Skip to main content

Advertisement

Log in

Transmission of Cerebral β-Amyloidosis Among Individuals

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Deposition of amyloid β protein (Aβ) in the brain (cerebral β-amyloidosis) is a hallmark of Alzheimer’s disease (AD). So far, there have been increasing number of experimental studies using AD mouse model that cerebral β-amyloidosis could be transmitted among individuals as prion-like mechanism. Furthermore, several pathological studies using autopsied patients with iatrogenic Creutzfeldt–Jakob disease (CJD) showed that cerebral β-amyloidosis in addition to the CJD pathology could be transmitted among humans via medical procedures, such as human growth hormone derived from cadaver injection and cadaveric dura mater graft. In addition, although cerebral amyloid angiopathy (CAA), which is Aβ deposition in the cerebral vessels, related cerebral hemorrhage rarely develops in young people, several patients with CAA-related cerebral hemorrhage under the age of 55 with histories of neurosurgeries with and without dura mater graft in early childhood have been reported. These patients might show that Aβ pathology is often recognized as Aβ-CAA rather than parenchymal Aβ deposition in the transmission of cerebral β-amyloidosis in humans, and we proposed an emerging concept, “acquired CAA”. Considering that there have been several patients with acquired CAA with an incubation period from neurosurgery and the onset of CAA related cerebral hemorrhage of longer than 40 years, the number of cases is likely to increase in the future, and detailed epidemiological investigation is required. It is necessary to continue to elucidate the pathomechanisms of acquired CAA and urgently establish a method for preventing the transmission of cerebral β-amyloidosis among individuals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

This manuscript has no associated data.

References

  1. Will RG, Ironside JW (2017) Sporadic and infectious human prion diseases. Cold Spring Harb Perspect Med 7:a024364

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Johnson RT (2005) Prion diseases. Lancet Neurol 4:635–642

    Article  CAS  PubMed  Google Scholar 

  3. Poggiolini I, Saverioni D, Parchi P (2013) Prion protein misfolding, strains, and neurotoxicity: an update from studies on Mammalian prions. Int J Cell Biol 2013:910314

    Article  PubMed  PubMed Central  Google Scholar 

  4. Soto C (2003) Unfolding the role of protein misfolding in neurodegenerative diseases. Nat Rev Neurosci 4:49–60

    Article  CAS  PubMed  Google Scholar 

  5. Jucker M, Walker LC (2018) Propagation and spread of pathogenic protein assemblies in neurodegenerative diseases. Nat Neurosci 21:1341–1349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Meyer-Luehmann M, Coomaraswamy J, Bolmont T, Kaeser S, Schaefer C, Kilger E, Neuenschwander A, Abramowski D, Frey P, Jaton AL, Vigouret JM, Paganetti P, Walsh DM, Mathews PM, Ghiso J, Staufenbiel M, Walker LC, Jucker M (2006) Exogenous induction of cerebral beta-amyloidogenesis is governed by agent and host. Science 313:1781–1784

    Article  CAS  PubMed  Google Scholar 

  7. Kane MD, Lipinski WJ, Callahan MJ, Bian F, Durham RA, Schwarz RD, Roher AE, Walker LC (2000) Evidence for seeding of beta -amyloid by intracerebral infusion of Alzheimer brain extracts in beta -amyloid precursor protein-transgenic mice. J Neurosci 20:3606–3611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Watts JC, Condello C, Stohr J, Oehler A, Lee J, DeArmond SJ, Lannfelt L, Ingelsson M, Giles K, Prusiner SB (2014) Serial propagation of distinct strains of Abeta prions from Alzheimer’s disease patients. Proc Natl Acad Sci USA 111:10323–10328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hamaguchi T, Eisele YS, Varvel NH, Lamb BT, Walker LC, Jucker M (2012) The presence of Abeta seeds, and not age per se, is critical to the initiation of Abeta deposition in the brain. Acta Neuropathol 123:31–37

    Article  CAS  PubMed  Google Scholar 

  10. Langer F, Eisele YS, Fritschi SK, Staufenbiel M, Walker LC, Jucker M (2011) Soluble Abeta seeds are potent inducers of cerebral beta-amyloid deposition. J Neurosci 31:14488–14495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Eisele YS, Obermuller U, Heilbronner G, Baumann F, Kaeser SA, Wolburg H, Walker LC, Staufenbiel M, Heikenwalder M, Jucker M (2010) Peripherally applied Abeta-containing inoculates induce cerebral beta-amyloidosis. Science 330:980–982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Stohr J, Condello C, Watts JC, Bloch L, Oehler A, Nick M, DeArmond SJ, Giles K, DeGrado WF, Prusiner SB (2014) Distinct synthetic Abeta prion strains producing different amyloid deposits in bigenic mice. Proc Natl Acad Sci USA 111:10329–10334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Stohr J, Watts JC, Mensinger ZL, Oehler A, Grillo SK, DeArmond SJ, Prusiner SB, Giles K (2012) Purified and synthetic Alzheimer’s amyloid beta (Abeta) prions. Proc Natl Acad Sci USA 109:11025–11030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Rasmussen J, Mahler J, Beschorner N, Kaeser SA, Hasler LM, Baumann F, Nystrom S, Portelius E, Blennow K, Lashley T, Fox NC, Sepulveda-Falla D, Glatzel M, Oblak AL, Ghetti B, Nilsson KPR, Hammarstrom P, Staufenbiel M, Walker LC, Jucker M (2017) Amyloid polymorphisms constitute distinct clouds of conformational variants in different etiological subtypes of Alzheimer’s disease. Proc Natl Acad Sci USA 114:13018–13023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Eisele YS, Fritschi SK, Hamaguchi T, Obermuller U, Fuger P, Skodras A, Schafer C, Odenthal J, Heikenwalder M, Staufenbiel M, Jucker M (2014) Multiple factors contribute to the peripheral induction of cerebral beta-amyloidosis. J Neurosci 34:10264–10273

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Ridley RM, Baker HF, Windle CP, Cummings RM (2006) Very long term studies of the seeding of beta-amyloidosis in primates. J Neural Transm 113:1243–1251

    Article  CAS  PubMed  Google Scholar 

  17. Rosen RF, Fritz JJ, Dooyema J, Cintron AF, Hamaguchi T, Lah JJ, LeVine H 3rd, Jucker M, Walker LC (2012) Exogenous seeding of cerebral beta-amyloid deposition in betaAPP-transgenic rats. J Neurochem 120:660–666

    Article  CAS  PubMed  Google Scholar 

  18. Jaunmuktane Z, Mead S, Ellis M, Wadsworth JD, Nicoll AJ, Kenny J, Launchbury F, Linehan J, Richard-Loendt A, Walker AS, Rudge P, Collinge J, Brandner S (2015) Evidence for human transmission of amyloid-beta pathology and cerebral amyloid angiopathy. Nature 525:247–250

    Article  CAS  PubMed  Google Scholar 

  19. Frontzek K, Lutz MI, Aguzzi A, Kovacs GG, Budka H (2016) Amyloid-beta pathology and cerebral amyloid angiopathy are frequent in iatrogenic Creutzfeldt-Jakob disease after dural grafting. Swiss Med Wkly 146:w14287

    PubMed  Google Scholar 

  20. Hamaguchi T, Taniguchi Y, Sakai K, Kitamoto T, Takao M, Murayama S, Iwasaki Y, Yoshida M, Shimizu H, Kakita A, Takahashi H, Suzuki H, Naiki H, Sanjo N, Mizusawa H, Yamada M (2016) Significant association of cadaveric dura mater grafting with subpial Abeta deposition and meningeal amyloid angiopathy. Acta Neuropathol 132:313–315

    Article  PubMed  Google Scholar 

  21. Cali I, Cohen ML, Haik S, Parchi P, Giaccone G, Collins SJ, Kofskey D, Wang H, McLean CA, Brandel JP, Privat N, Sazdovitch V, Duyckaerts C, Kitamoto T, Belay ED, Maddox RA, Tagliavini F, Pocchiari M, Leschek E, Appleby BS, Safar JG, Schonberger LB, Gambetti P (2018) Iatrogenic Creutzfeldt-Jakob disease with Amyloid-beta pathology: an international study. Acta Neuropathol Commun 6:5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Duyckaerts C, Sazdovitch V, Ando K, Seilhean D, Privat N, Yilmaz Z, Peckeu L, Amar E, Comoy E, Maceski A, Lehmann S, Brion JP, Brandel JP, Haik S (2018) Neuropathology of iatrogenic Creutzfeldt-Jakob disease and immunoassay of French cadaver-sourced growth hormone batches suggest possible transmission of tauopathy and long incubation periods for the transmission of Abeta pathology. Acta Neuropathol 135:201–212

    Article  CAS  PubMed  Google Scholar 

  23. Ritchie DL, Adlard P, Peden AH, Lowrie S, Le Grice M, Burns K, Jackson RJ, Yull H, Keogh MJ, Wei W, Chinnery PF, Head MW, Ironside JW (2017) Amyloid-beta accumulation in the CNS in human growth hormone recipients in the UK. Acta Neuropathol 134:221–240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Herve D, Porche M, Cabrejo L, Guidoux C, Tournier-Lasserve E, Nicolas G, Adle-Biassette H, Plu I, Chabriat H, Duyckaerts C (2018) Fatal Abeta cerebral amyloid angiopathy 4 decades after a dural graft at the age of 2 years. Acta Neuropathol 135:801–803

    Article  PubMed  Google Scholar 

  25. Banerjee G, Adams ME, Jaunmuktane Z, Alistair Lammie G, Turner B, Wani M, Sawhney IMS, Houlden H, Mead S, Brandner S, Werring DJ (2019) Early onset cerebral amyloid angiopathy following childhood exposure to cadaveric dura. Ann Neurol 85:284–290

    Article  PubMed  PubMed Central  Google Scholar 

  26. Yoshiki K, Hirose G, Kumahashi K, Kohda Y, Ido K, Shioya A, Misaki K, Kasuga K (2021) Follow-up study of a patient with early onset cerebral amyloid angiopathy following childhood cadaveric dural graft. Acta Neurochir 163:1451–1455

    Article  PubMed  Google Scholar 

  27. Jaunmuktane Z, Banerjee G, Paine S, Parry-Jones A, Rudge P, Grieve J, Toma AK, Farmer SF, Mead S, Houlden H, Werring DJ, Brandner S (2021) Alzheimer’s disease neuropathological change three decades after iatrogenic amyloid-beta transmission. Acta Neuropathol 142:211–215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Knudsen KA, Rosand J, Karluk D, Greenberg SM (2001) Clinical diagnosis of cerebral amyloid angiopathy: validation of the Boston criteria. Neurology 56:537–539

    Article  CAS  PubMed  Google Scholar 

  29. Jaunmuktane Z, Quaegebeur A, Taipa R, Viana-Baptista M, Barbosa R, Koriath C, Sciot R, Mead S, Brandner S (2018) Evidence of amyloid-beta cerebral amyloid angiopathy transmission through neurosurgery. Acta Neuropathol 135:671–679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Giaccone G, Maderna E, Marucci G, Catania M, Erbetta A, Chiapparini L, Indaco A, Caroppo P, Bersano A, Parati E, Di Fede G, Caputi L (2019) Iatrogenic early onset cerebral amyloid angiopathy 30 years after cerebral trauma with neurosurgery: vascular amyloid deposits are made up of both Abeta40 and Abeta42. Acta Neuropathol Commun 7:70

    Article  PubMed  PubMed Central  Google Scholar 

  31. Hamaguchi T, Komatsu J, Sakai K, Noguchi-Shinohara M, Aoki S, Ikeuchi T, Yamada M (2019) Cerebral hemorrhagic stroke associated with cerebral amyloid angiopathy in young adults about 3 decades after neurosurgeries in their infancy. J Neurol Sci 399:3–5

    Article  PubMed  Google Scholar 

  32. Raposo N, Planton M, Siegfried A, Calviere L, Payoux P, Albucher JF, Viguier A, Delisle MB, Uro-Coste E, Chollet F, Bonneville F, Olivot JM, Pariente J (2020) Amyloid-beta transmission through cardiac surgery using cadaveric dura mater patch. J Neurol Neurosurg Psychiatry 91:440–441

    Article  PubMed  Google Scholar 

  33. Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297:353–356

    Article  CAS  PubMed  Google Scholar 

  34. Ono K (2018) Alzheimer’s disease as oligomeropathy. Neurochem Int 119:57–70

    Article  CAS  PubMed  Google Scholar 

  35. Woodruff-Pak DS (2008) Animal models of Alzheimer’s disease: therapeutic implications. J Alzheimers Dis 15:507–521

    Article  CAS  PubMed  Google Scholar 

  36. Walker LC, Jucker M (2015) Neurodegenerative diseases: expanding the prion concept. Annu Rev Neurosci 38:87–103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Head MW, Ironside JW (2012) Review: Creutzfeldt-Jakob disease: prion protein type, disease phenotype and agent strain. Neuropathol Appl Neurobiol 38:296–310

    Article  CAS  PubMed  Google Scholar 

  38. Parchi P, Cescatti M, Notari S, Schulz-Schaeffer WJ, Capellari S, Giese A, Zou WQ, Kretzschmar H, Ghetti B, Brown P (2010) Agent strain variation in human prion disease: insights from a molecular and pathological review of the National Institutes of Health series of experimentally transmitted disease. Brain 133:3030–3042

    Article  PubMed  PubMed Central  Google Scholar 

  39. Qiang W, Yau WM, Lu JX, Collinge J, Tycko R (2017) Structural variation in amyloid-beta fibrils from Alzheimer’s disease clinical subtypes. Nature 541:217–221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kollmer M, Close W, Funk L, Rasmussen J, Bsoul A, Schierhorn A, Schmidt M, Sigurdson CJ, Jucker M, Fandrich M (2019) Cryo-EM structure and polymorphism of Abeta amyloid fibrils purified from Alzheimer’s brain tissue. Nat Commun 10:4760

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Watanabe-Nakayama T, Ono K, Itami M, Takahashi R, Teplow DB, Yamada M (2016) High-speed atomic force microscopy reveals structural dynamics of amyloid beta1-42 aggregates. Proc Natl Acad Sci USA 113:5835–5840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lu JX, Qiang W, Yau WM, Schwieters CD, Meredith SC, Tycko R (2013) Molecular structure of beta-amyloid fibrils in Alzheimer’s disease brain tissue. Cell 154:1257–1268

    Article  CAS  PubMed  Google Scholar 

  43. Heilbronner G, Eisele YS, Langer F, Kaeser SA, Novotny R, Nagarathinam A, Aslund A, Hammarstrom P, Nilsson KP, Jucker M (2013) Seeded strain-like transmission of beta-amyloid morphotypes in APP transgenic mice. EMBO Rep 14:1017–1022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Duran-Aniotz C, Moreno-Gonzalez I, Gamez N, Perez-Urrutia N, Vegas-Gomez L, Soto C, Morales R (2021) Amyloid pathology arrangements in Alzheimer’s disease brains modulate in vivo seeding capability. Acta Neuropathol Commun 9:56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Fujii N, Takata T, Fujii N, Aki K, Sakaue H (2018) D-Amino acids in protein: the mirror of life as a molecular index of aging. Biochim Biophys Acta Proteins Proteom 1866:840–847

    Article  CAS  PubMed  Google Scholar 

  46. Xi W, Hansmann UHE (2019) The effect of retro-inverse D-amino acid Abeta-peptides on Abeta-fibril formation. J Chem Phys 150:095101

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Hamaguchi T, Kim JH, Hasegawa A, Goto R, Sakai K, Ono K, Itoh Y, Yamada M (2021) Exogenous Abeta seeds induce Abeta depositions in the blood vessels rather than the brain parenchyma, independently of Abeta strain-specific information. Acta Neuropathol Commun 9:151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ye L, Rasmussen J, Kaeser SA, Marzesco AM, Obermuller U, Mahler J, Schelle J, Odenthal J, Kruger C, Fritschi SK, Walker LC, Staufenbiel M, Baumann F, Jucker M (2017) Abeta seeding potency peaks in the early stages of cerebral beta-amyloidosis. EMBO Rep 18:1536–1544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Katzmarski N, Ziegler-Waldkirch S, Scheffler N, Witt C, Abou-Ajram C, Nuscher B, Prinz M, Haass C, Meyer-Luehmann M (2020) Abeta oligomers trigger and accelerate Abeta seeding. Brain Pathol 30:36–45

    Article  CAS  PubMed  Google Scholar 

  50. Uhlmann RE, Rother C, Rasmussen J, Schelle J, Bergmann C, Ullrich Gavilanes EM, Fritschi SK, Buehler A, Baumann F, Skodras A, Al-Shaana R, Beschorner N, Ye L, Kaeser SA, Obermuller U, Christensen S, Kartberg F, Stavenhagen JB, Rahfeld JU, Cynis H, Qian F, Weinreb PH, Bussiere T, Walker LC, Staufenbiel M, Jucker M (2020) Acute targeting of pre-amyloid seeds in transgenic mice reduces Alzheimer-like pathology later in life. Nat Neurosci 23:1580–1588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Morales R, Bravo-Alegria J, Moreno-Gonzalez I, Duran-Aniotz C, Gamez N, Edwards III G, Soto C (2021) Transmission of cerebral amyloid pathology by peripheral administration of misfolded Abeta aggregates. Mol Psychiatry

  52. Purro SA, Farrow MA, Linehan J, Nazari T, Thomas DX, Chen Z, Mengel D, Saito T, Saido T, Rudge P, Brandner S, Walsh DM, Collinge J (2018) Transmission of amyloid-beta protein pathology from cadaveric pituitary growth hormone. Nature 564:415–419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kovacs GG, Lutz MI, Ricken G, Strobel T, Hoftberger R, Preusser M, Regelsberger G, Honigschnabl S, Reiner A, Fischer P, Budka H, Hainfellner JA (2016) Dura mater is a potential source of Abeta seeds. Acta Neuropathol 131:911–923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Caroppo P, Marucci G, Maccagnano E, Gobbo CL, Bizzozero I, Tiraboschi P, Redaelli V, Catania M, Di Fede G, Caputi L, Giaccone G (2021) Cerebral amyloid angiopathy in a 51-year-old patient with embolization by dura mater extract and surgery for nasopharyngeal angiofibroma at age 17. Amyloid 28:142–143

    Article  PubMed  Google Scholar 

  55. Yamada M, Hamaguchi T, Sakai K (2019) Acquired cerebral amyloid angiopathy: an emerging concept. Prog Mol Biol Transl Sci 168:85–95

    Article  CAS  PubMed  Google Scholar 

  56. Brown P, Brandel JP, Sato T, Nakamura Y, MacKenzie J, Will RG, Ladogana A, Pocchiari M, Leschek EW, Schonberger LB (2012) Iatrogenic Creutzfeldt-Jakob disease, final assessment. Emerg Infect Dis 18:901–907

    Article  PubMed  PubMed Central  Google Scholar 

  57. Nakamura Y, Aso E, Yanagawa H (1999) Relative risk of Creutzfeldt-Jakob disease with cadaveric dura transplantation in Japan. Neurology 53:218–220

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tsuyoshi Hamaguchi, Kenjiro Ono or Masahito Yamada.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamaguchi, T., Ono, K. & Yamada, M. Transmission of Cerebral β-Amyloidosis Among Individuals. Neurochem Res 47, 2469–2477 (2022). https://doi.org/10.1007/s11064-022-03566-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-022-03566-4

Keywords

Navigation