Skip to main content

Advertisement

Log in

Estrogen Up-Regulates Iron Transporters and Iron Storage Protein Through Hypoxia Inducible Factor 1 Alpha Activation Mediated by Estrogen Receptor β and G Protein Estrogen Receptor in BV2 Microglia Cells

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Estrogen is a steroid hormone produced mainly by the ovaries. It has been found that estrogen could regulate iron metabolism in neurons and astrocytes in different ways. The role of estrogen on iron metabolism in microglia is currently unknown. In this study, we investigated the effect and mechanism of 17β-estrogen (E2) on iron transport proteins. We found that following E2 treatment for 24h in BV2 microglial cell lines, the iron importer divalent metal transporter 1 (DMT1) and iron exporter ferroportin 1 (FPN1) were up-regulated , iron storage protein ferritin (FT) was increased. The protein levels of iron regulatory proteins (IRPs) and hepcidin remained unchanged, but hypoxia inducible factor 1 alpha (HIF-1α) was up-regulated. Two kinds of estrogen receptor β (ERβ) antagonist G15 and G protein estrogen receptor (GPER) antagonist PHTPPcould block the effects of E2 in BV2 microglial cell lines. These results suggest that estrogen could increase the protein expressions of DMT1, FPN1, FT-L and FT-H in BV2 microglia cells, which were not related to the regulation of IRP1 and hepcidin, but to the upregulation of HIF-1α. In addition, estrogen might regulate the expressions of iron-related proteins through both ER β and GPER in BV2 microglia cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Enquiries about data availability should be directed to the authors.

References

  1. Sheftel A, Stehling O, Lill R (2010) Iron-sulfur proteins in health and disease. Trends Endocrinol Metab 21:302–314

    Article  PubMed  CAS  Google Scholar 

  2. Gozzelino R, Jeney V, Soares MP (2010) Mechanisms of cell protection by heme oxygenase-1. Annu Rev Pharmacol Toxicol 50:323–354

    Article  PubMed  CAS  Google Scholar 

  3. Evstatiev R, Gasche C (2012) Iron sensing and signalling. Gut 61:933–952

    Article  PubMed  CAS  Google Scholar 

  4. Donovan A, Brownlie A, Zhou Y, Shepard J, Pratt SJ, Moynihan J, Paw BH, Drejer A, Barut B, Zapata A, Law TC, Brugnara C, Lux SE, Pinkus GS, Pinkus JL, Kingsley PD, Palis J, Fleming MD, Andrews NC, Zon LI (2000) Positional cloning of zebrafish ferroportin1 identifies a conserved vertebrate iron exporter. Nature 403:776–781

    Article  PubMed  CAS  Google Scholar 

  5. Le NT, Richardson DR (2002) Ferroportin1: a new iron export molecule? Int J Biochem Cell Biol 34:103–108

    Article  PubMed  CAS  Google Scholar 

  6. Belaidi AA, Bush AI (2016) Iron neurochemistry in Alzheimer’s disease and Parkinson’s disease: targets for therapeutics. J Neurochem 139(Suppl 1):179–197

    Article  PubMed  CAS  Google Scholar 

  7. Daher R, Karim Z (2017) Iron metabolism: state of the art. Transfus Clin Biol 24:115–119

    Article  PubMed  CAS  Google Scholar 

  8. Brasse-Lagnel C, Karim Z, Letteron P, Bekri S, Bado A, Beaumont C (2011) Intestinal DMT1 cotransporter is down-regulated by hepcidin via proteasome internalization and degradation. Gastroenterology 140(1261–1271):e1261

    Article  Google Scholar 

  9. Moulouel B, Houamel D, Delaby C, Tchernitchko D, Vaulont S, Letteron P, Thibaudeau O, Puy H, Gouya L, Beaumont C, Karim Z (2013) Hepcidin regulates intrarenal iron handling at the distal nephron. Kidney Int 84:756–766

    Article  PubMed  CAS  Google Scholar 

  10. Drakesmith H, Nemeth E, Ganz T (2015) Ironing out ferroportin. Cell Metab 22:777–787

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Peyssonnaux C, Zinkernagel AS, Schuepbach RA, Rankin E, Vaulont S, Haase VH, Nizet V, Johnson RS (2007) Regulation of iron homeostasis by the hypoxia-inducible transcription factors (HIFs). J Clin Invest 117:1926–1932

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Yang L, Wang D, Wang XT, Lu YP, Zhu L (2018) The roles of hypoxia-inducible factor-1 and iron regulatory protein 1 in iron uptake induced by acute hypoxia. Biochem Biophys Res Commun 507:128–135

    Article  PubMed  CAS  Google Scholar 

  13. Kell DB (2010) Towards a unifying, systems biology understanding of large-scale cellular death and destruction caused by poorly liganded iron: Parkinson’s, Huntington’s, Alzheimer’s, prions, bactericides, chemical toxicology and others as examples. Arch Toxicol 84:825–889

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Kumar H, Lim HW, More SV, Kim BW, Koppula S, Kim IS, Choi DK (2012) The role of free radicals in the aging brain and Parkinson’s disease: convergence and parallelism. Int J Mol Sci 13:10478–10504

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Rosas HD, Chen YI, Doros G, Salat DH, Chen NK, Kwong KK, Bush A, Fox J, Hersch SM (2012) Alterations in brain transition metals in Huntington disease: an evolving and intricate story. Arch Neurol 69:887–893

    Article  PubMed  PubMed Central  Google Scholar 

  16. Ropele S, de Graaf W, Khalil M, Wattjes MP, Langkammer C, Rocca MA, Rovira A, Palace J, Barkhof F, Filippi M, Fazekas F (2011) MRI assessment of iron deposition in multiple sclerosis. J Magn Reson Imaging 34:13–21

    Article  PubMed  Google Scholar 

  17. Farina M, Avila DS, da Rocha JB, Aschner M (2013) Metals, oxidative stress and neurodegeneration: a focus on iron, manganese and mercury. Neurochem Int 62:575–594

    Article  PubMed  CAS  Google Scholar 

  18. Schipper HM (2012) Neurodegeneration with brain iron accumulation—clinical syndromes and neuroimaging. Biochim Biophys Acta 1822:350–360

    Article  PubMed  CAS  Google Scholar 

  19. Akinloye O, Adebayo TO, Oguntibeju OO, Oparinde DP, Ogunyemi EO (2011) Effects of contraceptives on serum trace elements, calcium and phosphorus levels. West Indian Med J 60:308–315

    PubMed  CAS  Google Scholar 

  20. Baldereschi M, Di Carlo A, Rocca WA, Vanni P, Maggi S, Perissinotto E, Grigoletto F, Amaducci L, Inzitari D (2000) Parkinson’s disease and parkinsonism in a longitudinal study: two-fold higher incidence in men. ILSA Working Group. Italian Longitudinal Study on Aging. Neurology 55:1358–1363

    Article  PubMed  CAS  Google Scholar 

  21. Czlonkowska A, Ciesielska A, Gromadzka G, Kurkowska-Jastrzebska I (2006) Gender differences in neurological disease: role of estrogens and cytokines. Endocrine 29:243–256

    Article  PubMed  CAS  Google Scholar 

  22. Jian J, Pelle E, Huang X (2009) Iron and menopause: does increased iron affect the health of postmenopausal women? Antioxid Redox Signal 11:2939–2943

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Yang Q, Jian J, Katz S, Abramson SB, Huang X (2012) 17beta-estradiol inhibits iron hormone hepcidin through an estrogen responsive element half-site. Endocrinology 153:3170–3178

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Benedetti MD, Maraganore DM, Bower JH, McDonnell SK, Peterson BJ, Ahlskog JE, Schaid DJ, Rocca WA (2001) Hysterectomy, menopause, and estrogen use preceding Parkinson’s disease: an exploratory case-control study. Mov Disord 16:830–837

    Article  PubMed  CAS  Google Scholar 

  25. Marder K, Tang MX, Alfaro B, Mejia H, Cote L, Jacobs D, Stern Y, Sano M, Mayeux R (1998) Postmenopausal estrogen use and Parkinson’s disease with and without dementia. Neurology 50:1141–1143

    Article  PubMed  CAS  Google Scholar 

  26. Liu X, Fan XL, Zhao Y, Luo GR, Li XP, Li R, Le WD (2005) Estrogen provides neuroprotection against activated microglia-induced dopaminergic neuronal injury through both estrogen receptor-alpha and estrogen receptor-beta in microglia. J Neurosci Res 81:653–665

    Article  PubMed  CAS  Google Scholar 

  27. Chen B, Li GF, Shen Y, Huang XI, Xu YJ (2015) Reducing iron accumulation: a potential approach for the prevention and treatment of postmenopausal osteoporosis. Exp Ther Med 10:7–11

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Huang X, Xu Y, Partridge NC (2013) Dancing with sex hormones, could iron contribute to the gender difference in osteoporosis? Bone 55:458–460

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Hou Y, Zhang S, Wang L, Li J, Qu G, He J, Rong H, Ji H, Liu S (2012) Estrogen regulates iron homeostasis through governing hepatic hepcidin expression via an estrogen response element. Gene 511:398–403

    Article  PubMed  CAS  Google Scholar 

  30. Abboud S, Haile DJ (2000) A novel mammalian iron-regulated protein involved in intracellular iron metabolism. J Biol Chem 275:19906–19912

    Article  PubMed  CAS  Google Scholar 

  31. Zhang Y, Xiao X, Zhang XM, Zhao ZQ, Zhang YQ (2012) Estrogen facilitates spinal cord synaptic transmission via membrane-bound estrogen receptors: implications for pain hypersensitivity. J Biol Chem 287:33268–33281

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Al-Sweidi S, Morissette M, Bourque M, Di Paolo T (2011) Estrogen receptors and gonadal steroids in vulnerability and protection of dopamine neurons in a mouse model of Parkinson’s disease. Neuropharmacology 61:583–591

    Article  PubMed  CAS  Google Scholar 

  33. Tiwari-Woodruff S, Morales LB, Lee R, Voskuhl RR (2007) Differential neuroprotective and antiinflammatory effects of estrogen receptor (ER)alpha and ERbeta ligand treatment. Proc Natl Acad Sci USA 104:14813–14818

    Article  PubMed  PubMed Central  Google Scholar 

  34. Carswell HV, Macrae IM, Gallagher L, Harrop E, Horsburgh KJ (2004) Neuroprotection by a selective estrogen receptor beta agonist in a mouse model of global ischemia. Am J Physiol Heart Circ Physiol 287:H1501-1504

    Article  PubMed  CAS  Google Scholar 

  35. Baker AE, Brautigam VM, Watters JJ (2004) Estrogen modulates microglial inflammatory mediator production via interactions with estrogen receptor beta. Endocrinology 145:5021–5032

    Article  PubMed  CAS  Google Scholar 

  36. Cote M, Bourque M, Poirier AA, Aube B, Morissette M, Di Paolo T, Soulet D (2015) GPER1-mediated immunomodulation and neuroprotection in the myenteric plexus of a mouse model of Parkinson’s disease. Neurobiol Dis 82:99–113

    Article  PubMed  CAS  Google Scholar 

  37. Bourque M, Morissette M, Cote M, Soulet D, Di Paolo T (2013) Implication of GPER1 in neuroprotection in a mouse model of Parkinson’s disease. Neurobiol Aging 34:887–901

    Article  PubMed  CAS  Google Scholar 

  38. Guan J, Yang B, Fan Y, Zhang J (2017) GPER agonist G1 attenuates neuroinflammation and dopaminergic neurodegeneration in Parkinson disease. NeuroimmunoModulation 24:60–66

    Article  PubMed  CAS  Google Scholar 

  39. Xu M, Tan X, Li N, Wu H, Wang Y, Xie J, Wang J (2019) Differential regulation of estrogen in iron metabolism in astrocytes and neurons. J Cell Physiol 234:4232–4242

    Article  PubMed  CAS  Google Scholar 

  40. Salazar J, Mena N, Hunot S, Prigent A, Alvarez-Fischer D, Arredondo M, Duyckaerts C, Sazdovitch V, Zhao L, Garrick LM, Nunez MT, Garrick MD, Raisman-Vozari R, Hirsch EC (2008) Divalent metal transporter 1 (DMT1) contributes to neurodegeneration in animal models of Parkinson’s disease. Proc Natl Acad Sci USA 105:18578–18583

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. McKie AT, Marciani P, Rolfs A, Brennan K, Wehr K, Barrow D, Miret S, Bomford A, Peters TJ, Farzaneh F, Hediger MA, Hentze MW, Simpson RJ (2000) A novel duodenal iron-regulated transporter, IREG1, implicated in the basolateral transfer of iron to the circulation. Mol Cell 5:299–309

    Article  PubMed  CAS  Google Scholar 

  42. Jellinger K, Kienzl E, Rumpelmair G, Riederer P, Stachelberger H, Ben-Shachar D, Youdim MB (1992) Iron-melanin complex in substantia nigra of parkinsonian brains: an x-ray microanalysis. J Neurochem 59:1168–1171

    Article  PubMed  CAS  Google Scholar 

  43. Christova T, Templeton DM (2007) Effect of hypoxia on the binding and subcellular distribution of iron regulatory proteins. Mol Cell Biochem 301:21–32

    Article  PubMed  CAS  Google Scholar 

  44. Gunshin H, Allerson CR, Polycarpou-Schwarz M, Rofts A, Rogers JT, Kishi F, Hentze MW, Rouault TA, Andrews NC, Hediger MA (2001) Iron-dependent regulation of the divalent metal ion transporter. FEBS Lett 509:309–316

    Article  PubMed  CAS  Google Scholar 

  45. Bergamaschi G, Di Sabatino A, Pasini A, Ubezio C, Costanzo F, Grataroli D, Masotti M, Alvisi C, Corazza GR (2017) Intestinal expression of genes implicated in iron absorption and their regulation by hepcidin. Clin Nutr 36:1427–1433

    Article  PubMed  CAS  Google Scholar 

  46. Kaur D, Rajagopalan S, Andersen JK (2009) Chronic expression of H-ferritin in dopaminergic midbrain neurons results in an age-related expansion of the labile iron pool and subsequent neurodegeneration: implications for Parkinson’s disease. Brain Res 1297:17–22

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Arosio P, Levi S (2002) Ferritin, iron homeostasis, and oxidative damage. Free Radic Biol Med 33:457–463

    Article  PubMed  CAS  Google Scholar 

  48. Hemmati-Dinarvand M, Taher-Aghdam AA, Mota A, Zununi Vahed S, Samadi N (2017) Dysregulation of serum NADPH oxidase1 and ferritin levels provides insights into diagnosis of Parkinson’s disease. Clin Biochem 50:1087–1092

    Article  PubMed  CAS  Google Scholar 

  49. Saczko J, Michel O, Chwilkowska A, Sawicka E, Maczynska J, Kulbacka J (2017) Estrogen receptors in cell membranes: regulation and signaling. Adv Anat Embryol Cell Biol 227:93–105

    Article  PubMed  Google Scholar 

  50. Bains M, Cousins JC, Roberts JL (2007) Neuroprotection by estrogen against MPP+-induced dopamine neuron death is mediated by ERalpha in primary cultures of mouse mesencephalon. Exp Neurol 204:767–776

    Article  PubMed  CAS  Google Scholar 

  51. Spence RD, Wisdom AJ, Cao Y, Hill HM, Mongerson CR, Stapornkul B, Itoh N, Sofroniew MV, Voskuhl RR (2013) Estrogen mediates neuroprotection and anti-inflammatory effects during EAE through ERalpha signaling on astrocytes but not through ERbeta signaling on astrocytes or neurons. J Neurosci 33:10924–10933

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Brendel A, Felzen V, Morawe T, Manthey D, Behl C (2013) Differential regulation of apoptosis-associated genes by estrogen receptor alpha in human neuroblastoma cells. Restor Neurol Neurosci 31:199–211

    PubMed  CAS  Google Scholar 

  53. Wu WF, Tan XJ, Dai YB, Krishnan V, Warner M, Gustafsson JA (2013) Targeting estrogen receptor beta in microglia and T cells to treat experimental autoimmune encephalomyelitis. Proc Natl Acad Sci USA 110:3543–3548

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Merchenthaler I, Lane MV, Numan S, Dellovade TL (2004) Distribution of estrogen receptor alpha and beta in the mouse central nervous system: in vivo autoradiographic and immunocytochemical analyses. J Comp Neurol 473:270–291

    Article  PubMed  CAS  Google Scholar 

  55. Mitra SW, Hoskin E, Yudkovitz J, Pear L, Wilkinson HA, Hayashi S, Pfaff DW, Ogawa S, Rohrer SP, Schaeffer JM, McEwen BS, Alves SE (2003) Immunolocalization of estrogen receptor beta in the mouse brain: comparison with estrogen receptor alpha. Endocrinology 144:2055–2067

    Article  PubMed  CAS  Google Scholar 

  56. Garaschuk O, Verkhratsky A (2019) Physiology of microglia. Methods Mol Biol 2034:27–40

    Article  PubMed  CAS  Google Scholar 

  57. Tapia-Gonzalez S, Carrero P, Pernia O, Garcia-Segura LM, Diz-Chaves Y (2008) Selective oestrogen receptor (ER) modulators reduce microglia reactivity in vivo after peripheral inflammation: potential role of microglial ERs. J Endocrinol 198:219–230

    Article  PubMed  CAS  Google Scholar 

  58. Dubal DB, Rau SW, Shughrue PJ, Zhu H, Yu J, Cashion AB, Suzuki S, Gerhold LM, Bottner MB, Dubal SB, Merchanthaler I, Kindy MS, Wise PM (2006) Differential modulation of estrogen receptors (ERs) in ischemic brain injury: a role for ERalpha in estradiol-mediated protection against delayed cell death. Endocrinology 147:3076–3084

    Article  PubMed  CAS  Google Scholar 

  59. Harris HA, Albert LM, Leathurby Y, Malamas MS, Mewshaw RE, Miller CP, Kharode YP, Marzolf J, Komm BS, Winneker RC, Frail DE, Henderson RA, Zhu Y, Keith JC Jr (2003) Evaluation of an estrogen receptor-beta agonist in animal models of human disease. Endocrinology 144:4241–4249

    Article  PubMed  CAS  Google Scholar 

  60. Harris HA (2007) Estrogen receptor-beta: recent lessons from in vivo studies. Mol Endocrinol 21:1–13

    Article  PubMed  CAS  Google Scholar 

  61. Prossnitz ER, Barton M (2014) Estrogen biology: new insights into GPER function and clinical opportunities. Mol Cell Endocrinol 389:71–83

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Hazell GG, Yao ST, Roper JA, Prossnitz ER, O’Carroll AM, Lolait SJ (2009) Localisation of GPR30, a novel G protein-coupled oestrogen receptor, suggests multiple functions in rodent brain and peripheral tissues. J Endocrinol 202:223–236

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Lu CL, Herndon C (2017) New roles for neuronal estrogen receptors. Neurogastroenterol Motil 29:e13121

    Article  Google Scholar 

  64. Bessa A, Campos FL, Videira RA, Mendes-Oliveira J, Bessa-Neto D, Baltazar G (2015) GPER: a new tool to protect dopaminergic neurons? Biochim Biophys Acta 1852:2035–2041

    Article  PubMed  CAS  Google Scholar 

  65. Blesa J, Przedborski S (2014) Parkinson’s disease: animal models and dopaminergic cell vulnerability. Front Neuroanat 8:155

    Article  PubMed  PubMed Central  Google Scholar 

  66. Dennis MK, Burai R, Ramesh C, Petrie WK, Alcon SN, Nayak TK, Bologa CG, Leitao A, Brailoiu E, Deliu E, Dun NJ, Sklar LA, Hathaway HJ, Arterburn JB, Oprea TI, Prossnitz ER (2009) In vivo effects of a GPR30 antagonist. Nat Chem Biol 5:421–427

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Bologa CG, Revankar CM, Young SM, Edwards BS, Arterburn JB, Kiselyov AS, Parker MA, Tkachenko SE, Savchuck NP, Sklar LA, Oprea TI, Prossnitz ER (2006) Virtual and biomolecular screening converge on a selective agonist for GPR30. Nat Chem Biol 2:207–212

    Article  PubMed  CAS  Google Scholar 

  68. Camaschella C, Nai A, Silvestri L (2020) Iron metabolism and iron disorders revisited in the hepcidin era. Haematologica 105:260–272

    Article  PubMed  PubMed Central  Google Scholar 

  69. Hsu I, Chuang KL, Slavin S, Da J, Lim WX, Pang ST, O’Brien JH, Yeh S (2014) Suppression of ERbeta signaling via ERbeta knockout or antagonist protects against bladder cancer development. Carcinogenesis 35:651–661

    Article  PubMed  CAS  Google Scholar 

  70. Compton DR, Sheng S, Carlson KE, Rebacz NA, Lee IY, Katzenellenbogen BS, Katzenellenbogen JA (2004) Pyrazolo [1, 5-a] pyrimidines: estrogen receptor ligands possessing estrogen receptor beta antagonist activity. J Med Chem 47:5872–5893

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

National Natural Science Foundation of China, 31571054, Jun Wang, 31771124, Junxia Xie; Shandong Provincial Key Research and Development Project, 2019GSF108224, Jun Wang; Natural Science Foundation of Shandong Province, ZR2021MC116, Jun Wang.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Junxia Xie or Jun Wang.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qu, Y., Li, N., Xu, M. et al. Estrogen Up-Regulates Iron Transporters and Iron Storage Protein Through Hypoxia Inducible Factor 1 Alpha Activation Mediated by Estrogen Receptor β and G Protein Estrogen Receptor in BV2 Microglia Cells. Neurochem Res 47, 3659–3669 (2022). https://doi.org/10.1007/s11064-022-03658-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-022-03658-1

Keywords

Navigation