Skip to main content

Advertisement

Log in

Genome-wide Analysis of Histone H3 Lysine 27 Trimethylation Profiles in Sciatic Nerve of Chronic Constriction Injury Rats

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The histone H3 lysine 27 trimethylation (H3K27me3) is one of the most important chromatin modifications, which is associated with injury-activated gene expression in Schwann cells (SCs). However, the alteration of genome-wide H3K27me3 enrichments in the development of neuropathic pain is still unknown. Here, we applied the chromatin immunoprecipitation sequencing (ChIP-seq) approach to identify the alteration of differential enrichments of H3K27me3 in chronic constriction injury (CCI) sciatic nerve of rats and potential molecular mechanisms underlying the development of neuropathic pain. Our results indicated that CCI increased the numbers of SCs displaying H3K27 methyltransferase enhancer of zeste homolog 2 (EZH2) and H3K27me3 in the sciatic nerve. ChIP-seq data showed that CCI significantly changed H3K27me3 enrichments on gene promoters in the sciatic nerve. Bioinformatics analyses exhibited that genes gaining H3K27me3 were mostly associated with regulation of cell proliferation, response to stress and oxidation-reduction process. Genes losing this mark were enriched in neuronal generation, and MAPK, cAMP as well as ERBB signaling pathways. Importantly, IL1A, CCL2, NOS2, S100A8, BDNF, GDNF, ERBB3 and C3 were identified as key genes in neuropathic pain. CCI led to significant upregulation of key genes in the sciatic nerve. EZH2 inhibitor reversed CCI-induced increases of H3K27me3 and key gene protein levels, which were accompanied by relieved mechanical allodynia and thermal hyperalgesia in CCI rats. These results indicate that genes with differential enrichments of H3K27me3 in SCs function in various cellular processes and pathways, and many are linked to neuropathic pain after peripheral nerve injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

BDNF:

Brain-derived neurotrophic factor

BP:

Biological processes

CCI:

Chronic constriction injury

CCL2:

C-C motif chemokine ligand 2

ChIP-seq:

Chromatin immunoprecipitation sequencing

EZH2:

Enhancer of zeste homolog-2

ERBB3:

Receptor tyrosine-protein kinase erbB-3

GDNF:

Glial cell-derived neurotrophic factor

GO:

Gene ontology

H3K27me3:

Histone H3 lysine 27 trimethylation

IL1A:

Interleukin-1α

KEGG:

Kyoto encyclopedia of genes and genomes

MAG:

Myelin-associated glycoprotein

MWT:

Mechanical withdrawal threshold

NOS2:

Nitric oxide synthase 2

PRC2:

Polycomb-repressive complex 2

SCs:

Schwann cells

TSSs:

Transcription start sites

TWL:

Thermal withdrawal latency

References

  1. Wilson ER, Della-Flora Nunes G, Weaver MR, Frick LR, Feltri ML (2021) Schwann cell interactions during the development of the peripheral nervous system. Dev Neurobiol 81:464–489. https://doi.org/10.1002/dneu.22744

    Article  PubMed  Google Scholar 

  2. Wei Z, Fei Y, Su W, Chen G (2019) Emerging role of Schwann cells in neuropathic pain: receptors, glial mediators and myelination. Front Cell Neurosci 13:116. https://doi.org/10.3389/fncel.2019.00116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Zhu X, Li K, Guo X, Wang J, Xiang Y (2016) Schwann cell proliferation and differentiation that is induced by ferulic acid through MEK1/ERK1/2 signalling promotes peripheral nerve remyelination following crush injury in rats. Exp Ther Med 12:1915–1921. https://doi.org/10.3892/etm.2016.3525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Nocera G, Jacob C (2020) Mechanisms of Schwann cell plasticity involved in peripheral nerve repair after injury. Cell Mol Life Sci 77:3977–3989. https://doi.org/10.1007/s00018-020-03516-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Campana WM (2007) Schwann cells: activated peripheral glia and their role in neuropathic pain. Brain Behav Immun 21:522–527. https://doi.org/10.1016/j.bbi.2006.12.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. An Q, Sun C, Li R, Chen S, Gu X, An S, Wang Z (2021) Calcitonin gene-related peptide regulates spinal microglial activation through the histone H3 lysine 27 trimethylation via enhancer of zeste homolog-2 in rats with neuropathic pain. J Neuroinflammation 18:117. https://doi.org/10.1186/s12974-021-02168-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Yadav R, Weng HR (2017) EZH2 regulates spinal neuroinflammation in rats with neuropathic pain. Neuroscience 349:106–117. https://doi.org/10.1016/j.neuroscience.2017.02.041

    Article  CAS  PubMed  Google Scholar 

  8. Cai Y, Zhang Y, Loh YP, Tng JQ, Lim MC, Cao Z, Raju A, Lieberman Aiden E, Li S, Manikandan L, Tergaonkar V, Tucker-Kellogg G, Fullwood MJ (2021) H3K27me3-rich genomic regions can function as silencers to repress gene expression via chromatin interactions. Nat Commun 12:719. https://doi.org/10.1038/s41467-021-20940-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ma KH, Hung HA, Srinivasan R, Xie H, Orkin SH, Svaren J (2015) Regulation of peripheral nerve myelin maintenance by gene repression through polycomb repressive complex 2. J Neurosci 35:8640–8652. https://doi.org/10.1523/JNEUROSCI.2257-14.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ness JK, Skiles AA, Yap EH, Fajardo EJ, Fiser A, Tapinos N (2016) Nuc-ErbB3 regulates H3K27me3 levels and HMT activity to establish epigenetic repression during peripheral myelination. Glia 64:977–992. https://doi.org/10.1002/glia.22977

    Article  PubMed  PubMed Central  Google Scholar 

  11. Ma KH, Hung HA, Svaren J (2016) Epigenomic regulation of Schwann cell reprogramming in peripheral nerve injury. J Neurosci 36:9135–9147. https://doi.org/10.1523/JNEUROSCI.1370-16.2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hou Z, Chen J, Yang H, Hu X, Yang F (2021) PIAS1 alleviates diabetic peripheral neuropathy through SUMOlation of PPAR-γ and mir-124-induced downregulation of EZH2/STAT3. Cell Death Discov 7:372. https://doi.org/10.1038/s41420-021-00765-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kidder BL, Hu G, Zhao K (2011) ChIP-Seq: technical considerations for obtaining high-quality data. Nat Immunol 12:918–922. https://doi.org/10.1038/ni.2117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Austin PJ, Wu A, Moalem-Taylor G (2012) Chronic constriction of the sciatic nerve and pain hypersensitivity testing in rats. J Vis Exp 61:3393. https://doi.org/10.3791/3393

    Article  Google Scholar 

  15. Bitler BG, Aird KM, Garipov A, Li H, Amatangelo M, Kossenkov AV, Schultz DC, Liu Q, Shih IeM, Conejo-Garcia JR, Speicher DW, Zhang R (2015) Synthetic lethality by targeting EZH2 methyltransferase activity in ARID1A-mutated cancers. Nat Med 21:231–238. https://doi.org/10.1038/nm.3799

    Article  CAS  PubMed  Google Scholar 

  16. McCabe MT, Ott HM, Ganji G, Korenchuk S, Thompson C, Van Aller GS, Liu Y, Graves AP, Della Pietra A 3rd, Diaz E, LaFrance LV, Mellinger M, Duquenne C, Tian X, Kruger RG, McHugh CF, Brandt M, Miller WH, Dhanak D, Verma SK, Tummino PJ, Creasy CL (2012) EZH2 inhibition as a therapeutic strategy for lymphoma with EZH2-activating mutations. Nature 492(7427):108–112. https://doi.org/10.1038/nature11606

    Article  CAS  PubMed  Google Scholar 

  17. Kobayashi M, Ishibashi S, Tomimitsu H, Yokota T, Mizusawa H (2012) Proliferating immature Schwann cells contribute to nerve regeneration after ischemic peripheral nerve injury. J Neuropathol Exp Neurol 71:511–519. https://doi.org/10.1097/NEN.0b013e318257fe7b

    Article  CAS  PubMed  Google Scholar 

  18. Lee TI, Johnstone SE, Young RA (2006) Chromatin immunoprecipitation and microarray-based analysis of protein location. Nat Protoc 1:729–48. https://doi.org/10.1038/nprot.2006.98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kelly TK, Liu Y, Lay FD, Liang G, Berman BP, Jones PA (2012) Genome-wide mapping of nucleosome positioning and DNA methylation within individual DNA molecules. Genome Res 22:2497–2506. https://doi.org/10.1101/gr.143008.112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Souroullas GP, Jeck WR, Parker JS, Simon JM, Liu JY, Paulk J, Xiong J, Clark KS, Fedoriw Y, Qi J, Burd CE, Bradner JE, Sharpless NE (2016) An oncogenic Ezh2 mutation induces tumors through global redistribution of histone 3 lysine 27 trimethylation. Nat Med 22:632–640. https://doi.org/10.1038/nm.4092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. McCabe MT, Ott HM, Ganji G, Korenchuk S, Thompson C, Van Aller GS, Creasy CL (2012) EZH2 inhibition as a therapeutic strategy for lymphoma with EZH2-activating mutations. Nature 492(7427):108–112. https://doi.org/10.1038/nature11606

    Article  CAS  PubMed  Google Scholar 

  22. Heinen A, Tzekova N, Graffmann N, Torres KJ, Uhrberg M, Hartung HP, Küry P (2012) Histone methyltransferase enhancer of zeste homolog 2 regulates Schwann cell differentiation. Glia 60:1696–1708. https://doi.org/10.1002/glia.22388

    Article  PubMed  Google Scholar 

  23. Duman M, Martinez-Moreno M, Jacob C, Tapinos N (2020) Functions of histone modifications and histone modifiers in Schwann cells. Glia 68:1584–1595. https://doi.org/10.1002/glia.23795

    Article  PubMed  Google Scholar 

  24. Gonçalves NP, Teixeira-Coelho M, Saraiva MJ (2014) The inflammatory response to sciatic nerve injury in a familial amyloidotic polyneuropathy mouse model. Exp Neurol 257:76–87. https://doi.org/10.1016/j.expneurol.2014.04.030

    Article  CAS  PubMed  Google Scholar 

  25. Sobeh M, Mahmoud MF, Rezq S, Alsemeh AE, Sabry OM, Mostafa I, Abdelfattah MAO, El-Allem KA, El-Shazly AM, Yasri A, Wink M (2019) Salix tetrasperma Roxb extract alleviates neuropathic pain in rats via modulation of the NF-κB/TNF-α/NOX/iNOS pathway. Antioxidants (Basel) 8:482. https://doi.org/10.3390/antiox8100482

    Article  CAS  PubMed  Google Scholar 

  26. Green-Fulgham SM, Harland ME, Ball JB, Li J, Lacagnina MJ, D’Angelo H, Dreher RA, Willcox KF, Lorca SA, Kwilasz AJ, Maier SF, Watkins LR, Grace PM (2022) Preconditioning by voluntary wheel running attenuates later neuropathic pain via Nrf2 antioxidant signaling in rats. Pain 163:1939–1951. https://doi.org/10.1097/j.pain.0000000000002589

    Article  CAS  PubMed  Google Scholar 

  27. Marinelli S, Nazio F, Tinari A, Ciarlo L, D’Amelio M, Pieroni L, Vacca V, Urbani A, Cecconi F, Malorni W, Pavone F (2014) Schwann cell autophagy counteracts the onset and chronification of neuropathic pain. Pain 155:93–107. https://doi.org/10.1016/j.pain.2013.09.013

    Article  CAS  PubMed  Google Scholar 

  28. Brosius Lutz A, Lucas TA, Carson GA, Caneda C, Zhou L, Barres BA, Buckwalter MS, Sloan SA (2022) An RNA-sequencing transcriptome of the rodent Schwann cell response to peripheral nerve injury. J Neuroinflam 19:105. https://doi.org/10.1186/s12974-022-02462-6

    Article  CAS  Google Scholar 

  29. Sugimoto K, Yasujima M, Yagihashi S (2008) Role of advanced glycation end products in diabetic neuropathy. Curr Pharm Des 14:953–961. https://doi.org/10.2174/138161208784139774

    Article  CAS  PubMed  Google Scholar 

  30. Cao Y, Wang Q, Zhou Z, Wang Y, Liu Y, Ji Y, Liu F (2012) Changes of peroxisome proliferator-activated receptor-γ on crushed rat sciatic nerves and differentiated primary Schwann cells. J Mol Neurosci 47:380–388. https://doi.org/10.1007/s12031-011-9662-8

    Article  CAS  PubMed  Google Scholar 

  31. Yi D, Wang K, Zhu B, Li S, Liu X (2021) Identification of neuropathic pain-associated genes and pathways via random walk with restart algorithm. J Neurosurg Sci 65:414–420. https://doi.org/10.23736/S0390-5616.20.04920-6

    Article  PubMed  Google Scholar 

  32. Bacallao K, Monje PV (2015) Requirement of cAMP signaling for Schwann cell differentiation restricts the onset of myelination. PLoS ONE 10:e0116948. https://doi.org/10.1371/journal.pone.0116948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Liu L, He L, Yin C, Huang R, Shen W, Ge H, Sun M, Li S, Gao Y, Xiong W (2020) Effects of palmatine on BDNF/TrkB-mediated trigeminal neuralgia. Sci Rep 10:4998. https://doi.org/10.1038/s41598-020-61969-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chen S, Velardez MO, Warot X, Yu ZX, Miller SJ, Cros D, Corfas G (2006) Neuregulin 1-erbB signaling is necessary for normal myelination and sensory function. J Neurosci 26:3079–3086. https://doi.org/10.1523/JNEUROSCI.3785-05.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Koo JW, Mazei-Robison MS, LaPlant Q, Egervari G, Braunscheidel KM, Adank DN, Ferguson D, Feng J, Sun H, Scobie KN, Damez-Werno DM, Ribeiro E, Peña CJ, Walker D, Bagot RC, Cahill ME, Anderson SA, Labonté B, Hodes GE, Browne H, Chadwick B, Robison AJ, Vialou VF, Dias C, Lorsch Z, Mouzon E, Lobo MK, Dietz DM, Russo SJ, Neve RL, Hurd YL, Nestler EJ (2015) Epigenetic basis of opiate suppression of Bdnf gene expression in the ventral tegmental area. Nat Neurosci 18:415–422. https://doi.org/10.1038/nn.3932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhao T, Wu D, Du J, Liu G, Ji G, Wang Z, Peng F, Man L, Zhou W, Hao A (2022) Folic acid attenuates glial activation in neonatal mice and improves adult mood disorders through epigenetic regulation. Front Pharmacol 13:818423. https://doi.org/10.3389/fphar.2022.818423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhang JY, Luo XG, Xian CJ, Liu ZH, Zhou XF (2000) Endogenous BDNF is required for myelination and regeneration of injured sciatic nerve in rodents. Eur J Neurosci 12:4171–4180

    CAS  PubMed  Google Scholar 

  38. Fang X, Zhang C, Yu Z, Li W, Huang Z, Zhang W (2019) GDNF pretreatment overcomes Schwann cell phenotype mismatch to promote motor axon regeneration via sensory graft. Exp Neurol 318:258–266. https://doi.org/10.1016/j.expneurol.2019.05.011

    Article  CAS  PubMed  Google Scholar 

  39. Bogen O, Joseph EK, Chen X, Levine JD (2008) GDNF hyperalgesia is mediated by PLCgamma, MAPK/ERK, PI3K, CDK5 and src family kinase signaling and dependent on the IB4-binding protein versican. Eur J Neurosci 28:12–19. https://doi.org/10.1111/j.1460-9568.2008.06308.x

    Article  PubMed  PubMed Central  Google Scholar 

  40. Ma F, Zhang L, Westlund KN (2012) Trigeminal nerve injury ErbB3/ErbB2 promotes mechanical hypersensitivity. Anesthesiology 117:381–388. https://doi.org/10.1097/ALN.0b013e3182604b2b

    Article  PubMed  Google Scholar 

  41. Fritzinger DC, Benjamin DE (2016) The complement system in neuropathic and postoperative pain. Open Pain J 9:26–37. https://doi.org/10.2174/1876386301609010026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Shamash S, Reichert F, Rotshenker S (2002) The cytokine network of Wallerian degeneration: tumor necrosis factor-alpha, interleukin-1alpha, and interleukin-1beta. J Neurosci 22:3052–3060. https://doi.org/10.1523/JNEUROSCI.22-08-03052.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Menetski J, Mistry S, Lu M, Mudgett JS, Ransohoff RM, Demartino JA, Macintyre DE, Abbadie C (2007) Mice overexpressing chemokine ligand 2 (CCL2) in astrocytes display enhanced nociceptive responses. Neuroscience 149:706–714. https://doi.org/10.1016/j.neuroscience.2007.08.014

    Article  CAS  PubMed  Google Scholar 

  44. Levy D, Höke A, Zochodne DW (1999) Local expression of inducible nitric oxide synthase in an animal model of neuropathic pain. Neurosci Lett 260:207–209. https://doi.org/10.1016/s0304-3940(98)00982-3

    Article  CAS  PubMed  Google Scholar 

  45. Chernov AV, Dolkas J, Hoang K, Angert M, Srikrishna G, Vogl T, Baranovskaya S, Strongin AY, Shubayev VI (2015) The calcium-binding proteins S100A8 and S100A9 initiate the early inflammatory program in injured peripheral nerves. J Biol Chem 290:11771–11784. https://doi.org/10.1074/jbc.M114.622316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Luo Y, Fang Y, Kang R, Lenahan C, Gamdzyk M, Zhang Z, Okada T, Tang J, Chen S, Zhang JH (2020) Inhibition of EZH2 (enhancer of zeste homolog 2) attenuates neuroinflammation via H3k27me3/SOCS3/TRAF6/NF-κB (trimethylation of histone 3 lysine 27/suppressor of cytokine signaling 3/tumor necrosis factor receptor family 6/nuclear factor-κB) in a rat model of subarachnoid hemorrhage. Stroke 51:3320–3331. https://doi.org/10.1161/STROKEAHA.120.029951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhang X, Wang Y, Yuan J, Li N, Pei S, Xu J, Luo X, Mao C, Liu J, Yu T, Gan S, Zheng Q, Liang Y, Guo W, Qiu J, Constantin G, Jin J, Qin J, Xiao Y (2018) Macrophage/microglial Ezh2 facilitates autoimmune inflammation through inhibition of Socs3. J Exp Med 215:1365–1382. https://doi.org/10.1084/jem.20171417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wang P, Tian H, Zhang Z, Wang Z (2021) EZH2 regulates lipopolysaccharide-induced periodontal ligament stem cell proliferation and osteogenesis through TLR4/MyD88/NF-κB pathway. Stem Cells Int 2021:7625134. https://doi.org/10.1155/2021/7625134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Young MD, Willson TA, Wakefield MJ, Trounson E, Hilton DJ, Blewitt ME, Oshlack A, Majewski IJ (2011) ChIP-seq analysis reveals distinct H3K27me3 profiles that correlate with transcriptional activity. Nucleic Acids Res 39:7415–7427. https://doi.org/10.1093/nar/gkr416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hui T, Zhao AP, Yang Y, Ye J, Wang L (2018) EZH2 regulates dental pulp inflammation by direct effect on inflammatory factors. Arch Oral Biol 85:16–22. https://doi.org/10.1016/j.archoralbio.2017.10.004

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The study was supported by National Natural Science Foundation of China (No. 3187125; No. 81371234) and Natural Science Foundation of Shandong Province, China (ZR2019MH027).

Author information

Authors and Affiliations

Authors

Contributions

SC and XG performed experiments, analyzed data, and wrote the manuscript. SA analyzed and interpreted data, and wrote the manuscript. RL conducted parts of the animal surgery and performed the experiments. ZW provided advice in the design of the study and in interpreting the data and revising the manuscript. All authors have read and approved the final version of the manuscript. The key data are included in figures, tables, and additional files. The full datasets that were analysed are available from the corresponding author on reasonable request. ChIP-seq experiments were performed by KangChen Bio-tech, Shanghai, China.

Corresponding authors

Correspondence to Shuhong An or Zhaojin Wang.

Ethics declarations

Competing Interests

No conflict of interest are declared for any authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, S., Gu, X., Li, R. et al. Genome-wide Analysis of Histone H3 Lysine 27 Trimethylation Profiles in Sciatic Nerve of Chronic Constriction Injury Rats. Neurochem Res 48, 1945–1957 (2023). https://doi.org/10.1007/s11064-023-03879-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-023-03879-y

Keywords

Navigation