Skip to main content

Advertisement

Log in

Modulation of Synaptic Plasticity Genes Associated to DNA Damage in a Model of Huntington’s Disease

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Huntington’s disease (HD) is a disease characterized by the progressive degeneration of nerve cells in the brain. DNA damage has been implicated in many neurological disorders; however, the association between this damage and the impaired signaling related to neurodegeneration is still unclear. The transcription factor c-AMP-responsive element binding protein (CREB) has a relevant role in the neuronal plasticity process regulating the expression of several genes, including brain-derived neurotrophic factor (BDNF). Here we analyzed the direct link between DNA damage and the expression of genes involved in neuronal plasticity. The study was performed in model cell lines STHdhQ7 (wild type) and STHdhQ111 (HD model). Treatment with Etoposide (Eto) was used to induce double-strand breaks (DSBs) to evaluate the DNA damage response (DDR) and the expression of synaptic plasticity genes. Eto treatment induced phosphorylation of ATM (p-ATM) and H2AX (γH2AX), markers of DDR, in both cell lines. Interestingly, upon DNA damage, STHdhQ7 cells showed increased expression of activity-regulated cytoskeleton associated protein (Arc) and BDNF when compared to the HD cell line model. Additionally, Eto induced CREB activation with a differential localization of its co-activators in the cell types analyzed. These results suggest that DSBs impact differentially the gene expression patterns of plasticity genes in the normal cell line versus the HD model. This effect is mediated by the impaired localization of CREB-binding protein (CBP) and histone acetylation in the HD model. Our results highlight the role of epigenetics and DNA repair on HD and therefore we suggest that future studies should explore in depth the epigenetic landscape on neuronal pathologies with the goal to further understand molecular mechanisms and pinpoint therapeutic targets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available by request; please contact the corresponding author.

References

  1. Vonsattel J-P, Myers RH, Stevens TJ et al (1985) Neuropathological classification of Huntington’s disease. J Neuropathol Exp Neurol 44:559–577. https://doi.org/10.1097/00005072-198511000-00003

    Article  CAS  PubMed  Google Scholar 

  2. Montoya A, Price BH, Menear M, Lepage M (2006) Brain imaging and cognitive dysfunctions in Huntington’s disease. J Psychiatr Neurosci 31(1):21–29

    Google Scholar 

  3. MacDonald ME, Ambrose CM, Duyao MP et al (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell 72:971–983. https://doi.org/10.1016/0092-8674(93)90585-E

    Article  Google Scholar 

  4. Browne SE, Beal MF (2004) The energetics of Huntington’s disease. Neurochem Res 29:531–546. https://doi.org/10.1023/B:NERE.0000014824.04728.dd

    Article  CAS  PubMed  Google Scholar 

  5. Browne SE, Beal MF (2006) Oxidative damage in Huntington’s disease pathogenesis. Antioxid Redox Signal 8:2061–2073. https://doi.org/10.1089/ars.2006.8.2061

    Article  CAS  PubMed  Google Scholar 

  6. Lin MT, Beal MF (2006) Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443:787–795. https://doi.org/10.1038/nature05292

    Article  CAS  PubMed  Google Scholar 

  7. Jeon GS, Kim KY, Hwang YJ et al (2012) Deregulation of BRCA1 leads to impaired spatiotemporal dynamics of γ-H2AX and DNA damage responses in Huntington’s disease. Mol Neurobiol 45:550–563. https://doi.org/10.1007/s12035-012-8274-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Giralt A, Rodrigo T, Martín ED et al (2009) Brain-derived neurotrophic factor modulates the severity of cognitive alterations induced by mutant huntingtin: involvement of phospholipaseCγ activity and glutamate receptor expression. Neuroscience 158:1234–1250. https://doi.org/10.1016/j.neuroscience.2008.11.024

    Article  CAS  PubMed  Google Scholar 

  9. Giralt A, Puigdellívol M, Carretón O et al (2012) Long-term memory deficits in Huntington’s disease are associated with reduced CBP histone acetylase activity. Hum Mol Genet 21:1203–1216. https://doi.org/10.1093/hmg/ddr552

    Article  CAS  PubMed  Google Scholar 

  10. Lione LA, Carter RJ, Hunt MJ et al (1999) Selective discrimination learning impairments in mice expressing the human Huntington’s disease mutation. J Neurosci 19:10428–10437. https://doi.org/10.1523/JNEUROSCI.19-23-10428.1999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Simmons DA, Rex CS, Palmer L et al (2009) Up-regulating BDNF with an ampakine rescues synaptic plasticity and memory in Huntington’s disease knockin mice. Proc Natl Acad Sci 106:4906–4911. https://doi.org/10.1073/pnas.0811228106

    Article  PubMed  PubMed Central  Google Scholar 

  12. Barco A, Pittenger C, Kandel ER (2003) CREB, memory enhancement and the treatment of memory disorders: promises, pitfalls and prospects. Expert Opin Ther Targets 7:101–114. https://doi.org/10.1517/14728222.7.1.101

    Article  CAS  PubMed  Google Scholar 

  13. Kandel ER (2001) The molecular biology of memory storage: a dialogue between genes and synapses. Science 294:1030–1038. https://doi.org/10.1126/science.1067020

    Article  CAS  PubMed  Google Scholar 

  14. Silva AJ, Kogan JH, Frankland PW, Kida S (1998) CREB and memory. Annu Rev Neurosci 21:127–148. https://doi.org/10.1146/annurev.neuro.21.1.127

    Article  CAS  PubMed  Google Scholar 

  15. Conkright MD, Canettieri G, Screaton R et al (2003) TORCs: transducers of regulated CREB activity. Mol Cell 12:413–423. https://doi.org/10.1016/j.molcel.2003.08.013

    Article  CAS  PubMed  Google Scholar 

  16. Li S, Zhang C, Takemori H et al (2009) TORC1 regulates activity-dependent CREB-target gene transcription and dendritic growth of developing cortical neurons. J Neurosci 29:2334–2343. https://doi.org/10.1523/JNEUROSCI.2296-08.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ravnskjaer K, Kester H, Liu Y et al (2007) Cooperative interactions between CBP and TORC2 confer selectivity to CREB target gene expression. EMBO J 26:2880–2889. https://doi.org/10.1038/sj.emboj.7601715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Steffan JS, Kazantsev A, Spasic-Boskovic O et al (2000) The Huntington’s disease protein interacts with p53 and CREB-binding protein and represses transcription. Proc Natl Acad Sci 97:6763–6768. https://doi.org/10.1073/pnas.100110097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Korzus E, Rosenfeld MG, Mayford M (2004) CBP histone acetyltransferase activity is a critical component of memory consolidation. Neuron 42:961–972. https://doi.org/10.1016/j.neuron.2004.06.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cong S-Y, Pepers BA, Evert BO et al (2005) Mutant huntingtin represses CBP, but not p300, by binding and protein degradation. Mol Cell Neurosci 30:12–23. https://doi.org/10.1016/j.mcn.2005.05.003

    Article  CAS  PubMed  Google Scholar 

  21. Morrison BE, Majdzadeh N, D’Mello SR (2007) Histone deacetylases: focus on the nervous system. Cell Mol Life Sci 64:2258–2269. https://doi.org/10.1007/s00018-007-7035-9

    Article  CAS  PubMed  Google Scholar 

  22. Abel T, Zukin RS (2008) Epigenetic targets of HDAC inhibition in neurodegenerative and psychiatric disorders. Curr Opin Pharmacol 8:57–64. https://doi.org/10.1016/j.coph.2007.12.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jia H, Pallos J, Jacques V et al (2012) Histone deacetylase (HDAC) inhibitors targeting HDAC3 and HDAC1 ameliorate polyglutamine-elicited phenotypes in model systems of Huntington’s disease. Neurobiol Dis 46:351–361. https://doi.org/10.1016/j.nbd.2012.01.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cohen-Cory S, Kidane AH, Shirkey NJ, Marshak S (2010) Brain-derived neurotrophic factor and the development of structural neuronal connectivity. Dev Neurobiol 70:271–288. https://doi.org/10.1002/dneu.20774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Benito E, Barco A (2010) CREB’s control of intrinsic and synaptic plasticity: implications for CREB-dependent memory models. Trends Neurosci 33:230–240. https://doi.org/10.1016/j.tins.2010.02.001

    Article  CAS  PubMed  Google Scholar 

  26. Madabhushi R, Gao F, Pfenning AR et al (2015) Activity-induced DNA breaks govern the expression of neuronal early-response genes. Cell 161:1592–1605. https://doi.org/10.1016/j.cell.2015.05.032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Trettel F, Rigamonti D, Hilditch-Maguire P et al (2000) Dominant phenotypes produced by the HD mutation in STHdhQ111 striatal cells. Hum Mol Genet 9:2799–2809. https://doi.org/10.1093/hmg/9.19.2799

    Article  CAS  PubMed  Google Scholar 

  28. Covarrubias-Pinto A, Moll P, Solís-Maldonado M et al (2015) Beyond the redox imbalance: oxidative stress contributes to an impaired GLUT3 modulation in Huntington’s disease. Free Radic Biol Med 89:1085–1096. https://doi.org/10.1016/j.freeradbiomed.2015.09.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sakamoto K, Karelina K, Obrietan K (2011) CREB: a multifaceted regulator of neuronal plasticity and protection. J Neurochem 116:1–9. https://doi.org/10.1111/j.1471-4159.2010.07080.x

    Article  CAS  PubMed  Google Scholar 

  30. Pregi N, Belluscio LM, Berardino BG et al (2017) Oxidative stress-induced CREB upregulation promotes DNA damage repair prior to neuronal cell death protection. Mol Cell Biochem 425:9–24. https://doi.org/10.1007/s11010-016-2858-z

    Article  CAS  PubMed  Google Scholar 

  31. Wang H, Lautrup S, Caponio D et al (2021) DNA damage-induced neurodegeneration in accelerated ageing and Alzheimer’s disease. Int J Mol Sci 22(13):6748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Maiuri T, Suart CE, Hung CLK et al (2019) DNA damage repair in Huntington’s disease and other neurodegenerative diseases. Neurotherapeutics 16:948–956. https://doi.org/10.1007/s13311-019-00768-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gonzalez-Hunt CP, Sanders LH (2021) DNA damage and repair in Parkinson’s disease: recent advances and new opportunities. J Neurosci Res 99:180–189. https://doi.org/10.1002/jnr.24592

    Article  CAS  PubMed  Google Scholar 

  34. Moshell AN, Barrett SF, Tarone RE, Robbins JH (1980) Radiosensitivity in Huntington’s disease: implications for pathogenesis and presymptomatic diagnosis. Lancet 315:9–11. https://doi.org/10.1016/S0140-6736(80)90550-4

    Article  Google Scholar 

  35. Robison SH, Bradley WG (1984) DNA damage and chronic neuronal degenerations. J Neurol Sci 64:11–20. https://doi.org/10.1016/0022-510X(84)90051-0

    Article  CAS  PubMed  Google Scholar 

  36. Massey TH, Jones L (2018) The central role of DNA damage and repair in CAG repeat diseases. Dis Model Mech. https://doi.org/10.1242/dmm.031930

    Article  PubMed  PubMed Central  Google Scholar 

  37. Enokido Y, Tamura T, Ito H et al (2010) Mutant huntingtin impairs Ku70-mediated DNA repair. J Cell Biol 189:425–443. https://doi.org/10.1083/jcb.200905138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Iyer RR, Pluciennik A (2021) DNA mismatch repair and its role in Huntington’s disease. J Huntingtons Dis 10:75–94. https://doi.org/10.3233/JHD-200438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Cha J-HJ (2000) Transcriptional dysregulation in Huntington’s disease. Trends Neurosci 23:387–392. https://doi.org/10.1016/S0166-2236(00)01609-X

    Article  CAS  PubMed  Google Scholar 

  40. Sugars KL, Rubinsztein DC (2003) Transcriptional abnormalities in Huntington disease. Trends Genet 19:233–238. https://doi.org/10.1016/S0168-9525(03)00074-X

    Article  CAS  PubMed  Google Scholar 

  41. Zuccato C, Ciammola A, Rigamonti D et al (2001) Loss of huntingtin-mediated BDNF gene transcription in Huntington’s disease. Science 293:493–498. https://doi.org/10.1126/science.1059581

    Article  CAS  PubMed  Google Scholar 

  42. Zuccato C, Liber D, Ramos C et al (2005) Progressive loss of BDNF in a mouse model of Huntington’s disease and rescue by BDNF delivery. Pharmacol Res 52:133–139. https://doi.org/10.1016/j.phrs.2005.01.001

    Article  CAS  PubMed  Google Scholar 

  43. Zuccato C, Cattaneo E (2007) Role of brain-derived neurotrophic factor in Huntington’s disease. Prog Neurobiol 81:294–330. https://doi.org/10.1016/j.pneurobio.2007.01.003

    Article  CAS  PubMed  Google Scholar 

  44. dos Santos NAG, Ferreira RS, dos Santos AC (2020) Overview of cisplatin-induced neurotoxicity and ototoxicity, and the protective agents. Food Chem Toxicol. https://doi.org/10.1016/j.fct.2019.111079

    Article  PubMed  Google Scholar 

  45. Sun Y-X, Yang J, Wang P-Y et al (2013) Cisplatin regulates SH-SY5Y cell growth through downregulation of BDNF via miR-16. Oncol Rep 30:2343–2349. https://doi.org/10.3892/or.2013.2731

    Article  CAS  PubMed  Google Scholar 

  46. Abdelkader NF, Saad MA, Abdelsalam RM (2017) Neuroprotective effect of nebivolol against cisplatin-associated depressive-like behavior in rats. J Neurochem 141:449–460. https://doi.org/10.1111/jnc.13978

    Article  CAS  PubMed  Google Scholar 

  47. Han M, Ban J-J, Bae J-S et al (2017) UV irradiation to mouse skin decreases hippocampal neurogenesis and synaptic protein expression via HPA axis activation. Sci Rep 7:15574. https://doi.org/10.1038/s41598-017-15773-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Disterhoft JF, Oh MM (2006) Learning, aging and intrinsic neuronal plasticity. Trends Neurosci 29:587–599. https://doi.org/10.1016/j.tins.2006.08.005

    Article  CAS  PubMed  Google Scholar 

  49. Nucifora FC, Sasaki M, Peters MF et al (2001) Interference by huntingtin and atrophin-1 with CBP-mediated transcription leading to cellular toxicity. Science 291:2423–2428. https://doi.org/10.1126/science.1056784

    Article  CAS  PubMed  Google Scholar 

  50. Wu Z, Huang X, Feng Y et al (2006) Transducer of regulated CREB-binding proteins (TORCs) induce PGC-1α transcription and mitochondrial biogenesis in muscle cells. Proc Natl Acad Sci 103:14379–14384. https://doi.org/10.1073/pnas.0606714103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Chaturvedi RK, Hennessey T, Johri A et al (2012) Transducer of regulated CREB-binding proteins (TORCs) transcription and function is impaired in Huntington’s disease. Hum Mol Genet 21:3474–3488. https://doi.org/10.1093/hmg/dds178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Barrett RM, Wood MA (2008) Beyond transcription factors: The role of chromatin modifying enzymes in regulating transcription required for memory. Learn Mem 15:460–467. https://doi.org/10.1101/lm.917508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Peleg S, Sananbenesi F, Zovoilis A et al (2010) Altered histone acetylation is associated with age-dependent memory impairment in mice. Science 328:753–756. https://doi.org/10.1126/science.1186088

    Article  CAS  PubMed  Google Scholar 

  54. Nelson ED, Monteggia LM (2011) Epigenetics in the mature mammalian brain: effects on behavior and synaptic transmission. Neurobiol Learn Mem 96:53–60. https://doi.org/10.1016/j.nlm.2011.02.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Guan J-S, Haggarty SJ, Giacometti E et al (2009) HDAC2 negatively regulates memory formation and synaptic plasticity. Nature 459:55–60. https://doi.org/10.1038/nature07925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Srivas S, Thakur MK (2017) Epigenetic regulation of neuronal immediate early genes is associated with decline in their expression and memory consolidation in scopolamine-induced amnesic mice. Mol Neurobiol 54:5107–5119. https://doi.org/10.1007/s12035-016-0047-4

    Article  CAS  PubMed  Google Scholar 

  57. Singh P, Thakur MK (2018) Histone deacetylase 2 inhibition attenuates downregulation of hippocampal plasticity gene expression during aging. Mol Neurobiol 55:2432–2442. https://doi.org/10.1007/s12035-017-0490-x

    Article  CAS  PubMed  Google Scholar 

  58. Chen G, Zou X, Watanabe H et al (2010) CREB binding protein is required for both short-term and long-term memory formation. J Neurosci 30:13066–13077. https://doi.org/10.1523/JNEUROSCI.2378-10.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Francisco J. Morera, Ph.D., from Universidad Austral de Chile, for the helpful discussions of the results. We thank Claudia A. Tapia-Alveal, PhD., from Columbia University New York, U.S.A., for her critical reading of the manuscript.

Funding

This work was supported by grants FONDECYT REGULAR 1141067 (to A.Z.) and 1191620 (M.A.C), and VIDCA from Universidad Austral de Chile.

Author information

Authors and Affiliations

Authors

Contributions

MC and AZ., conceived and designed the experiment; JS., AC., CC., CP-M. and AZ. performed experiments and acquired the data; JS., AC., MC., and AZ., analyzed and interpreted the data; FS., MC., CO., and AZ. drafted, edited, and revised manuscript.

Corresponding author

Correspondence to Angara Zambrano.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest. The founding sponsors had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, and in the decision to publish the results.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Spies, J., Covarrubias-Pinto, A., Carcamo, C. et al. Modulation of Synaptic Plasticity Genes Associated to DNA Damage in a Model of Huntington’s Disease. Neurochem Res 48, 2093–2103 (2023). https://doi.org/10.1007/s11064-023-03889-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-023-03889-w

Keywords

Navigation