Skip to main content
Log in

Advances in Hydrogel-Based Drug Delivery Systems for Parkinson's Disease

  • Review
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Parkinson’s disease (PD) is a common central nervous system disorder (CNS) characterized by cell loss in the substantia nigra. Severe loss of dopaminergic neurons and Lewy body formation with α-synuclein inclusions are the main neuropathological features of PD. There’s currently no cure for PD, but treatments are available to help relieve the symptoms and maintain quality of life. However, the variety of clinically available therapeutic molecules is mainly limited to treating symptoms rather than halting or reversing disease progression via medical interventions. As an emerging drug carrier, hydrogels loaded with therapeutic agents and cells are attracting attention as an alternative and potentially more effective approach to managing PD. The current work highlights applications of hydrogel-based biomaterials in cell culture and disease modeling as carriers for cells, medicines, and proteins as PD therapeutic models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Adapted from Ref. [19]

Fig. 3

Adapted from Ref. [47]

Fig. 4

Adapted from Ref. [19]

Similar content being viewed by others

Data Availability

Enquiries about data availability should be directed to the authors.

References

  1. Nguyen TT, Nguyen TTD, Tran NM, Van Vo G (2022) Lipid-based nanocarriers via nose-to-brain pathway for central nervous system disorders. Neurochem Res 47(3):552–573

    Article  CAS  PubMed  Google Scholar 

  2. Nguyen TT, Dung Nguyen TT, Vo TK, Tran NM, Nguyen MK, Van Vo T, Van Vo G (2021) Nanotechnology-based drug delivery for central nervous system disorders. Biomed pharmacother 143:112117

    Article  CAS  PubMed  Google Scholar 

  3. Dorsey ER, Sherer T, Okun MS, Bloem BR (2018) The emerging evidence of the parkinson pandemic. J Parkinsons Dis 8:S3–S8

    Article  PubMed  PubMed Central  Google Scholar 

  4. V.L. Feigin, E. Nichols, T. Alam, M.S. Bannick, E. Beghi, N. Blake, W.J. Culpepper, E.R. Dorsey, A. Elbaz, R.G. Ellenbogen, J.L. Fisher, C. Fitzmaurice, G. Giussani, L. Glennie, S.L. James, C.O. Johnson, N.J. Kassebaum, G. Logroscino, B. Marin, W.C. Mountjoy-Venning, N. Minh, R. Ofori-Asenso, A.P. Patel, M. Piccininni, G.A. Roth, T.J. Steiner, L.J. Stovner, C.E.I. Szoeke, A. Theadom, S.E. Vollset, M.T. Wallin, C. Wright, J.R. Zunt, N. Abbasi, F. Abd-Allah, A. Abdelalim, I. Abdollahpour, V. Aboyans, H.N. Abraha, D. Acharya, A.A. Adamu, O.M. Adebayo, A.M. Adeoye, J.C. Adsuar, M. Afarideh, S. Agrawal, A. Ahmadi, M.B. Ahmed, A.N. Aichour, I. Aichour, M.T.E. Aichour, R.O. Akinyemi, N. Akseer, A. Al-Eyadhy, R.A.-S. Salman, F. Alahdab, K.A. Alene, S.M. Aljunid, K. Altirkawi, N. Alvis-Guzman, N.H. Anber, C.A.T. Antonio, J. Arabloo, O. Aremu, J. Arnlov, H. Asayesh, R.J. Asghar, H.T. Atalay, A. Awasthi, B.P. Ayala Quintanilla, T.B. Ayuk, A. Badawi, M. Banach, J.A.M. Banoub, M.A. Barboza, S.L. Barker-Collo, T.W. Barnighausen, B.T. Baune, N. Bedi, M. Behzadifar, M. Behzadifar, Y. Bejot, B.B. Bekele, A.B. Belachew, D.A. Bennett, I.M. Bensenor, A. Berhane, M. Beuran, K. Bhattacharyya, Z.A. Bhutta, B. Biadgo, A. Bijani, N. Bililign, M.S. Bin Sayeed, C.K. Blazes, C. Brayne, Z.A. Butt, I.R. Campos-Nonato, C. Cantu-Brito, M. Car, R. Cardenas, J.J. Carrero, F. Carvalho, C.A. Castaneda-Orjuela, F. Castro, F. Catala-Lopez, E. Cerin, Y. Chaiah, J.C. Chang, I. Chatziralli, P.P.C. Chiang, H. Christensen, D.J. Christopher, C. Cooper, P.A. Cortesi, V.M. Costa, M.H. Criqui, C.S. Crowe, A.A.M. Damasceno, A. Daryani, V. De la Cruz-Gongora, F. Pio De la Hoz, D. De Leo, M.G. Degefa, G.T. Demoz, K. Deribe, S.D. Dharmaratne, D. Diaz, M.T. Dinberu, S. Djalalinia, D.T. Doku, M. Dubey, E. Dubljanin, E.E. Duken, D. Edvardsson, Z. El-Khatib, M. Endres, A.Y. Endries, S. Eskandarieh, A. Esteghamati, S. Esteghamati, F. Farhadi, A. Faro, F. Farzadfar, M.H. Farzaei, B. Fatima, S.-M. Fereshtehnejad, E. Fernandes, G.T. Feyissa, I. Filip, F. Fischer, T. Fukumoto, M. Ganji, F.G. Gankpe, M.A. Garcia-Gordillo, A.K. Gebre, T.G. Gebremichael, B.K. Gelaw, J.M. Geleijnse, D. Geremew, K.E. Gezae, M. Ghasemi-Kasman, M.Y. Gidey, P.S. Gill, T.K. Gill, E.V. Gnedovskaya, A.C. Goulart, A. Grada, G. Grosso, Y. Guo, R. Gupta, R. Gupta, J.A. Haagsma, T.B. Hagos, A. Haj-Mirzaian, A. Haj-Mirzaian, R.R. Hamadeh, S. Hamidi, G.J. Hankey, Y. Hao, J.M. Haro, H. Hassankhani, H.Y. Hassen, R. Havmoeller, S.I. Hay, M.I. Hegazy, B. Heidari, A. Henok, F. Heydarpour, C.L. Hoang, M.K. Hole, E.H. Rad, S.M. Hosseini, G. Hu, E.U. Igumbor, O.S. Ilesanmi, S.S.N. Irvani, S.M.S. Islam, M. Jakovljevic, M. Javanbakht, R.P. Jha, Y.B. Jobanputra, J.B. Jonas, J.J. Jozwiak, M. Jurisson, A. Kahsay, R. Kalani, Y. Kalkonde, T.A. Kamil, T. Kanchan, M. Karami, A. Karch, N. Karimi, A. Kasaeian, T.D. Kassa, Z.Y. Kassa, A. Kaul, A.T. Kefale, P.N. Keiyoro, Y.S. Khader, M.A. Khafaie, I.A. Khalil, E.A. Khan, Y.H. Khang, H. Khazaie, A.A. Kiadaliri, D.N. Kiirithio, A.S. Kim, D. Kim, Y.E. Kim, Y.J. Kim, A. Kisa, Y. Kokubo, A. Koyanagi, R.V. Krishnamurthi, B.K. Defo, B.K. Bicer, M. Kumar, B. Lacey, A. Lafranconi, V.C. Lansingh, A. Latifi, C.T. Leshargie, S. Li, Y. Liao, S. Linn, W.D. Lo, J.C.F. Lopez, S. Lorkowski, P.A. Lotufo, R.M. Lucas, R. Lunevicius, M.T. Mackay, N.B. Mahotra, M. Majdan, R. Majdzadeh, A. Majeed, R. Malekzadeh, D.C. Malta, N. Manafi, M.A. Mansournia, L.G. Mantovani, W. Marz, T.P. Mashamba-Thompson, B.B. Massenburg, K.K.V. Mate, C. McAlinden, J.J. McGrath, V. Mehta, T. Meier, H.G. Meles, A. Melese, P.T.N. Memiah, Z.A. Memish, W. Mendoza, D.T. Mengistu, G. Mengistu, A. Meretoja, T.J. Meretoja, T. Mestrovic, B. Miazgowski, T. Miazgowski, T.R. Miller, G.K. Mini, E.M. Mirrakhimov, B. Moazen, B. Mohajer, N.M.G. Mezerji, M. Mohammadi, M. Mohammadi-Khanaposhtani, R. Mohammadibakhsh, M. Mohammadnia-Afrouzi, S. Mohammed, F. Mohebi, A.H. Mokdad, L. Monasta, S. Mondello, Y. Moodley, M. Moosazadeh, G. Moradi, M. Moradi-Lakeh, M. Moradinazar, P. Moraga, I.M. Velasquez, S.D. Morrison, S.M. Mousavi, O.S. Muhammed, W. Muruet, K.I. Musa, G. Mustafa, M. Naderi, G. Nagel, A. Naheed, G. Naik, F. Najafi, V. Nangia, I. Negoi, R.I. Negoi, C.R.J. Newton, J.W. Ngunjiri, C.T. Nguyen, L.H. Nguyen, D.N.A. Ningrum, Y.L. Nirayo, M.R. Nixon, B. Norrving, J.J. Noubiap, M.N. Shiadeh, P.S. Nyasulu, F.A. Ogbo, I.H. Oh, A.T. Olagunju, T.O. Olagunju, P.R. Olivares, O.E. Onwujekwe, E. Oren, M.O. Owolabi, P.A. Mahesh, A.H. Pakpour, W.H. Pan, S. Panda-Jonas, J.D. Pandian, S.K. Patel, D.M. Pereira, M. Petzold, J.D. Pillay, M.A. Piradov, G.V. Polanczyk, S. Polinder, M.J. Postma, R. Poulton, H. Poustchi, S. Prakash, V. Prakash, M. Qorbani, A. Radfar, A. Rafay, A. Rafiei, F. Rahim, V. Rahimi-Movaghar, M. Rahman, M.H.U. Rahman, M.A. Rahman, F. Rajati, U. Ram, A. Ranta, D.L. Rawaf, S. Rawaf, N. Reinig, C. Reis, A.M.N. Renzaho, S. Resnikoff, S. Rezaeian, M.S. Rezai, C.M.R. Gonzalez, N.L.S. Roberts, L. Roever, L. Ronfani, E.M. Roro, G. Roshandel, A. Rostami, P. Sabbagh, R.L. Sacco, P.S. Sachdev, B. Saddik, H. Safari, R. Safari-Faramani, S. Safi, S. Safiri, R. Sagar, R. Sahathevan, A. Sahebkar, M.A. Sahraian, P. Salamati, S.S. Zahabi, Y. Salimi, A.M. Samy, J. Sanabria, I.S. Santos, M.M.S. Milicevic, N. Sarrafzadegan, B. Sartorius, S. Sarvi, B. Sathian, M. Satpathy, A.R. Sawant, M. Sawhney, I.J.C. Schneider, B. Schottker, D.C. Schwebel, S. Seedat, S.G. Sepanlou, H. Shabaninejad, A. Shafieesabet, M.A. Shaikh, R.A. Shakir, M. Shams-Beyranvand, M. Shamsizadeh, M. Sharif, M. Sharif-Alhoseini, J. She, A. Sheikh, K.N. Sheth, M. Shigematsu, R. Shiri, R. Shirkoohi, I. Shiue, S. Siabani, T.J. Siddiqi, I.D. Sigfusdottir, R. Sigurvinsdottir, D.H. Silberberg, J.P. Silva, D.G.A. Silveira, J.A. Singh, D.N. Sinha, E. Skiadaresi, M. Smith, B.H. Sobaih, S. Sobhani, M. Soofi, I.N. Soyiri, L.A. Sposato, D.J. Stein, M.B. Stein, M.A. Stokes, M.a.B. Sufiyan, B.L. Sykes, P. Sylaja, R. Tabares-Seisdedos, B.J.T. Ao, A. Tehrani-Banihashemi, M.-H. Temsah, O. Temsah, J.S. Thakur, A.G. Thrift, R. Topor-Madry, M. Tortajada-Girbes, M.R. Tovani-Palone, B.X. Tran, K.B. Tran, T.C. Truelsen, A.G. Tsadik, L.T. Car, K.N. Ukwaja, I. Ullah, M.S. Usman, O.A. Uthman, P.R. Valdez, T.J. Vasankari, R. Vasanthan, Y. Veisani, N. Venketasubramanian, F.S. Violante, V. Vlassov, K. Vosoughi, G.T. Vu, I.S. Vujcic, F.S. Wagnew, Y. Waheed, Y.P. Wang, E. Weiderpass, J. Weiss, H.A. Whiteford, T. Wijeratne, A.S. Winkler, C.S. Wiysonge, C.D.A. Wolfe, G. Xu, A. Yadollahpour, T. Yamada, Y. Yano, M. Yaseri, H. Yatsuya, E.M. Yimer, P. Yip, E. Yisma, N. Yonemoto, M. Yousefifard, C. Yu, Z. Zaidi, S. Bin Zaman, M. Zamani, H. Zandian, Z. Zare, Y. Zhang, S. Zodpey, M. Naghavi, C.J.L. Murray, T. Vos (2019), Global, regional, and national burden of neurological disorders, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurology 18(5) 459-480.

  5. Brooks DJ (2008) Optimizing levodopa therapy for parkinson’s disease with levodopa/carbidopa/entacapone: implications from a clinical and patient perspective. Neuropsychiatr Dis Treat 4(1):39–47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Poewe W, Antonini A, Zijlmans JC, Burkhard PR, Vingerhoets F (2010) Levodopa in the treatment of parkinson’s disease: an old drug still going strong. Clin Interv Aging 5:229–238

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Rascol O, Brooks DJ, Korczyn AD, De Deyn PP, Clarke CE, Lang AE (2000) A five-year study of the incidence of dyskinesia in patients with early parkinson’s disease who were treated with ropinirole or levodopa. N Engl J Med 342(20):1484–1491

    Article  CAS  PubMed  Google Scholar 

  8. Salat D, Tolosa E (2013) Levodopa in the treatment of parkinson’s disease: current status and new developments. J Parkinsons Dis 3(3):255–269

    Article  CAS  PubMed  Google Scholar 

  9. Bordoni M, Scarian E, Rey F, Gagliardi S, Carelli S, Pansarasa O, Cereda C (2020) Biomaterials in neurodegenerative disorders: a promising therapeutic approach. Int j mol sciences 21(9):3243

    Article  CAS  Google Scholar 

  10. Harris JP, Burrell JC, Struzyna LA, Chen HI, Serruya MD, Wolf JA, Duda JE, Cullen DK (2020) Emerging regenerative medicine and tissue engineering strategies for parkinson’s disease. npj Parkinson’s Dis 6(1):4

    Article  CAS  Google Scholar 

  11. Nguyen TT, Nguyen TTD, Nguyen TKO, Vo TK, Vo VG (2021) Advances in developing therapeutic strategies for Alzheimer’s disease. Biomed pharmacother 139:111623

    Article  CAS  PubMed  Google Scholar 

  12. Yang S, Zhang Y, Zhang C, Wang T, Sun W, Tong Z (2019) Combinational hydrogel and xerogel actuators showing NIR manipulating complex actions. Macromol Rapid Commun 40(18):e1900270

    Article  PubMed  CAS  Google Scholar 

  13. Li Q, Shao X, Dai X, Guo Q, Yuan B, Liu Y, Jiang W (2022) Recent trends in the development of hydrogel therapeutics for the treatment of central nervous system disorders. NPG Asia Materials 14(1):14

    Article  Google Scholar 

  14. Weber LM, Lopez CG, Anseth KS (2009) Effects of PEG hydrogel crosslinking density on protein diffusion and encapsulated islet survival and function. J Biomed Mater Res, Part A 90(3):720–729

    Article  CAS  Google Scholar 

  15. Fernandez-Serra R, Gallego R, Lozano P, González-Nieto D (2020) Hydrogels for neuroprotection and functional rewiring: a new era for brain engineering. Neural Regen Res 15(5):783–789

    Article  PubMed  Google Scholar 

  16. Assunção-Silva RC, Gomes ED, Sousa N, Silva NA, Salgado AJ (2015) Hydrogels and cell based therapies in spinal cord injury regeneration. Stem Cells Int 2015:948040

    Article  PubMed  PubMed Central  Google Scholar 

  17. Kleber C, Bruns M, Lienkamp K, Rühe J, Asplund M (2017) An interpenetrating, microstructurable and covalently attached conducting polymer hydrogel for neural interfaces. Acta Biomater 58:365–375

    Article  CAS  PubMed  Google Scholar 

  18. Zhou L, Fan L, Yi X, Zhou Z, Liu C, Fu R, Dai C, Wang Z, Chen X, Yu P, Chen D, Tan G, Wang Q, Ning C (2018) Soft conducting polymer hydrogels cross-linked and doped by tannic acid for spinal cord injury repair. ACS Nano 12(11):10957–10967

    Article  CAS  PubMed  Google Scholar 

  19. Hunt CPJ, Penna V, Gantner CW, Moriarty N, Wang Y, Franks S, Ermine CM, de Luzy IR, Pavan C, Long BM, Williams RJ, Thompson LH, Nisbet DR, Parish CL (2021) Tissue programmed hydrogels functionalized with GDNF improve human neural grafts in parkinson’s disease. Adv Func Mater 31(47):2105301

    Article  CAS  Google Scholar 

  20. Murphy AR, Laslett A, O’Brien CM, Cameron NR (2017) Scaffolds for 3D in vitro culture of neural lineage cells. Acta Biomater 54:1–20

    Article  CAS  PubMed  Google Scholar 

  21. Lee SH, Shim KY, Kim B, Sung JH (2017) Hydrogel-based three-dimensional cell culture for organ-on-a-chip applications. Biotechnol Prog 33(3):580–589

    Article  CAS  PubMed  Google Scholar 

  22. Fan Y, Winanto, Ng S-Y (2020) Replacing what’s lost: a new era of stem cell therapy for parkinson’s disease. Transl Neurodegener 9(1):2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Takahashi J (2019) Preparing for first human trial of induced pluripotent stem cell-derived cells for parkinson’s disease: an interview with Jun Takahashi. Regen Med 14(2):93–95

    Article  CAS  PubMed  Google Scholar 

  24. Tsou Y-H, Khoneisser J, Huang P-C, Xu X (2016) Hydrogel as a bioactive material to regulate stem cell fate. Bioact Mater 1(1):39–55

    Article  PubMed  PubMed Central  Google Scholar 

  25. Glotzbach K, Stamm N, Weberskirch R, Faissner A (2020) Hydrogels derivatized with cationic moieties or functional peptides as efficient supports for neural stem cells. Front Neurosci 14:475

    Article  PubMed  PubMed Central  Google Scholar 

  26. Komatsu M, Konagaya S, Egawa EY, Iwata H (2015) Maturation of human iPS cell-derived dopamine neuron precursors in alginate–Ca2+ hydrogel. Biochim et Biophys Acta (BBA)-Gen Subjects 1850(9):1669–1675

    Article  CAS  Google Scholar 

  27. Watson PMD, Kavanagh E, Allenby G, Vassey M (2017) Bioengineered 3D glial cell culture systems and applications for neurodegeneration and neuroinflammation. SLAS Discov 22(5):583–601

    Article  CAS  PubMed  Google Scholar 

  28. Ucar B, Kajtez J, Foidl BM, Eigel D, Werner C, Long KR, Emnéus J, Bizeau J, Lomora M, Pandit A, Newland B, Humpel C (2021) Biomaterial based strategies to reconstruct the nigrostriatal pathway in organotypic slice co-cultures. Acta Biomater 121:250–262

    Article  CAS  PubMed  Google Scholar 

  29. Ucar B, Humpel C (2019) Therapeutic efficacy of glial cell-derived neurotrophic factor loaded collagen scaffolds in ex vivo organotypic brain slice parkinson’s disease models. Brain Res Bull 149:86–95

    Article  CAS  PubMed  Google Scholar 

  30. Fernandez-Serra R, Gallego R, Lozano P, Gonzlez-Nieto D (2020) Hydrogels for neuroprotection and functional rewiring: a new era for brain engineering. Neural Regen Res 15(5):783–789

    Article  PubMed  Google Scholar 

  31. Giordano C, Albani D, Gloria A, Tunesi M, Batelli S, Russo T, Forloni G, Ambrosio L, Cigada A (2009) Multidisciplinary perspectives for Alzheimer’s and parkinson’s diseases: hydrogels for protein delivery and cell-based drug delivery as therapeutic strategies. Int J Artif Organs 32(12):836–850

    Article  CAS  PubMed  Google Scholar 

  32. Vissers C, Ming G-L, Song H (2019) Nanoparticle technology and stem cell therapy team up against neurodegenerative disorders. Adv Drug Deliv Rev 148:239–251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Qi X-J, Xu D, Tian M-L, Zhou J-F, Wang Q-S, Cui Y-L (2021) Thermosensitive hydrogel designed for improving the antidepressant activities of genipin via intranasal delivery. Mater Des 206:109816

    Article  CAS  Google Scholar 

  34. Ding F, Nie Z, Deng H, Xiao L, Du Y, Shi X (2013) Antibacterial hydrogel coating by electrophoretic co-deposition of chitosan/alkynyl chitosan. Carbohyd Polym 98(2):1547–1552

    Article  CAS  Google Scholar 

  35. Chen J, Cheng G, Liu R, Zheng Y, Huang M, Yi Y, Shi X, Du Y, Deng H (2018) Enhanced physical and biological properties of silk fibroin nanofibers by layer-by-layer deposition of chitosan and rectorite. J Colloid Interface Sci 523:208–216

    Article  CAS  PubMed  Google Scholar 

  36. Tan Y, Liu Y, Liu Y, Ma R, Luo J, Hong H, Chen X, Wang S, Liu C, Zhang Y, Chen T (2021) Rational design of thermosensitive hydrogel to deliver nanocrystals with intranasal administration for brain targeting in parkinson’s disease. Research 2021:9812523–9812523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Carlsson T, Björklund T, Kirik D (2007) Restoration of the striatal dopamine synthesis for parkinson’s disease: viral vector-mediated enzyme replacement strategy. Curr Gene Ther 7(2):109–120

    Article  CAS  PubMed  Google Scholar 

  38. Senthilkumar KS, Saravanan KS, Chandra G, Sindhu KM, Jayakrishnan A, Mohanakumar KP (2007) Unilateral implantation of dopamine-loaded biodegradable hydrogel in the striatum attenuates motor abnormalities in the 6-hydroxydopamine model of hemi-parkinsonism. Behav Brain Res 184(1):11–18

    Article  CAS  PubMed  Google Scholar 

  39. Rashed ER, Abd El-Rehim HA, El-Ghazaly MA (2015) Potential efficacy of dopamine loaded PVP/PAA nanogel in experimental models of parkinsonism: possible disease modifying activity. J Biomed Mater Res 103(5):1713–1720

    Article  CAS  Google Scholar 

  40. Pahuja R, Seth K, Shukla A, Shukla RK, Bhatnagar P, Chauhan LKS, Saxena PN, Arun J, Chaudhari BP, Patel DK, Singh SP, Shukla R, Khanna VK, Kumar P, Chaturvedi RK, Gupta KC (2015) Trans-blood brain barrier delivery of dopamine-loaded nanoparticles reverses functional deficits in parkinsonian rats. ACS Nano 9(5):4850–4871

    Article  CAS  PubMed  Google Scholar 

  41. Lakouraj MM, Rezaei M, Hasantabar V (2021) Synthesis, characterization and in-vitro prolonged release of L-DOPA using a novel amphiphilic hydrogel based on sodium alginate-polypyrrole. Int J Biol Macromol 193:609–618

    Article  CAS  PubMed  Google Scholar 

  42. Sharma S, Lohan S, Murthy RSR (2014) Formulation and characterization of intranasal mucoadhesive nanoparticulates and thermo-reversible gel of levodopa for brain delivery. Drug Dev Ind Pharm 40(7):869–878

    Article  CAS  PubMed  Google Scholar 

  43. Simão AR, Fragal VH, Lima AMdO, Pellá MCG, Garcia FP, Nakamura CV, Tambourgi EB, Rubira AF (2020) pH-responsive hybrid hydrogels: chondroitin sulfate/casein trapped silica nanospheres for controlled drug release. Int J Biol Macromol 148:302–315

    Article  PubMed  CAS  Google Scholar 

  44. Singh B, Chauhan N (2010) Release dynamics of tyrosine from dietary fiber psyllium based hydrogels for use in parkinson’s disease. Food Res Int 43(4):1065–1072

    Article  CAS  Google Scholar 

  45. Chen Y-B, Wang Y-Q, Wu J-R, Cui Y-L (2021) A novel idea for establishing parkinson’s disease mouse model by intranasal administration of paraquat. Neurol Res 43(4):267–277

    Article  CAS  PubMed  Google Scholar 

  46. Lampe KJ, Kern DS, Mahoney MJ, Bjugstad KB (2011) The administration of BDNF and GDNF to the brain via PLGA microparticles patterned within a degradable PEG-based hydrogel: protein distribution and the glial response. J Biomed Mater Res Part A 96A(3):595–607

    Article  CAS  Google Scholar 

  47. Moriarty N, Pandit A, Dowd E (2017) Encapsulation of primary dopaminergic neurons in a GDNF-loaded collagen hydrogel increases their survival, re-innervation and function after intra-striatal transplantation. Sci Reports 7:1–14

    CAS  Google Scholar 

  48. Le Bras A (2021) Stem cell transplantation improves parkinson’s disease in monkeys. Lab Anim 50(4):87–87

    Article  Google Scholar 

  49. Oliveira EP, Silva-Correia J, Reis RL, Oliveira JM (2018) Biomaterials developments for brain tissue engineering. Adv Exp Med Biol 1078:323–346

    Article  CAS  PubMed  Google Scholar 

  50. Pravin S, Nivedita G (2020) Current trend and pro-survival approaches for augmenting stem cell viability. Curr Pharm Biotechnol 21(12):1154–1164

    Article  CAS  Google Scholar 

  51. Jacob RS, Ghosh D, Singh PK, Basu SK, Jha NN, Das S, Sukul PK, Patil S, Sathaye S, Kumar A, Chowdhury A, Malik S, Sen S, Maji SK (2015) Self healing hydrogels composed of amyloid nano fibrils for cell culture and stem cell differentiation. Biomaterials 54:97–105

    Article  CAS  PubMed  Google Scholar 

  52. Das S, Zhou K, Ghosh D, Jha NN, Singh PK, Jacob RS, Bernard CC, Finkelstein DI, Forsythe JS, Maji SK (2016) Implantable amyloid hydrogels for promoting stem cell differentiation to neurons. NPG Asia Materials 8(9):e304–e304

    Article  CAS  Google Scholar 

  53. Xue J, Liu Y, Darabi MA, Tu G, Huang L, Ying L, Xiao B, Wu Y, Xing M, Zhang L, Zhang L (2019) An injectable conductive Gelatin-PANI hydrogel system serves as a promising carrier to deliver BMSCs for parkinson’s disease treatment. Mater Sci Eng, C 100:584–597

    Article  CAS  Google Scholar 

  54. Francis NL, Zhao N, Calvelli HR, Saini A, Gifford JJ, Wagner GC, Cohen RI, Pang ZP, Moghe PV (2019) Peptide-based scaffolds for the culture and transplantation of human dopaminergic neurons. Tissue Eng Part A 26(3–4):193–205

    PubMed  Google Scholar 

  55. Ren Y, Zhao X, Liang X, Ma PX, Guo B (2017) Injectable hydrogel based on quaternized chitosan, gelatin and dopamine as localized drug delivery system to treat parkinson’s disease. Int J Biol Macromol 105:1079–1087

    Article  CAS  PubMed  Google Scholar 

  56. Sudo J-I, Iwase H, Terui J, Kakuno K, Momoko S, Takayama K, Nagai T (1998) Transdermal absorption of l-dopa from hydrogel in rats. Eur J Pharm Sci 7(1):67–71

    Article  PubMed  Google Scholar 

  57. Dudhipala N, Gorre T (2020) neuroprotective effect of ropinirole lipid nanoparticles enriched hydrogel for parkinson’s disease: in vitro, ex vivo, pharmacokinetic and pharmacodynamic evaluation. Pharmaceutics 12(5):448

    Article  CAS  PubMed Central  Google Scholar 

  58. Nakaji-Hirabayashi T, Kato K, Iwata H (2009) Hyaluronic acid hydrogel loaded with genetically-engineered brain-derived neurotrophic factor as a neural cell carrier. Biomaterials 30(27):4581–4589

    Article  CAS  PubMed  Google Scholar 

  59. Adil MM, Vazin T, Ananthanarayanan B, Rodrigues GMC, Rao AT, Kulkarni RU, Miller EW, Kumar S, Schaffer DV (2017) Engineered hydrogels increase the post-transplantation survival of encapsulated hESC-derived midbrain dopaminergic neurons. Biomaterials 136:1–11

    Article  CAS  PubMed  Google Scholar 

  60. Moriarty N, Cabré S, Alamilla V, Pandit A, Dowd E (2019) Encapsulation of young donor age dopaminergic grafts in a GDNF-loaded collagen hydrogel further increases their survival, reinnervation, and functional efficacy after intrastriatal transplantation in hemi-Parkinsonian rats. Eur J Neurosci 49(4):487–496

    Article  PubMed  Google Scholar 

  61. Adil MM, Rao AT, Ramadoss GN, Chernavsky NE, Kulkarni RU, Miller EW, Kumar S, Schaffer DV (2018) Dopaminergic neurons transplanted using cell-instructive biomaterials alleviate parkinsonism in rodents. Adv Funct Mater 28(41):1804144

    Article  CAS  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

TTN: Conceptualization, Data curation, Methodology, Writing—Original draft preparation, Visualization. NSB: Conceptualization, Methodology, Writing—Original draft preparation. GVV: Conceptualization, Methodology, Writing—Original draft preparation, Visualization, and Revision.

Corresponding authors

Correspondence to Nguyen Si Bao or Giau Van Vo.

Ethics declarations

Conflict of interest

The authors declare that they no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, T.T., Bao, N.S. & Van Vo, G. Advances in Hydrogel-Based Drug Delivery Systems for Parkinson's Disease. Neurochem Res 47, 2129–2141 (2022). https://doi.org/10.1007/s11064-022-03617-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-022-03617-w

Keywords

Navigation