Skip to main content

Advertisement

Log in

Moderate Ethanol-Preconditioning Offers Ischemic Tolerance Against Focal Cerebral Ischemic/Reperfusion: Role of Large Conductance Calcium-Activated Potassium Channel

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The mechanism underlying moderate ethanol (EtOH)-preconditioning (PC) against ischemic brain injury remains unclear. We evaluated the role of large conductance calcium-sensitive potassium (BKCa) channels in EtOH-PC. Almost one hundred and ninety normal adult SD rats (8 to 10 weeks, 320–350 g) were enrolled in this study. Ischemic/reperfusion (I/R) brain injury was induced in rats by middle cerebral artery occlusion for 2 h followed by reperfusion for 24 h. EtOH or the BKCa channel opener, NS11021, was administered 24 h before I/R with or without pre-treatment with the BKCa channel blocker, paxilline. Infarct volumes were measured by tissue staining and imaging, and neurological functions were assessed by a scoring system. The expression of BKCa channel subunit α was detected by Western blotting, and cell apoptosis was assessed using staining. Prior (24 h) administration of ethanol that produced a peak plasma concentration of ~ 45 mg/dl in rats would offer neuroprotection after cerebral I/R. In addition, the expression of BKCa channel α-subunit was significantly increased 24 h after EtOH-PC (n = 10; control: 2.00 ± 0.09, EtOH: 1.00 ± 0.06; P < 0.5). Compared to I/R, EtOH-PC enhanced the expression of BKCa channel α-subunit both in the penumbra (n = 10; 24 h: I/R: 1.25 ± 0.10, EtOH-PC + I/R: 1.99 ± 0.12; P < 0.01; 4 h: I/R: 1.03 ± 0.03, EtOH-PC + I/R: 1.49 ± 0.05; P < 0.001) and infarct core (n = 10; 4 h: I/R: 1.04 ± 0.04, EtOH-PC + I/R: 1.42 ± 0.05; P < 0.001), improved the neurological function (n = 10; I/R: 14.00 (12.75–15.00), EtOH-PC + I/R: 7.00 (4.75–8.25); P < 0.001), attenuated the apoptosis (n = 10; I/R: 26.80 ± 0.69, EtOH-PC + I/R: 8.46 ± 0.31; P < 0.001), and decreased the infarct volume (n = 10; I/R: 244.00 ± 26.24, EtOH-PC + I/R: 70.09 ± 14.69; P < 0.001) after experimental cerebral I/R. These changes were reversed by paxilline administration. The moderate EtOH-PC protects against I/R-induced brain damage dependent on the upregulation BKCa channels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The raw data supporting the conclusions of this article will be made available by the authors, without undue reservation.

References

  1. Johnston SC, Amarenco P, Denison H, Evans SR, Himmelmann A, James S, Knutsson M, Ladenvall P, Molina CA, Wang Y, Investigators T (2020) Ticagrelor and aspirin or aspirin alone in acute ischemic stroke or TIA. N Engl J Med 383:207–217

    Article  CAS  PubMed  Google Scholar 

  2. Liu Q, Johnson EM, Lam RK, Wang Q, Bo Ye H, Wilson EN, Minhas PS, Liu L, Swarovski MS, Tran S, Wang J, Mehta SS, Yang X, Rabinowitz JD, Yang SS, Shamloo M, Mueller C, James ML, Andreasson KI (2019) Peripheral TREM1 responses to brain and intestinal immunogens amplify stroke severity. Nat Immunol 20:1023–1034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Zi W, Qiu Z, Li F, Sang H, Wu D, Luo W, Liu S, Yuan J, Song J, Shi Z, Huang W, Zhang M, Liu W, Guo Z, Qiu T, Shi Q, Zhou P, Wang L, Fu X, Liu S, Yang S, Zhang S, Zhou Z, Huang X, Wang Y, Luo J, Bai Y, Zhang M, Wu Y, Zeng G, Wan Y, Wen C, Wen H, Ling W, Chen Z, Peng M, Ai Z, Guo F, Li H, Guo J, Guan H, Wang Z, Liu Y, Pu J, Wang Z, Liu H, Chen L, Huang J, Yang G, Gong Z, Shuai J, Nogueira RG, Yang Q, Investigators DT (2021) Effect of endovascular treatment alone vs intravenous alteplase plus endovascular treatment on functional independence in patients with acute ischemic stroke: the DEVT randomized clinical trial. JAMA 325:234–243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ringleb P, Bendszus M, Bluhmki E, Donnan G, Eschenfelder C, Fatar M, Kessler C, Molina C, Leys D, Muddegowda G, Poli S, Schellinger P, Schwab S, Serena J, Toni D, Wahlgren N, Hacke W (2019) Extending the time window for intravenous thrombolysis in acute ischemic stroke using magnetic resonance imaging-based patient selection. Int J Stroke 14:483–490

    Article  PubMed  Google Scholar 

  5. Zhang J, Bhuiyan MIH, Zhang T, Karimy JK, Wu Z, Fiesler VM, Zhang J, Huang H, Hasan MN, Skrzypiec AE, Mucha M, Duran D, Huang W, Pawlak R, Foley LM, Hitchens TK, Minnigh MB, Poloyac SM, Alper SL, Molyneaux BJ, Trevelyan AJ, Kahle KT, Sun D, Deng X (2020) Modulation of brain cation-Cl(−) cotransport via the SPAK kinase inhibitor ZT-1a. Nat Commun 11:78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hao Y, Xin M, Feng L, Wang X, Wang X, Ma D, Feng J (2020) Review cerebral ischemic tolerance and preconditioning: methods, mechanisms, clinical applications, and challenges. Front Neurol 11:812

    Article  PubMed  PubMed Central  Google Scholar 

  7. Liberale L, Bonaventura A, Montecucco F, Dallegri F, Carbone F (2019) Impact of red wine consumption on cardiovascular health. Curr Med Chem 26:3542–3566

    Article  CAS  PubMed  Google Scholar 

  8. Pastor RF, Restani P, Di Lorenzo C, Orgiu F, Teissedre PL, Stockley C, Ruf JC, Quini CI, Garcia Tejedor N, Gargantini R, Aruani C, Prieto S, Murgo M, Videla R, Penissi A, Iermoli RH (2019) Resveratrol, human health and winemaking perspectives. Crit Rev Food Sci Nutr 59:1237–1255

    Article  CAS  PubMed  Google Scholar 

  9. Krenz M, Korthuis RJ (2012) Moderate ethanol ingestion and cardiovascular protection: from epidemiologic associations to cellular mechanisms. J Mol Cell Cardiol 52:93–104

    Article  CAS  PubMed  Google Scholar 

  10. Wang Q, Sun AY, Simonyi A, Kalogeris TJ, Miller DK, Sun GY, Korthuis RJ (2007) Ethanol preconditioning protects against ischemia/reperfusion-induced brain damage: role of NADPH oxidase-derived ROS. Free Radic Biol Med 43:1048–1060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wang Q, Kalogeris TJ, Wang M, Jones AW, Korthuis RJ (2010) Antecedent ethanol attenuates cerebral ischemia/reperfusion-induced leukocyte-endothelial adhesive interactions and delayed neuronal death: role of large conductance, Ca2+-activated K+ channels. Microcirculation (New York, NY: 1994) 17:427–438

    CAS  Google Scholar 

  12. Szteyn K, Singh H (2020) BKCa channels as targets for cardioprotection. Antioxidants 9:760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Diniz AFA, Ferreira RC, de Souza ILL, da Silva BA (2020) Ionic channels as potential therapeutic targets for erectile dysfunction: a review. Front Pharmacol 11:1120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Al-Karagholi MA, Gram C, Nielsen CAW, Ashina M (2020) Targeting BKCa channels in migraine: rationale and perspectives. CNS Drugs 34:325–335

    Article  CAS  PubMed  Google Scholar 

  15. Li L, Li S, Hu C, Zhou L, Zhang Y, Wang M, Qi Z (2019) BKCa channel is a molecular target of vitamin C to protect against ischemic brain stroke. Mol Membr Biol 35:9–20

    Article  CAS  PubMed  Google Scholar 

  16. Su F, Guo AC, Li WW, Zhao YL, Qu ZY, Wang YJ, Wang Q, Zhu YL (2017) Low-dose ethanol preconditioning protects against oxygen-glucose deprivation/reoxygenation-induced neuronal injury by activating large conductance, Ca(2+)-Activated K(+) channels in vitro. Neurosci Bull 33:28–40

    Article  CAS  PubMed  Google Scholar 

  17. Su F, Yang H, Guo A, Qu Z, Wu J, Wang Q (2021) Mitochondrial BKCa mediates the protective effect of low-dose ethanol preconditioning on oxygen-glucose deprivation and reperfusion-induced neuronal apoptosis. Front Physiol 12:719753

    Article  PubMed  PubMed Central  Google Scholar 

  18. Shi YH, Zhang XL, Ying PJ, Wu ZQ, Lin LL, Chen W, Zheng GQ, Zhu WZ (2021) Neuroprotective effect of astragaloside IV on cerebral ischemia/reperfusion injury rats through SIRT1/MAPT pathway. Front Pharmacol 12:639898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Fu DL, Li JH, Shi YH, Zhang XL, Lin Y, Zheng GQ (2020) Sanhua decoction, a classic herbal prescription, exerts neuroprotection through regulating phosphorylated tau level and promoting adult endogenous neurogenesis after cerebral ischemia/reperfusion injury. Front Physiol 11:57

    Article  PubMed  PubMed Central  Google Scholar 

  20. Wakle-Prabagaran M, Lorca RA, Ma X, Stamnes SJ, Amazu C, Hsiao JJ, Karch CM, Hyrc KL, Wright ME, England SK (2016) BKCa channel regulates calcium oscillations induced by alpha-2-macroglobulin in human myometrial smooth muscle cells. Proc Natl Acad Sci USA 113:E2335-2344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhou Y, Xia XM, Lingle CJ (2020) The functionally relevant site for paxilline inhibition of BK channels. Proc Natl Acad Sci USA 117:1021–1026

    Article  CAS  PubMed  Google Scholar 

  22. Yamaguchi T, Dayton C, Shigematsu T, Carter P, Yoshikawa T, Gute DC, Korthuis RJ (2002) Preconditioning with ethanol prevents postischemic leukocyte-endothelial cell adhesive interactions. Am J Physiol Heart Circ Physiol 283:H1019-1030

    Article  CAS  PubMed  Google Scholar 

  23. Mostofsky E, Bertisch SM, Vgontzas A, Buettner C, Li W, Rueschman M, Mittleman MA (2020) Prospective cohort study of daily alcoholic beverage intake as a potential trigger of headaches among adults with episodic migraine. Ann Med 52:386–392

    Article  PubMed  PubMed Central  Google Scholar 

  24. Whitman IR, Agarwal V, Nah G, Dukes JW, Vittinghoff E, Dewland TA, Marcus GM (2017) Alcohol abuse and cardiac disease. J Am Coll Cardiol 69:13–24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Esser MB, Sacks JJ, Sherk A, Karriker-Jaffe KJ, Greenfield TK, Pierannunzi C, Brewer RD (2020) Distribution of drinks consumed by U.S. adults by average daily alcohol consumption: a comparison of 2 Nationwide Surveys. Am J Prev Med 59:669–677

    Article  PubMed  PubMed Central  Google Scholar 

  26. Sun M, Zhao Y, Gu Y, Xu C (2012) Anti-inflammatory mechanism of taurine against ischemic stroke is related to down-regulation of PARP and NF-κB. Amino Acids 42:1735–1747

    Article  CAS  PubMed  Google Scholar 

  27. Bederson JB, Pitts LH, Tsuji M, Nishimura MC, Davis RL, Bartkowski H (1986) Rat middle cerebral artery occlusion: evaluation of the model and development of a neurologic examination. Stroke 17:472–476

    Article  CAS  PubMed  Google Scholar 

  28. Chen J, Sanberg PR, Li Y, Wang L, Lu M, Willing AE, Sanchez-Ramos J, Chopp M (2001) Intravenous administration of human umbilical cord blood reduces behavioral deficits after stroke in rats. Stroke 32:2682–2688

    Article  CAS  PubMed  Google Scholar 

  29. Ashwal S, Tone B, Tian HR, Cole DJ, Pearce WJ (1998) Core and penumbral nitric oxide synthase activity during cerebral ischemia and reperfusion. Stroke 29:1037–1046

    Article  CAS  PubMed  Google Scholar 

  30. Liu P, Zhao H, Wang R, Wang P, Tao Z, Gao L, Yan F, Liu X, Yu S, Ji X, Luo Y (2015) MicroRNA-424 protects against focal cerebral ischemia and reperfusion injury in mice by suppressing oxidative stress. Stroke 46:513–519

    Article  CAS  PubMed  Google Scholar 

  31. de la Monte SM, Kril JJ (2014) Human alcohol-related neuropathology. Acta Neuropathol 127:71–90

    Article  PubMed  Google Scholar 

  32. Collins MA, Neafsey EJ, Mukamal KJ, Gray MO, Parks DA, Das DK, Korthuis RJ (2009) Alcohol in moderation, cardioprotection, and neuroprotection: epidemiological considerations and mechanistic studies. Alcohol Clin Exp Res 33:206–219

    Article  CAS  PubMed  Google Scholar 

  33. Ma ZW, Feng XB, Zheng SG, Bie P, Wang SG, Li K, Zhang YJ, Dong JH (2011) Ethanol preconditioning reduces hepatic I/R injury by inhibiting the complement system activation. J Surg Res 166:314–323

    Article  CAS  PubMed  Google Scholar 

  34. Le Dare B, Lagente V, Gicquel T (2019) Ethanol and its metabolites: update on toxicity, benefits, and focus on immunomodulatory effects. Drug Metab Rev 51:545–561

    Article  PubMed  Google Scholar 

  35. Ivester P, Shively CA, Register TC, Grant KA, Reboussin DM, Cunningham CC (2003) The effects of moderate ethanol consumption on the liver of the monkey, Macaca fascicularis. Alcohol Clin Exp Res 27:1831–1837

    Article  CAS  PubMed  Google Scholar 

  36. Latorre R, Castillo K, Carrasquel-Ursulaez W, Sepulveda RV, Gonzalez-Nilo F, Gonzalez C, Alvarez O (2017) Molecular determinants of BK channel functional diversity and functioning. Physiol Rev 97:39–87

    Article  PubMed  Google Scholar 

  37. Cowmeadow RB, Krishnan HR, Ghezzi A, Al’Hasan YM, Wang YZ, Atkinson NS (2006) Ethanol tolerance caused by slowpoke induction in Drosophila. Alcohol Clin Exp Res 30:745–753

    Article  CAS  PubMed  Google Scholar 

  38. N’Gouemo P, Morad M (2014) Alcohol withdrawal is associated with a downregulation of large-conductance Ca(2)(+)-activated K(+) channels in rat inferior colliculus neurons. Psychopharmacology 231:2009–2018

    Article  CAS  PubMed  Google Scholar 

  39. Nestler EJ (2001) Molecular basis of long-term plasticity underlying addiction. Nat Rev Neurosci 2:119–128

    Article  CAS  PubMed  Google Scholar 

  40. Asmaro K, Fu P, Ding Y (2013) Neuroprotection & mechanism of ethanol in stroke and traumatic brain injury therapy: new prospects for an ancient drug. Curr Drug Targets 14:74–80

    Article  CAS  PubMed  Google Scholar 

  41. Qi SH, Liu Y, Hao LY, Guan QH, Gu YH, Zhang J, Yan H, Wang M, Zhang GY (2010) Neuroprotection of ethanol against ischemia/reperfusion-induced brain injury through decreasing c-Jun N-terminal kinase 3 (JNK3) activation by enhancing GABA release. Neuroscience 167:1125–1137

    Article  CAS  PubMed  Google Scholar 

  42. Qi SH, Liu Y, Wang WW, Wang M, Zhang GY (2009) Neuroprotection of ethanol against cerebral ischemia/reperfusion induced brain injury through GABA receptor activation. Brain Res 1276:151–158

    Article  CAS  PubMed  Google Scholar 

  43. Collins MA, Neafsey EJ, Wang K, Achille NJ, Mitchell RM, Sivaswamy S (2010) Moderate ethanol preconditioning of rat brain cultures engenders neuroprotection against dementia-inducing neuroinflammatory proteins: possible signaling mechanisms. Mol Neurobiol 41:420–425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sivaswamy S, Neafsey EJ, Collins MA (2010) Neuroprotective preconditioning of rat brain cultures with ethanol: potential transduction by PKC isoforms and focal adhesion kinase upstream of increases in effector heat shock proteins. Eur J Neurosci 32:1800–1812

    Article  PubMed  Google Scholar 

  45. Fang X, Li Y, Zheng Y, Wang Y, Feng S, Miao M (2020) Ethanol extracts from Ilex pubescens promotes cerebral ischemic tolerance via modulation of TLR4-MyD88/TRIF signaling pathway in rats. J Ethnopharmacol 256:112680

    Article  CAS  PubMed  Google Scholar 

  46. Chi S, Cai W, Liu P, Zhang Z, Chen X, Gao L, Qi J, Bi L, Chen L, Qi Z (2010) Baifuzi reduces transient ischemic brain damage through an interaction with the STREX domain of BKCa channels. Cell Death Dis 1:e13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Liao Y, Kristiansen AM, Oksvold CP, Tuvnes FA, Gu N, Runden-Pran E, Ruth P, Sausbier M, Storm JF (2010) Neuronal Ca2+-activated K+ channels limit brain infarction and promote survival. PLoS ONE 5:e15601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Sun M, Gu Y, Zhao Y, Xu C (2011) Protective functions of taurine against experimental stroke through depressing mitochondria-mediated cell death in rats. Amino Acids 40:1419–1429

    Article  CAS  PubMed  Google Scholar 

  49. Resnik E, Herron J, Fu R, Ivy DD, Cornfield DN (2006) Oxygen tension modulates the expression of pulmonary vascular BKCa channel alpha-and beta-subunits. Am J Physiol Lung Cell Mol Physiol 290:L761–L768

    Article  CAS  PubMed  Google Scholar 

  50. Ye X, Shen T, Hu J, Zhang L, Zhang Y, Bao L, Cui C, Jin G, Zan K, Zhang Z, Yang X, Shi H, Zu J, Yu M, Song C, Wang Y, Qi S, Cui G (2017) Purinergic 2X7 receptor/NLRP3 pathway triggers neuronal apoptosis after ischemic stroke in the mouse. Exp Neurol 292:46–55

    Article  CAS  PubMed  Google Scholar 

  51. Wang Q, Sun AY, Simonyi A, Jensen MD, Shelat PB, Rottinghaus GE, MacDonald RS, Miller DK, Lubahn DE, Weisman GA, Sun GY (2005) Neuroprotective mechanisms of curcumin against cerebral ischemia-induced neuronal apoptosis and behavioral deficits. J Neurosci Res 82:138–148

    Article  CAS  PubMed  Google Scholar 

  52. Huang Y, Wang J, Cai J, Qiu Y, Zheng H, Lai X, Sui X, Wang Y, Lu Q, Zhang Y, Yuan M, Gong J, Cai W, Liu X, Shan Y, Deng Z, Shi Y, Shu Y, Zhang L, Qiu W, Peng L, Ren J, Lu Z, Xiang AP (2018) Targeted homing of CCR2-overexpressing mesenchymal stromal cells to ischemic brain enhances post-stroke recovery partially through PRDX4-mediated blood–brain barrier preservation. Theranostics 8:5929–5944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Sakai Y, Sokolowski B (2015) The large conductance calcium-activated potassium channel affects extrinsic and intrinsic mechanisms of apoptosis. J Neurosci Res 93:745–754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Douglas RM, Lai JC, Bian S, Cummins L, Moczydlowski E, Haddad GG (2006) The calcium-sensitive large-conductance potassium channel (BK/MAXI K) is present in the inner mitochondrial membrane of rat brain. Neuroscience 139:1249–1261

    Article  CAS  PubMed  Google Scholar 

  55. Cheng Y, Gu XQ, Bednarczyk P, Wiedemann FR, Haddad GG, Siemen D (2008) Hypoxia increases activity of the BK-channel in the inner mitochondrial membrane and reduces activity of the permeability transition pore. Cell Physiol Biochem 22:127–136

    Article  CAS  PubMed  Google Scholar 

  56. Zhang H, Xie M, Schools GP, Feustel PF, Wang W, Lei T, Kimelberg HK, Zhou M (2009) Tamoxifen mediated estrogen receptor activation protects against early impairment of hippocampal neuron excitability in an oxygen/glucose deprivation brain slice ischemia model. Brain Res 1247:196–211

    Article  CAS  PubMed  Google Scholar 

  57. Zhu JJ, Xiang C, Wu SH, Jiang TT, Zhou JY, Li XQ, Wu XJ, Yan Y (2019) Identification of molecular mechanism underlying therapeutic effect of tanshinone IIA in the treatment of hypoxic vestibular vertigo via the NO/cGMP/BKCa signaling pathway. Am J Transl Res 11:4203–4213

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Walewska A, Szewczyk A, Koprowski P (2018) Gas signaling molecules and mitochondrial potassium channels. Int J Mol Sci 19:3227

    Article  PubMed  PubMed Central  Google Scholar 

  59. Augustynek B, Kunz WS, Szewczyk A (2017) Guide to the pharmacology of mitochondrial potassium channels. Handb Exp Pharmacol 240:103–127

    Article  CAS  PubMed  Google Scholar 

  60. Chmielewska L, Malinska D (2011) Cytoprotective action of the potassium channel opener NS1619 under conditions of disrupted calcium homeostasis. Pharmacol Rep PR 63:176–183

    Article  CAS  PubMed  Google Scholar 

  61. Augustynek B, Kudin AP, Bednarczyk P, Szewczyk A, Kunz WS (2014) Hemin inhibits the large conductance potassium channel in brain mitochondria: a putative novel mechanism of neurodegeneration. Exp Neurol 257:70–75

    Article  CAS  PubMed  Google Scholar 

  62. Borchert GH, Hlavackova M, Kolar F (2013) Pharmacological activation of mitochondrial BK(Ca) channels protects isolated cardiomyocytes against simulated reperfusion-induced injury. Exp Biol Med 238:233–241

    Article  CAS  Google Scholar 

  63. Piwonska M, Szewczyk A, Schroder UH, Reymann KG, Bednarczyk I (2016) Effectors of large-conductance calcium-activated potassium channel modulate glutamate excitotoxicity in organotypic hippocampal slice cultures. Acta Neurobiol Exp 76:20–31

    Article  Google Scholar 

Download references

Acknowledgements

We thank the Department of Neuropharmacology of Beijing Neurosurgical Institute for technical assistance.

Funding

This study was supported by the National Key R&D Program of China 2017YFC1307500, Beijing-Tianjin-Hebei Cooperative Basic Research Program H2018206435, the National Natural Science Foundation of China (81801280 and 81601126).

Author information

Authors and Affiliations

Authors

Contributions

QW designed the study and revised the manuscript. YZ carried out experiments, collected the data, accomplished statistical analysis and drafted the manuscript. HY and WS contributed reagents/materials analysis tools. AG revised the manuscript for important intellectual content. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Qun Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

The animal study was reviewed and approved by The Ethics Committee of the Beijing Tiantan Hospital of Capital Medical University.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Yang, H., Shan, W. et al. Moderate Ethanol-Preconditioning Offers Ischemic Tolerance Against Focal Cerebral Ischemic/Reperfusion: Role of Large Conductance Calcium-Activated Potassium Channel. Neurochem Res 47, 3647–3658 (2022). https://doi.org/10.1007/s11064-022-03661-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-022-03661-6

Keywords

Navigation