopharmacology 226:515–529

    Article  CAS  PubMed  Google Scholar 

  8. Crane NA, Schuster RM, Fusar-Poli P, Gonzalez R (2013) Effects of cannabis on neurocognitive functioning: recent advances, neurodevelopmental influences, and sex differences. Neuropsychol Rev 23:117–137

    Article  PubMed  Google Scholar 

  9. Pope H Jr, Gruber AJ, Hudson JI, Huestis MA, Todd D (2001) Yurgelun. Neuropsychological performance in long term cannabis users. Arch Gen Psychiatry 58:909–915

    Article  PubMed  Google Scholar 

  10. Fried P, Watkinson B, Gray R (2005) Neurocognitive consequences of marihuana—a comparison with pre-drug performance. Neurotoxicol Teratol 27:231–239

    Article  CAS  PubMed  Google Scholar 

  11. Herkenham M, Lynn AB, Johnson MR, Melvin LS, de Costa BR, Rice KC (1991) Characterization and localization of cannabinoid receptors in rat brain: a quantitative in vitro autoradiographic study. J Neurosci 11:563–583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mailleux P, Vanderhaeghen J-J (1992) Distribution of neuronal cannabinoid receptor in the adult rat brain: a comparative receptor binding radioautography and in situ hybridization histochemistry. Neuroscience 48:655–668

    Article  CAS  PubMed  Google Scholar 

  13. Howlett AC (2002) The cannabinoid receptors, Prostaglandins & other lipid mediators. 68:619–631

  14. Robledo-Menendez A, Vella M, Grandes P, Soria‐Gomez E (2021) Cannabinoid control of hippocampal functions: The where matters, The FEBS Journal, DOI

  15. Uddin MS, Abdullah Al Mamun DM, Sumsuzzman GMA, Perveen A, Bungau SG, Mousa SA, Hesham R, Bin-Jumah MN (2020) M.M. Abdel-Daim, emerging promise of cannabinoids for the management of pain and associated neuropathological alterations in Alzheimer’s disease,Frontiers in Pharmacology, 11

  16. Monory K, Blaudzun H, Massa F, Kaiser N, Lemberger T, Schütz G, Wotjak CT, Lutz B, Marsicano G (2007) Genetic dissection of behavioural and autonomic effects of ∆9-tetrahydrocannabinol in mice. PLoS Biol 5:e269

    Article  PubMed  PubMed Central  Google Scholar 

  17. Rodríguez de Fonseca F, Del Arco I, Bermudez-Silva FJ, Bilbao A, Cippitelli A, Navarro M (2005) The endocannabinoid system: physiology and pharmacology. Alcohol Alcohol 40:2–14

    Article  PubMed  Google Scholar 

  18. Komeili G, Haghparast E, Sheibani V (2021) Marijuana improved motor impairments and changes in synaptic plasticity-related molecules in the striatum in 6-OHDA-treated rats. Behav Brain Res 410:113342

    Article  CAS  PubMed  Google Scholar 

  19. Chahkandi M, Sepehri G, Komeili G, Hadad MK, Haghparast E, Chahkandi M (2021) The different role of G-protein-coupled receptor 30 (GPR30) in the interaction effects of marijuana and estradiol on spatial learning and memory at different ages. Brain Research Bulletin

  20. Haghparast E, Esmaeili-Mahani S, Abbasnejad M, Sheibani V (2018) Apelin-13 ameliorates cognitive impairments in 6-hydroxydopamine-induced substantia nigra lesion in rats. Neuropeptides 68:28–35

    Article  CAS  PubMed  Google Scholar 

  21. Schoeler T, Bhattacharyya S (2013) The effect of cannabis use on memory function: an update. Subst abuse rehabilitation 4:11

    Google Scholar 

  22. Chahkandi M, Komeili G, Sepehri G, Khaksari M, Amiresmaili S (2021) Marijuana and β-estradiol interactions on spatial learning and memory in young female rats: lack of role of the G protein-coupled estrogen receptor (GPR30), Life Sciences, DOI119723

  23. Paxinos G, Watson C The rat brain in stereotaxic coordinates: hard cover edition, Elsevier2006

  24. Safa H, Sharifinejad A, Ataollahi F, Haghparast E, Esmaeilpour K (2020) Effects of intrahippocampal injection of leptin on seizure-induced cognitive impairment in male rats. Learn Motiv 70:101612

    Article  Google Scholar 

  25. Bilkei-Gorzo A, Albayram O, Draffehn A, Michel K, Piyanova A, Oppenheimer H, Dvir-Ginzberg M, Rácz I, Ulas T, Imbeault S (2017) A chronic low dose of ∆ 9-tetrahydrocannabinol (THC) restores cognitive function in old mice. Nat Med 23:782

    Article  CAS  PubMed  Google Scholar 

  26. Borgan F, Beck K, Butler E, McCutcheon R, Veronese M, Vernon A, Howes OD (2019) The effects of cannabinoid 1 receptor compounds on memory: a meta-analysis and systematic review across species. Psychopharmacology 236:3257–3270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Imam A, Ajao MS, Amin A, Abdulmajeed WI, Ibrahim A, Olajide OJ, Ajibola MI, Alli-Oluwafuyi A, Balogun WG (2016) Cannabis-induced moto-cognitive dysfunction in wistar rats: ameliorative efficacy of nigella sativa. Malaysian J Med Sciences: MJMS 23:17

    Article  Google Scholar 

  28. Abdel-Salam OM, Salem NA, El-Shamarka ME-S, Ahmed NA-S, Hussein JS (2013) El-Khyat, Cannabis-induced impairment of learning and memory: effect of different nootropic drugs. EXCLI J 12:193

    PubMed  PubMed Central  Google Scholar 

  29. Renard J, Krebs M-O, Le Pen G, Jay TM (2014) Long-term consequences of adolescent cannabinoid exposure in adult psychopathology. Front NeuroSci 8:361

    Article  PubMed  PubMed Central  Google Scholar 

  30. Vo HT, Schacht R, Mintzer M, Fishman M (2014) Working memory impairment in cannabis-and opioid-dependent adolescents. Substance abuse 35:387–390

    Article  PubMed  Google Scholar 

  31. Mishima K, Egashira N, Hirosawa N, Fujii M, Matsumoto Y, Iwasaki K, Fujiwara M (2001) Characteristics of learning and memory impairment induced by⊿ 9-tetrahydrocannabinol in rats. Jpn J Pharmacol 87:297–308

    Article  CAS  PubMed  Google Scholar 

  32. Motamedi S, Sheibani V, Rajizadeh MA, Esmaeilpour K, Sepehri G (2019) The effects of co-administration of marijuana and methylphenidate on spatial learning and memory in male rats. Toxin Reviews

  33. Mailleux P, Vanderhaeghen JJ (1993) Dopaminergic regulation of cannabinoid receptor mRNA levels in the rat Caudate-Plitamen: an in situ hybridization study. J Neurochem 61:1705–1712

    Article  CAS  PubMed  Google Scholar 

  34. Romero J, Berrendero F, Perez-Rosado A, Manzanares J, Rojo A, Fernandez-Ruiz J, de Yebenes JG, Ramos J (2000) Unilateral 6-hydroxydopamine lesions of nigrostriatal dopaminergic neurons increased CB1 receptor mRNA levels in the caudate-putamen. Life Sci 66:485–494

    Article  CAS  PubMed  Google Scholar 

  35. Di Marzo V, Breivogel CS, Tao Q, Bridgen DT, Razdan RK, Zimmer AM, Zimmer A, Martin BR (2000) Levels, metabolism, and pharmacological activity of anandamide in CB1 cannabinoid receptor knockout mice: evidence for non-CB1, non‐CB2 receptor‐mediated actions of anandamide in mouse brain. J Neurochem 75:2434–2444

    Article  PubMed  Google Scholar 

  36. Gubellini P, Picconi B, Bari M, Battista N, Calabresi P, Centonze D, Bernardi G, Finazzi-Agrò A, Maccarrone M (2002) Experimental parkinsonism alters endocannabinoid degradation: implications for striatal glutamatergic transmission. J Neurosci 22:6900–6907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hohmann AG, Herkenham M (2000) Localization of cannabinoid CB1 receptor mRNA in neuronal subpopulations of rat striatum: a double-label in situ hybridization study. Synapse 37:71–80

    Article  CAS  PubMed  Google Scholar 

  38. Silverdale M, McGuire S, McInnes A, Crossman A, Brotchie J (2001) Striatal cannabinoid CB1 receptor mRNA expression is decreased in the reserpine-treated rat model of Parkinson’s disease. Exp Neurol 169:400–406

    Article  CAS  PubMed  Google Scholar 

  39. Brusco A, Tagliaferro P, Saez T, Onaivi E (2008) Ultrastructural localization of neuronal brain CB2 cannabinoid receptors, vol 1139. Annals of the New York Academy of Sciences, pp 450–457

  40. García MC, Cinquina V, Palomo-Garo C, Rábano A, Fernández-Ruiz J (2015) Identification of CB2 receptors in human nigral neurons that degenerate in Parkinson’s disease. Neurosci Lett 587:1–4

    Article  PubMed  Google Scholar 

  41. Gómez-Gálvez Y, Palomo-Garo C, Fernández-Ruiz J, García C (2016) Potential of the cannabinoid CB2 receptor as a pharmacological target against inflammation in Parkinson’s disease. Prog Neuropsychopharmacol Biol Psychiatry 64:200–208

    Article  PubMed  Google Scholar 

  42. Chung YC, Shin W-H, Baek JY, Cho EJ, Baik HH, Kim SR, Won S-Y, Jin BK (2016) CB2 receptor activation prevents glial-derived neurotoxic mediator production, BBB leakage and peripheral immune cell infiltration and rescues dopamine neurons in the MPTP model of Parkinson’s disease. Exp Mol Med 48:e205–e205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Cerri S, Levandis G, Ambrosi G, Montepeloso E, Antoninetti GF, Franco R, Lanciego JL, Baqi Y, Müller CE, Pinna A (2014) Neuroprotective potential of adenosine A2A and cannabinoid CB1 receptor antagonists in an animal model of Parkinson disease. J Neuropathology Experimental Neurol 73:414–424

    Article  CAS  Google Scholar 

  44. Le W, Wu J, Tang Y (2016) Protective microglia and their regulation in Parkinson’s disease. Front Mol Neurosci 9:89

    Article  PubMed  PubMed Central  Google Scholar 

  45. Costa L, Amaral C, Teixeira N, Correia-da-Silva G, Fonseca BM (2016) Cannabinoid-induced autophagy: protective or death role? Prostaglandins Other Lipid mediat 122:54–63

    Article  CAS  PubMed  Google Scholar 

  46. Hoozemans JJ, Van Haastert ES, Nijholt DA, Rozemuller AJ, Scheper W (2012) Activation of the unfolded protein response is an early event in Alzheimer’s and Parkinson’s disease. Neurodegenerative Dis 10:212–215

    Article  CAS  Google Scholar 

  47. Lastres-Becker I, Cebeira M, De Ceballos M, Zeng BY, Jenner P, Ramos JA, Fernandez‐Ruiz J (2001) Increased cannabinoid CB1 receptor binding and activation of GTP‐binding proteins in the basal ganglia of patients with Parkinson’s syndrome and of MPTP‐treated marmosets. Eur J Neurosci 14:1827–1832

    Article  CAS  PubMed  Google Scholar 

  48. Romero J, Lastres-Becker I, de Miguel R, Berrendero F, Ramos JA (2002) Fernández-Ruiz, the endogenous cannabinoid system and the basal ganglia: biochemical, pharmacological, and therapeutic aspects. Pharmacol Ther 95:137–152

    Article  CAS  PubMed  Google Scholar 

  49. Itier J-M, Ibáñez P, Mena MA, Abbas N, Cohen-Salmon C, Bohme GA, Laville M, Pratt J, Corti O, Pradier L (2003) Parkin gene inactivation alters behaviour and dopamine neurotransmission in the mouse. Hum Mol Genet 12:2277–2291

    Article  CAS  PubMed  Google Scholar 

  50. Lastres-Becker I, Molina-Holgado F, Ramos JA, Mechoulam R, Fernández-Ruiz J (2005) Cannabinoids provide neuroprotection against 6-hydroxydopamine toxicity in vivo and in vitro: relevance to Parkinson’s disease. Neurobiol Dis 19:96–107

    Article  CAS  PubMed  Google Scholar 

  51. Piggott MA, Ballard CG, Dickinson HO, McKeith IG, Perry RH, Perry EK (2007) Thalamic D2 receptors in dementia with lewy bodies, Parkinson’s disease, and Parkinson’s disease dementia. Int J Neuropsychopharmacol 10:231–244

    Article  CAS  PubMed  Google Scholar 

  52. Rioux L, Frohna PA, Joyce JN, Schneider JS (1997) The effects of chronic levodopa treatment on pre-and postsynaptic markers of dopaminergic function in striatum of parkinsonian monkeys. Mov Disord 12:148–158

    Article  CAS  PubMed  Google Scholar 

  53. Haghparast E, Sheibani V, Abbasnejad M, Esmaeili-Mahani S (2019) Apelin-13 attenuates motor impairments and prevents the changes in synaptic plasticity-related molecules in the striatum of Parkinsonism rats, Peptides, 117 170091

  54. De Fonseca FR, Cebeira M, Ramos J, Martin M, Fernandez-Ruiz J (1994) Cannabinoid receptors in rat brain areas: sexual differences, fluctuations during estrous cycle and changes after gonadectomy and sex steroid replacement. Life Sci 54:159–170

    Article  Google Scholar 

  55. French ED, Dillon K, Wu X (1997) Cannabinoids excite dopamine neurons in the ventral tegmentum and substantia nigra. NeuroReport 8:649–652

    Article  CAS  PubMed  Google Scholar 

  56. Banerjee SP, Snyder SH, Mechoulam R (1975) Cannabinoids: influence on neurotransmitter uptake in rat brain synaptosomes. J Pharmacol Exp Ther 194:74–81

    CAS  PubMed  Google Scholar 

  57. Bosier B, Muccioli GG, Mertens B, Sarre S, Michotte Y, Lambert DM, Hermans E (2012) Differential modulations of striatal tyrosine hydroxylase and dopamine metabolism by cannabinoid agonists as evidence for functional selectivity in vivo. Neuropharmacology 62:2328–2336

    Article  CAS  PubMed  Google Scholar 

  58. Ton JMNC, Gerhardt GA, Friedemann M, Etgen AM, Rose GM, Sharpless NS, Gardner EL (1988) The effects of ∆9-tetrahydrocannabinol on potassium-evoked release of dopamine in the rat caudate nucleus: an in vivo electrochemical and in vivo microdialysis study. Brain Res 451:59–68

    Article  Google Scholar 

  59. Navarro M, Fernandez-Ruiz J, De Miguel R, Hernández M, Cebeira M, Ramos J (1993) An acute dose of ∆9-tetrahydrocannabinol affects behavioral and neurochemical indices of mesolimbic dopaminergic activity. Behav Brain Res 57:37–46

    Article  CAS  PubMed  Google Scholar 

  60. da Cruz JFO, Busquets-Garcia A, Zhao Z, Varilh M, Lavanco G, Bellocchio L, Robin L, Cannich A, Julio-Kalajzić F (2020) Leste-Lasserre, specific hippocampal interneurons shape consolidation of recognition memory. Cell Rep 32:108046

    Article  Google Scholar 

Download references

Funding

This work was supported by the Kerman Neuroscience Research Center (Grant No.97 − 46/KNRC) and Zahedan University of Medical Sciences (Grant No. 9178).

Author information

Authors and Affiliations

Authors

Contributions

Elham Haghparast: Project administration, Formal analysis, Software, Investigation, Writing - Original Draft, Writing- Review & Editing. Vahid Sheibani: Conceptualization, Supervision, Methodology. Gholamrza Komaili: Conceptualization, Supervision, Methodology. Mohadeseh Chahkandi: Project administration, Writing - Original Draft. Nahid Sepehri Rad: Project administration.

Corresponding author

Correspondence to Elham Haghparast.

Ethics declarations

Competing Interests

The authors declare that they have no competing interests.

Ethics Approval

All experimental protocols and treatments were approved by the Ethics Committee of Kerman Neuroscience Research Center (Ethics Code: EC/97 − 46/KNRC) and Zahedan University of Medical Science (Ethics Code: IR.ZAUMS.REC.1398.138).

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haghparast, E., Sheibani, V., Komeili, G. et al. The Effects of Chronic Marijuana Administration on 6-OHDA-Induced Learning & Memory Impairment and Hippocampal Dopamine and Cannabinoid Receptors Interaction in Male Rats. Neurochem Res 48, 2220–2229 (2023). https://doi.org/10.1007/s11064-023-03899-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-023-03899-8

Keywords

Navigation