Skip to main content
Log in

Pre-encoding administration of amphetamine or THC preferentially modulates emotional memory in humans

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Many addictive drugs are known to have effects on learning and memory, and these effects could motivate future drug use. Specifically, addictive drugs may affect memory of emotional events and experiences in ways that are attractive to some users. However, few studies have investigated the effects of addictive drugs on emotional memory in humans.

Objectives

This study examined the effects of the memory-enhancing drug dextroamphetamine (AMP) and the memory-impairing drug Δ9-tetrahydrocannabinol (THC) on emotional memory in healthy volunteers.

Methods

Participants completed three experimental sessions across which they received capsules containing placebo and two doses of either AMP (10 and 20 mg; N = 25) or THC (7.5 and 15 mg; N = 25) before viewing pictures of positive (pleasant), neutral, and negative (unpleasant) scenes. Memory for the pictures was assessed 2 days later, under drug-free conditions.

Results

Relative to placebo, memory for emotional pictures was improved by AMP and impaired by THC, but neither drug significantly affected memory for unemotional pictures. Positive memory biases were not observed with either drug, and there was no indication that the drugs’ memory effects were directly related to their subjective or physiological effects alone.

Conclusions

This study provides the first clear evidence that stimulant drugs can preferentially strengthen, and cannabinoids can preferentially impair, memory for emotional events in humans. Although addictive drugs do not appear to positively bias memory, the possibility remains that these drugs’ effects on emotional memory could influence drug use among certain individuals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Akirav I (2011) The role of cannabinoids in modulating emotional and non-emotional memory processes in the hippocampus. Front Behav Neurosci 5:34

    PubMed  Google Scholar 

  • American Psychiatric Association (2003) Diagnostic and statistical manual of mental disorders (4th ed., text rev.)

  • Azad SC, Eder M, Marsicano G, Lutz B, Zieglgansberger W, Rammes G (2003) Activation of the cannabinoid receptor type 1 decreases glutamatergic and GABAergic synaptic transmission in the lateral amygdala of the mouse. Learn Mem 10:116–128

    Article  PubMed  Google Scholar 

  • Baldi E, Bucherelli C (2005) The inverted “u-shaped” dose-effect relationships in learning and memory: modulation of arousal and consolidation. Nonlinearity Biol Toxicol Med 3:9–21

    Article  PubMed  CAS  Google Scholar 

  • Ballard ME, Bedi G, de Wit H (2012a) Effects of delta-9-tetrahydrocannabinol on evaluation of emotional images. J Psychopharmacol 26:1289–1298

    Google Scholar 

  • Ballard ME, Gallo DA, de Wit H (2012b) Psychoactive drugs and false memory: comparison of dextroamphetamine and delta-9-tetrahydrocannabinol on false recognition. Psychopharmacology (Berl) 219:15–24

    Article  CAS  Google Scholar 

  • Bell I (1996) Why do people use drugs? In: Wilkinson C, Saunders B (eds) Perspectives on drug addiction. Montgomery Press, Perth, pp 40–46

    Google Scholar 

  • Bhattacharyya S, Morrison PD, Fusar-Poli P, Martin-Santos R, Borgwardt S, Winton-Brown T, Nosarti C, O’ Carroll CM, Seal M, Allen P, Mehta MA, Stone JM, Tunstall N, Giampietro V, Kapur S, Murray RM, Zuardi AW, Crippa JA, Atakan Z, McGuire PK (2010) Opposite effects of delta-9-tetrahydrocannabinol and cannabidiol on human brain function and psychopathology. Neuropsychopharmacology 35:764–774

    Article  PubMed  CAS  Google Scholar 

  • Bower GH, Forgas JP (2000) Affect, memory, and social cognition. In: Eich E, Kihlstrom JF, Bower GH, Forgas JP, Niedenthal PM (eds) Cognition and emotion. Oxford University Press, New York, pp 87–168

    Google Scholar 

  • Boys A, Marsden J, Strang J (2001) Understanding reasons for drug use amongst young people: a functional perspective. Health Educ Res 16:457–469

    Article  PubMed  CAS  Google Scholar 

  • Brainerd CJ, Stein LM, Silveira RA, Rohenkohl G, Reyna VF (2008) How does negative emotion cause false memories? Psychol Sci 19:919–925

    Article  PubMed  CAS  Google Scholar 

  • Breitenstein C, Wailke S, Bushuven S, Kamping S, Zwitserlood P, Ringelstein EB, Knecht S (2004) d-amphetamine boosts language learning independent of its cardiovascular and motor arousing effects. Neuropsychopharmacology 29:1704–1714

    Article  PubMed  CAS  Google Scholar 

  • Breitenstein C, Floel A, Korsukewitz C, Wailke S, Bushuven S, Knecht S (2006) A shift of paradigm: from noradrenergic to dopaminergic modulation of learning? J Neurol Sci 248:42–47

    Article  PubMed  CAS  Google Scholar 

  • Brignell CM, Rosenthal J, Curran HV (2007) Pharmacological manipulations of arousal and memory for emotional material: effects of a single dose of methylphenidate or lorazepam. J Psychopharmacol 21:673–683

    Article  PubMed  CAS  Google Scholar 

  • Buchanan TW, Lovallo WR (2001) Enhanced memory for emotional material following stress-level cortisol treatment in humans. Psychoneuroendocrinology 26:307–317

    Article  PubMed  CAS  Google Scholar 

  • Buchanan TW, Karafin MS, Adolphs R (2003) Selective effects of triazolam on memory for emotional, relative to neutral, stimuli: differential effects on gist versus detail. Behav Neurosci 117:517–525

    Article  PubMed  CAS  Google Scholar 

  • Cahill L, McGaugh JL (1995) A novel demonstration of enhanced memory associated with emotional arousal. Conscious Cogn 4:410–421

    Article  PubMed  CAS  Google Scholar 

  • Cahill L, Prins B, Weber M, McGaugh JL (1994) Beta-adrenergic activation and memory for emotional events. Nature 371:702–704

    Article  PubMed  CAS  Google Scholar 

  • Campolongo P, Roozendaal B, Trezza V, Hauer D, Schelling G, McGaugh JL, Cuomo V (2009) Endocannabinoids in the rat basolateral amygdala enhance memory consolidation and enable glucocorticoid modulation of memory. Proc Natl Acad Sci USA 106:4888–4893

    Article  PubMed  CAS  Google Scholar 

  • Clarke JR, Rossato JI, Monteiro S, Bevilaqua LR, Izquierdo I, Cammarota M (2008) Posttraining activation of CB1 cannabinoid receptors in the CA1 region of the dorsal hippocampus impairs object recognition long-term memory. Neurobiol Learn Mem 90:374–381

    Article  PubMed  CAS  Google Scholar 

  • Costanzi M, Battaglia M, Rossi-Arnaud C, Cestari V, Castellano C (2004) Effects of anandamide and morphine combinations on memory consolidation in cd1 mice: involvement of dopaminergic mechanisms. Neurobiol Learn Mem 81:144–149

    Article  PubMed  CAS  Google Scholar 

  • Crowley TJ (1972) The reinforcers for drug abuse: why people take drugs. Compr Psychiatry 13:51–62

    Article  PubMed  CAS  Google Scholar 

  • Curran HV, Brignell C, Fletcher S, Middleton P, Henry J (2002) Cognitive and subjective dose-response effects of acute oral delta-9-tetrahydrocannabinol (THC) in infrequent cannabis users. Psychopharmacology (Berl) 164:61–70

    Article  CAS  Google Scholar 

  • D’Argembeau A, Van der Linden M (2004) Influence of affective meaning on memory for contextual information. Emotion 4:173–188

    Article  PubMed  Google Scholar 

  • D’Souza DC, Ranganathan M, Braley G, Gueorguieva R, Zimolo Z, Cooper T, Perry E, Krystal J (2008) Blunted psychotomimetic and amnestic effects of delta-9-tetrahydrocannabinol in frequent users of cannabis. Neuropsychopharmacology 33:2505–2516

    Article  PubMed  CAS  Google Scholar 

  • Davies JA, Jackson B, Redfern PH (1974) The effect of amantadine, l-dopa, (plus)-amphetamine and apomorphine on the acquisition of the conditioned avoidance response. Neuropharmacology 13:199–204

    Article  PubMed  CAS  Google Scholar 

  • Del-Ben CM, Ferreira CA, Sanchez TA, Alves-Neto WC, Guapo VG, de Araujo DB, Graeff FG (2010) Effects of diazepam on BOLD activation during the processing of aversive faces. J Psychopharmacol 26:443–451

    Article  PubMed  CAS  Google Scholar 

  • Dougal S, Rotello CM (2007) “Remembering” emotional words is based on response bias, not recollection. Psychon Bull Rev 14:423–429

    Article  PubMed  Google Scholar 

  • Eich E (2001) Mood-dependent memory international encyclopedia of the social & behavioral sciences. Pergamon, Oxford, pp 10014–10017

    Book  Google Scholar 

  • Estrada A, Kelley AM, Webb CM, Athy JR, Crowley JS (2012) Modafinil as a replacement for dextroamphetamine for sustaining alertness in military helicopter pilots. Aviat Space Environ Med 83:556–564

    Article  PubMed  CAS  Google Scholar 

  • Fischman MW, Foltin RW (1991) Utility of subjective-effects measurements in assessing abuse liability of drugs in humans. Br J Addict 86:1563–1570

    Article  PubMed  CAS  Google Scholar 

  • Folstein MF, Luria R (1973) Reliability, validity, and clinical application of the visual analog mood scale. Psychol Med 3:8

    Article  Google Scholar 

  • Fulginiti S, Cancela LM (1983) Effect of naloxone and amphetamine on acquisition and memory consolidation of active avoidance responses in rats. Psychopharmacology (Berl) 79:45–48

    Article  CAS  Google Scholar 

  • Gallo DA, Foster KT, Johnson EL (2009) Elevated false recollection of emotional pictures in young and older adults. Psychol Aging 24:981–988

    Article  PubMed  Google Scholar 

  • Ghiasvand M, Rezayof A, Zarrindast MR, Ahmadi S (2011) Activation of cannabinoid CB1 receptors in the central amygdala impairs inhibitory avoidance memory consolidation via NMDA receptors. Neurobiol Learn Mem 96:333–338

    Article  PubMed  CAS  Google Scholar 

  • Gibbs AA, Naudts KH, Spencer EP, David AS (2007) The role of dopamine in attentional and memory biases for emotional information. Am J Psychiatry 164:1603–1609, quiz 1624

    Article  PubMed  Google Scholar 

  • Gilman JM, Ramchandani VA, Davis MB, Bjork JM, Hommer DW (2008) Why we like to drink: a functional magnetic resonance imaging study of the rewarding and anxiolytic effects of alcohol. J Neurosci 28:4583–4591

    Article  PubMed  CAS  Google Scholar 

  • Hamidovic A, Dlugos A, Palmer AA, de Wit H (2010) Catechol-O-methyltransferase val158met genotype modulates sustained attention in both the drug-free state and in response to amphetamine. Psychiatr Genet 20:85–92

    PubMed  Google Scholar 

  • Hariri AR, Mattay VS, Tessitore A, Fera F, Smith WG, Weinberger DR (2002) Dextroamphetamine modulates the response of the human amygdala. Neuropsychopharmacology 27:1036–1040

    Article  PubMed  CAS  Google Scholar 

  • Harmer CJ, Cowen PJ, Goodwin GM (2011) Efficacy markers in depression. J Psychopharmacol 25:1148–1158

    Google Scholar 

  • Henckens MJ, Hermans EJ, Pu Z, Joels M, Fernandez G (2009) Stressed memories: how acute stress affects memory formation in humans. J Neurosci 29:10111–10119

    Article  PubMed  CAS  Google Scholar 

  • Henckens MJ, van Wingen GA, Joels M, Fernandez G (2012) Time-dependent effects of cortisol on selective attention and emotional interference: a functional MRI study. Front Integr Neurosci 6:66

    Article  PubMed  Google Scholar 

  • Horder J, Cowen PJ, Di Simplicio M, Browning M, Harmer CJ (2009) Acute administration of the cannabinoid CB1 antagonist rimonabant impairs positive affective memory in healthy volunteers. Psychopharmacology (Berl) 205:85–91

    Article  CAS  Google Scholar 

  • Howe ML (2007) Children’s emotional false memories. Psychol Sci 18:856–860

    Article  PubMed  Google Scholar 

  • Howlett AC, Breivogel CS, Childers SR, Deadwyler SA, Hampson RE, Porrino LJ (2004) Cannabinoid physiology and pharmacology: 30 years of progress. Neuropharmacology 47(Suppl 1):345–358

    Article  PubMed  CAS  Google Scholar 

  • Husain M, Mehta MA (2011) Cognitive enhancement by drugs in health and disease. Trends Cogn Sci 15:28–36

    Article  PubMed  CAS  Google Scholar 

  • Hyman SE (2005) Addiction: a disease of learning and memory. Am J Psychiatry 162:1414–1422

    Article  PubMed  Google Scholar 

  • Ilan AB, Gevins A, Coleman M, ElSohly MA, de Wit H (2005) Neurophysiological and subjective profile of marijuana with varying concentrations of cannabinoids. Behav Pharmacol 16:487–496

    Article  PubMed  CAS  Google Scholar 

  • Janak PH, Martinez JL Jr (1992) Cocaine and amphetamine facilitate retention of jump-up responding in rats. Pharmacol Biochem Behav 41:837–840

    Article  PubMed  CAS  Google Scholar 

  • Kamboj SK, Curran HV (2006) Neutral and emotional episodic memory: global impairment after lorazepam or scopolamine. Psychopharmacology (Berl) 188:482–488

    Article  CAS  Google Scholar 

  • Karschner EL, Darwin WD, McMahon RP, Liu F, Wright S, Goodwin RS, Huestis MA (2011) Subjective and physiological effects after controlled sativex and oral THC administration. Clin Pharmacol Ther 89:400–407

    Article  PubMed  CAS  Google Scholar 

  • Katona I, Rancz EA, Acsady L, Ledent C, Mackie K, Hajos N, Freund TF (2001) Distribution of CB1 cannabinoid receptors in the amygdala and their role in the control of GABAergic transmission. J Neurosci 21:9506–9518

    PubMed  CAS  Google Scholar 

  • Kempton S, Vance A, Maruff P, Luk E, Costin J, Pantelis C (1999) Executive function and attention deficit hyperactivity disorder: stimulant medication and better executive function performance in children. Psychol Med 29:527–538

    Article  PubMed  CAS  Google Scholar 

  • Kensinger EA (2004) Remembering emotional experiences: the contribution of valence and arousal. Rev Neurosci 15:241–251

    PubMed  Google Scholar 

  • Killgore WD, Rupp TL, Grugle NL, Reichardt RM, Lipizzi EL, Balkin TJ (2008) Effects of dextroamphetamine, caffeine and modafinil on psychomotor vigilance test performance after 44 h of continuous wakefulness. J Sleep Res 17:309–321

    Article  PubMed  Google Scholar 

  • Knowles SK, Duka T (2004) Does alcohol affect memory for emotional and non-emotional experiences in different ways? Behav Pharmacol 15:111–121

    Article  PubMed  CAS  Google Scholar 

  • Koob GF (2009) Dynamics of neuronal circuits in addiction: reward, antireward, and emotional memory. Pharmacopsychiatry 42(Suppl 1):S32–S41

    Article  PubMed  Google Scholar 

  • Kuhlmann S, Wolf OT (2006) Arousal and cortisol interact in modulating memory consolidation in healthy young men. Behav Neurosci 120:217–223

    Article  PubMed  CAS  Google Scholar 

  • Lang PJ, Greenwald MK, Bradley MM, Hamm AO (1993) Looking at pictures: affective, facial, visceral, and behavioral reactions. Psychophysiology 30:261–273

    Article  PubMed  CAS  Google Scholar 

  • Lang PJ, Bradley MM, Cuthbert BN (1999) International affective picture system (IAPS): technical manual and affective ratings. NIMH Center for the study of emotion and attention, University of Florida, Gainesville

    Google Scholar 

  • Lee EH, Ma YL (1995) Amphetamine enhances memory retention and facilitates norepinephrine release from the hippocampus in rats. Brain Res Bull 37:411–416

    Article  PubMed  CAS  Google Scholar 

  • Leppanen JM (2006) Emotional information processing in mood disorders: a review of behavioral and neuroimaging findings. Curr Opin Psychiatry 19:34–39

    Article  PubMed  Google Scholar 

  • Liu DL, Graham S, Zorawski M (2008) Enhanced selective memory consolidation following post-learning pleasant and aversive arousal. Neurobiol Learn Mem 89:36–46

    Article  PubMed  Google Scholar 

  • Mackie K (2005) Distribution of cannabinoid receptors in the central and peripheral nervous system. In: Pertwee RG (ed) Cannabinoids. Handbook of experimental pharmacology. Springer, Heidelberg, pp 299–325

    Google Scholar 

  • Martin WR, Sloan JW, Sapira JD, Jasinski DR (1971) Physiologic, subjective, and behavioral effects of amphetamine, methamphetamine, ephedrine, phenmetrazine, and methylphenidate in man. Clin Pharmacol Ther 12:245–258

    PubMed  CAS  Google Scholar 

  • Martinez JL Jr, Jensen RA, Messing RB, Vasquez BJ, Soumireu-Mourat B, Geddes D, Liang KC, McGaugh JL (1980) Central and peripheral actions of amphetamine on memory storage. Brain Res 182:157–166

    Article  PubMed  CAS  Google Scholar 

  • McCusker CG (2001) Cognitive biases and addiction: an evolution in theory and method. Addiction 96:47–56

    Article  PubMed  CAS  Google Scholar 

  • McGaugh JL, Roozendaal B (2009) Drug enhancement of memory consolidation: historical perspective and neurobiological implications. Psychopharmacology (Berl) 202:3–14

    Article  CAS  Google Scholar 

  • McLaughlin RJ, Gobbi G (2012) Cannabinoids and emotionality: a neuroanatomical perspective. Neuroscience 204:134–144

    Article  PubMed  CAS  Google Scholar 

  • Mehta MA, Hinton EC, Montgomery AJ, Bantick RA, Grasby PM (2005) Sulpiride and mnemonic function: effects of a dopamine D2 receptor antagonist on working memory, emotional memory and long-term memory in healthy volunteers. J Psychopharmacol 19:29–38

    Article  PubMed  CAS  Google Scholar 

  • Micheau J, Destrade C, Soumireu-Mourat B (1984) Time-dependent effects of posttraining intrahippocampal injections of corticosterone on retention of appetitive learning tasks in mice. Eur J Pharmacol 106:39–46

    Article  PubMed  CAS  Google Scholar 

  • Mintzer MZ, Griffiths RR (2003) Triazolam-amphetamine interaction: dissociation of effects on memory versus arousal. J Psychopharmacol 17:17–29

    Article  PubMed  CAS  Google Scholar 

  • Nairne JS, Thompson SR, Pandeirada JN (2007) Adaptive memory: survival processing enhances retention. J Exp Psychol Learn Mem Cogn 33:263–273

    Article  PubMed  Google Scholar 

  • O’Carroll RE, Drysdale E, Cahill L, Shajahan P, Ebmeier KP (1999) Stimulation of the noradrenergic system enhances and blockade reduces memory for emotional material in man. Psychol Med 29:1083–1088

    Article  PubMed  Google Scholar 

  • Onur OA, Walter H, Schlaepfer TE, Rehme AK, Schmidt C, Keysers C, Maier W, Hurlemann R (2009) Noradrenergic enhancement of amygdala responses to fear. Soc Cogn Affect Neurosci 4:119–126

    Article  PubMed  Google Scholar 

  • Pandina RJ, Johnson VL (1999) Why people use, abuse, and become dependent on drugs: progress toward a heuristic model. In: Glantz MD, Hartel CR (eds) Drug abuse: origins and interventions. American Psychological Association, Washington, pp 119–147

    Chapter  Google Scholar 

  • Patrick KS, Markowitz JS (1997) Pharmacology of methylphenidate, amphetamine enantiomers and pemoline in attention-deficit hyperactivity disorder. Hum Psychopharmacol Clin Exp 12:527–546

    Article  CAS  Google Scholar 

  • Paulus MP, Feinstein JS, Castillo G, Simmons AN, Stein MB (2005) Dose-dependent decrease of activation in bilateral amygdala and insula by lorazepam during emotion processing. Arch Gen Psychiatry 62:282–288

    Article  PubMed  CAS  Google Scholar 

  • Payne JD, Jackson ED, Hoscheidt S, Ryan L, Jacobs WJ, Nadel L (2007) Stress administered prior to encoding impairs neutral but enhances emotional long-term episodic memories. Learn Mem 14:861–868

    Article  PubMed  Google Scholar 

  • Phan KL, Angstadt M, Golden J, Onyewuenyi I, Popovska A, de Wit H (2008) Cannabinoid modulation of amygdala reactivity to social signals of threat in humans. J Neurosci 28:2313–2319

    Article  PubMed  CAS  Google Scholar 

  • Ranganathan M, D’Souza DC (2006) The acute effects of cannabinoids on memory in humans: a review. Psychopharmacology (Berl) 188:425–444

    Article  CAS  Google Scholar 

  • Ranganathan M, Braley G, Pittman B, Cooper T, Perry E, Krystal J, D’Souza DC (2009) The effects of cannabinoids on serum cortisol and prolactin in humans. Psychopharmacology (Berl) 203:737–744

    Article  CAS  Google Scholar 

  • Robbins TW, Ersche KD, Everitt BJ (2008) Drug addiction and the memory systems of the brain. Ann N Y Acad Sci 1141:1–21

    Article  PubMed  CAS  Google Scholar 

  • Robson P (2001) Therapeutic aspects of cannabis and cannabinoids. Br J Psychiatry 178:107–115

    Article  PubMed  CAS  Google Scholar 

  • Roozendaal B, McGaugh JL (1997) Basolateral amygdala lesions block the memory-enhancing effect of glucocorticoid administration in the dorsal hippocampus of rats. Eur J Neurosci 9:76–83

    Article  PubMed  CAS  Google Scholar 

  • Roozendaal B, McGaugh JL (2011) Memory modulation. Behav Neurosci 125:797–824

    Article  PubMed  CAS  Google Scholar 

  • Rothman RB, Baumann MH, Dersch CM, Romero DV, Rice KC, Carroll FI, Partilla JS (2001) Amphetamine-type central nervous system stimulants release norepinephrine more potently than they release dopamine and serotonin. Synapse 39:32–41

    Article  PubMed  CAS  Google Scholar 

  • Smeets T, Otgaar H, Candel I, Wolf OT (2008) True or false? Memory is differentially affected by stress-induced cortisol elevations and sympathetic activity at consolidation and retrieval. Psychoneuroendocrinology 33:1378–1386

    Article  PubMed  CAS  Google Scholar 

  • Snodgrass JG, Corwin J (1988) Pragmatics of measuring recognition memory: applications to dementia and amnesia. J Exp Psychol Gen 117:34–50

    Article  PubMed  CAS  Google Scholar 

  • Soetens E, D’Hooge R, Hueting JE (1993) Amphetamine enhances human-memory consolidation. Neurosci Lett 161:9–12

    Article  PubMed  CAS  Google Scholar 

  • Steckler T, Risbrough V (2012) Pharmacological treatment of PTSD—established and new approaches. Neuropharmacology 62:617–627

    Article  PubMed  CAS  Google Scholar 

  • Szabo B, Schlicker E (2005) Effects of cannabinoids on neurotransmission. Handb Exp Pharmacol 168:327–365

    Article  PubMed  CAS  Google Scholar 

  • Takahashi H, Yahata N, Koeda M, Takano A, Asai K, Suhara T, Okubo Y (2005) Effects of dopaminergic and serotonergic manipulation on emotional processing: a pharmacological fMRI study. NeuroImage 27:991–1001

    Article  PubMed  Google Scholar 

  • Talmi D, Schimmack U, Paterson T, Moscovitch M (2007) The role of attention and relatedness in emotionally enhanced memory. Emotion 7:89–102

    Article  PubMed  Google Scholar 

  • Tanda G, Goldberg SR (2003) Cannabinoids: reward, dependence, and underlying neurochemical mechanisms—a review of recent preclinical data. Psychopharmacology (Berl) 169:115–134

    Article  CAS  Google Scholar 

  • Tessitore A, Hariri AR, Fera F, Smith WG, Chase TN, Hyde TM, Weinberger DR, Mattay VS (2002) Dopamine modulates the response of the human amygdala: a study in Parkinson’s disease. J Neurosci 22:9099–9103

    PubMed  CAS  Google Scholar 

  • Tipper CM, Cairo TA, Woodward TS, Phillips AG, Liddle PF, Ngan ET (2005) Processing efficiency of a verbal working memory system is modulated by amphetamine: an fMRI investigation. Psychopharmacology (Berl) 180:634–643

    Article  CAS  Google Scholar 

  • van Marle HJ, Hermans EJ, Qin S, Fernandez G (2009) From specificity to sensitivity: how acute stress affects amygdala processing of biologically salient stimuli. Biol Psychiatry 66:649–655

    Article  PubMed  Google Scholar 

  • van Stegeren AH, Everaerd W, Cahill L, McGaugh JL, Gooren LJ (1998) Memory for emotional events: differential effects of centrally versus peripherally acting beta-blocking agents. Psychopharmacology (Berl) 138:305–310

    Article  Google Scholar 

  • van Stegeren AH, Goekoop R, Everaerd W, Scheltens P, Barkhof F, Kuijer JP, Rombouts SA (2005) Noradrenaline mediates amygdala activation in men and women during encoding of emotional material. NeuroImage 24:898–909

    Article  PubMed  Google Scholar 

  • van Stegeren AH, Roozendaal B, Kindt M, Wolf OT, Joels M (2010) Interacting noradrenergic and corticosteroid systems shift human brain activation patterns during encoding. Neurobiol Learn Mem 93:56–65

    Article  PubMed  CAS  Google Scholar 

  • Wachtel SR, ElSohly MA, Ross SA, Ambre J, de Wit H (2002) Comparison of the subjective effects of delta-9-tetrahydrocannabinol and marijuana in humans. Psychopharmacology (Berl) 161:331–339

    Article  CAS  Google Scholar 

  • Wardle MC, de Wit H (2012) Effects of amphetamine on reactivity to emotional stimuli. Psychopharmacology (Berl) 220:143–153

    Article  CAS  Google Scholar 

  • Wardle MC, Treadway MT, Mayo LM, Zald DH, de Wit H (2011) Amping up effort: effects of d-amphetamine on human effort-based decision-making. J Neurosci 31:16597–16602

    Article  PubMed  CAS  Google Scholar 

  • Watson D, Clark LA, Tellegen A (1988) Development and validation of brief measures of positive and negative affect: the PANAS scales. J Pers Soc Psychol 54:1063–1070

    Article  PubMed  CAS  Google Scholar 

  • White TL, Justice AJ, de Wit H (2002) Differential subjective effects of d-amphetamine by gender, hormone levels and menstrual cycle phase. Pharmacol Biochem Behav 73:729–741

    Article  PubMed  CAS  Google Scholar 

  • White TL, Grover VK, de Wit H (2006) Cortisol effects of d-amphetamine relate to traits of fearlessness and aggression but not anxiety in healthy humans. Pharmacol Biochem Behav 85:123–131

    Article  PubMed  CAS  Google Scholar 

  • White TL, Lejuez CW, de Wit H (2007) Personality and gender differences in effects of d-amphetamine on risk taking. Exp Clin Psychopharmacol 15:599–609

    Article  PubMed  CAS  Google Scholar 

  • Wood SC, Anagnostaras SG (2009) Memory and psychostimulants: modulation of Pavlovian fear conditioning by amphetamine in C57BL/6 mice. Psychopharmacology (Berl) 202:197–206

    Article  CAS  Google Scholar 

  • Zeeuws I, Soetens E (2007) Verbal memory performance improved via an acute administration of d-amphetamine. Hum Psychopharmacol 22:279–287

    Article  PubMed  CAS  Google Scholar 

  • Zuardi AW, Shirakawa I, Finkelfarb E, Karniol IG (1982) Action of cannabidiol on the anxiety and other effects produced by delta-9-THC in normal subjects. Psychopharmacology (Berl) 76:245–250

    Article  CAS  Google Scholar 

Download references

Funding

This research was supported by NIDA DA02812 and DA031796, and MEB was supported by T32 DA007255 and F31 DA030863.

Disclosures

Over the past 3 years, HdW has received funding from Unilever for an unrelated research study. The authors have no other disclosures or conflicts of interest to report.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harriet de Wit.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 30 kb)

ESM 2

(DOC 30 kb)

ESM 3

(DOC 56 kb)

ESM 4

(DOC 59 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ballard, M.E., Gallo, D.A. & de Wit, H. Pre-encoding administration of amphetamine or THC preferentially modulates emotional memory in humans. Psychopharmacology 226, 515–529 (2013). https://doi.org/10.1007/s00213-012-2924-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-012-2924-5

Keywords

Navigation