Skip to main content
Log in

Ginsenoside Rg1 Plays a Neuroprotective Role in Regulating the Iron-Regulated Proteins and Against Lipid Peroxidation in Oligodendrocytes

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Parkinson’s disease (PD) is the second most common neurodegenerative disorder. Progressive loss of dopaminergic neurons in the substantia nigra (SN) is one of the major pathological changes. However, the reasons for the dopaminergic neuron loss are still ambiguous and further studies are needed to evaluate the in-depth mechanisms of neuron death. Oxidative stress is a significant factor causing neuronal damage. Dopaminergic neurons in the SN are susceptible to oxidative stress, which is closely associated with iron dyshomeostasis in the brain. Ginsenoside Rg1 from ginseng plays a crucial role in neuroprotective effects through anti-inflammation and attenuating the aggregation of abnormal α-synuclein. In our study, we established a chronic PD mouse model by 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine combined with probenecid and explored the effect of Rg1 on the oxidative stress and brain iron homeostasis. Rg1 was verified to improve the level of tyrosine hydroxylase and anti-oxidant stress. In addition, Rg1 maintained the iron-regulated protein homeostasis by increasing the expression of ferritin heavy chain and decreasing ferritin light chain in oligodendrocytes, especially the mature oligodendrocytes (OLs). Furthermore, Rg1 had a positive effect on the myelin sheath protection and increased the number of mature oligodendrocytes, proved by the increased staining of myelin basic protein and CC-1. In conclusion, Rg1 could play a neuroprotective role through remitting the iron-regulated protein dyshomeostasis by ferritin and against lipid peroxidation stress in oligodendrocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

Enquiries about data availability should be directed to the authors.

Abbreviations

BBB:

Blood–brain barrier

BCA:

Bicinchoninic acid

BSA:

Bovine serum albumin

CNS:

Central nervous system

DA:

Dopamine

DAB:

3,3′-Diamino-benzidine

DHE:

Dihydroethidium

ECL:

Chemiluminescence

ELISA:

Enzyme-linked immunosorbent assay

FTH:

Ferritin heavy chain

FTL:

Ferritin light chain

IHC:

Immunohistochemistry

IF:

Immunofluorescence

LBs:

Lowy bodies

MAO-B:

Monoamine oxidase B

MBP:

Myelin basic protein

MPP+ :

1-Methyl-4-phenylpyridinium

MRI:

Magnetic resonance imaging

aOPCs:

Adult oligodendrocyte precursor cells

OS:

Oxidative stress

PBS:

Phosphate buffer saline

PD:

Parkinson’s disease

PVDF:

Polyvinylidene difluoride

PFA:

Paraformaldehyde

ROS:

Reactive oxygen species

SNpc:

Substantia nigra pars compacta

SPNs:

Spiny projection neurons

TEM:

Transmission electron microscopy

4-HNE:

4-Hydroxynonenal

References

  1. Michel PP, Hirsch EC, Hunot S (2016) Understanding dopaminergic cell death pathways in Parkinson disease. Neuron 90:675–691

    Article  CAS  PubMed  Google Scholar 

  2. Emamzadeh FN, Surguchov A (2018) Parkinson’s disease: biomarkers treatment, and risk factors. Front Neurosci 12:612

    Article  PubMed  PubMed Central  Google Scholar 

  3. Surmeier DJ, Obeso JA, Halliday GM (2017) Selective neuronal vulnerability in Parkinson disease. Nat Rev Neurosci 18:101–113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Braak H, Del Tredici K, Rub U, de Vos RA, Jansen Steur EN, Braak E (2003) Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 24:197–211

    Article  PubMed  Google Scholar 

  5. Aitken RJ, Bennetts L, De Jonge CJ, Barratt C (2006) Reactive oxygen species: friend or foe, The Sperm Cell, pp 170–193

  6. McGeer PL, McGeer EG (2004) Inflammation and neurodegeneration in Parkinson’s disease. Parkinsonism Relat Disord 10:S3–S7

    Article  PubMed  Google Scholar 

  7. Jiang H, Wang J, Rogers J, Xie J (2017) Brain iron metabolism dysfunction in Parkinson’s disease. Mol Neurobiol 54:3078–3101

    Article  CAS  PubMed  Google Scholar 

  8. Sofic E, Paulus W, Jellinger K, Riederer P, Youdim MB (1991) Selective increase of iron in substantia nigra zona compacta of parkinsonian brains. J Neurochem 56:978–982

    Article  CAS  PubMed  Google Scholar 

  9. Drayer BP, Olanow W, Burger P, Johnson GA, Herfkens R, Riederer S (1986) Parkinson plus syndrome: diagnosis using high field MR imaging of brain iron. Radiology 159:493–498

    Article  CAS  PubMed  Google Scholar 

  10. Ryvlin P, Broussolle E, Piollet H, Viallet F, Khalfallah Y, Chazot G (1995) Magnetic resonance imaging evidence of decreased putamenal iron content in idiopathic Parkinson’s disease. Arch Neurol 52:583–588

    Article  CAS  PubMed  Google Scholar 

  11. Good PF, Olanow CW, Perl DP (1992) Neuromelanin-containing neurons of the substantia nigra accumulate iron and aluminum in Parkinson’s disease: a LAMMA study. Brain Res 593:343–346

    Article  CAS  PubMed  Google Scholar 

  12. Oakley AE, Collingwood JF, Dobson J, Love G, Perrott HR, Edwardson JA, Elstner M, Morris CM (2007) Individual dopaminergic neurons show raised iron levels in Parkinson disease. Neurology 68:1820–1825

    Article  CAS  PubMed  Google Scholar 

  13. Kaur D, Andersen J (2004) Does cellular iron dysregulation play a causative role in Parkinson’s disease? Ageing Res Rev 3:327–343

    Article  CAS  PubMed  Google Scholar 

  14. Jiang H, Song N, Xu H, Zhang S, Wang J, Xie J (2010) Up-regulation of divalent metal transporter 1 in 6-hydroxydopamine intoxication is IRE/IRP dependent. Cell Res 20:345–356

    Article  CAS  PubMed  Google Scholar 

  15. Ward RJ, Zucca FA, Duyn JH, Crichton RR, Zecca L (2014) The role of iron in brain ageing and neurodegenerative disorders. Lancet Neurol 13:1045–1060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ayton S, Lei P (2014) Nigral iron elevation is an invariable feature of Parkinson’s disease and is a sufficient cause of neurodegeneration. BioMed Res Int 2014:581256

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Tang D, Chen X, Kang R, Kroemer G (2021) Ferroptosis: molecular mechanisms and health implications. Cell Res 31:107–125

    Article  CAS  PubMed  Google Scholar 

  18. Hirschhorn T, Stockwell BR (2019) The development of the concept of ferroptosis. Free Radic Biol Med 133:130–143

    Article  CAS  PubMed  Google Scholar 

  19. Gaschler MM, Stockwell BR (2017) Lipid peroxidation in cell death. Biochem Biophys Res Commun 482:419–425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wang H, Liu C, Zhao Y, Gao G (2020) Mitochondria regulation in ferroptosis. Eur J Cell Biol 99:151058

    Article  CAS  PubMed  Google Scholar 

  21. Zecca L, Stroppolo A, Gatti A, Tampellini D, Toscani M, Gallorini M, Giaveri G, Arosio P, Santambrogio P, Fariello RG, Karatekin E, Kleinman MH, Turro N, Hornykiewicz O, Zucca FA (2004) The role of iron and copper molecules in the neuronal vulnerability of locus coeruleus and substantia nigra during aging. Proc Natl Acad Sci USA 101:9843–9848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Radad K, Gille G, Moldzio R, Saito H, Rausch WD (2004) Ginsenosides Rb1 and Rg1 effects on mesencephalic dopaminergic cells stressed with glutamate. Brain Res 1021:41–53

    Article  CAS  PubMed  Google Scholar 

  23. Chen XC, Fang F, Zhu YG, Chen LM, Zhou YC, Chen Y (2003) Protective effect of ginsenoside Rg1 on MPP+-induced apoptosis in SHSY5Y cells. J Neural Transm 110:835–845

    Article  CAS  PubMed  Google Scholar 

  24. Jiang W, Wang Z, Jiang Y, Lu M, Li X (2015) Ginsenoside Rg1 ameliorates motor function in an animal model of Parkinson’s disease. Pharmacology 96:25–31

    Article  CAS  PubMed  Google Scholar 

  25. Chu SF, Zhang Z, Zhou X, He WB, Chen C, Luo P, Liu DD, Ai QD, Gong HF, Wang ZZ, Sun HS, Feng ZP, Chen NH (2019) Ginsenoside Rg1 protects against ischemic/reperfusion-induced neuronal injury through miR-144/Nrf2/ARE pathway. Acta Pharmacol Sin 40:13–25

    Article  CAS  PubMed  Google Scholar 

  26. Mou Z, Huang Q, Chu SF, Zhang MJ, Hu JF, Chen NH, Zhang JT (2017) Antidepressive effects of ginsenoside Rg1 via regulation of HPA and HPG axis. Biomed Pharmacother 92:962–971

    Article  CAS  PubMed  Google Scholar 

  27. Surguchov A, Bernal L, Surguchev AA (2021) Phytochemicals as regulators of genes involved in synucleinopathies. Biomolecules 11:624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Heng Y, Zhang QS, Mu Z, Hu JF, Yuan YH, Chen NH (2016) Ginsenoside Rg1 attenuates motor impairment and neuroinflammation in the MPTP-probenecid-induced parkinsonism mouse model by targeting alpha-synuclein abnormalities in the substantia nigra. Toxicol Lett 243:7–21

    Article  CAS  PubMed  Google Scholar 

  29. Zhou T, Zu G, Zhang X, Wang X, Li S, Gong X, Liang Z, Zhao J (2016) Neuroprotective effects of ginsenoside Rg1 through the Wnt/beta-catenin signaling pathway in both in vivo and in vitro models of Parkinson’s disease. Neuropharmacology 101:480–489

    Article  CAS  PubMed  Google Scholar 

  30. Matsuura K, Kabuto H, Makino H, Ogawa N (1997) Pole test is a useful method for evaluating the mouse movement disorder caused by striatal dopamine depletion. J Neurosci Methods 73:45–48

    Article  CAS  PubMed  Google Scholar 

  31. Ogawa N, Hirose Y, Ohara S, Ono T, Watanabe Y (1985) A simple quantitative bradykinesia test in MPTP-treated mice. Res Commun Chem Pathol Pharmacol 50:435–441

    CAS  PubMed  Google Scholar 

  32. Yang Y, Guan D, Lei L, Lu J, Liu JQ, Yang G, Yan C, Zhai R, Tian J, Bi Y, Fu F, Wang H (2018) H6, a novel hederagenin derivative, reverses multidrug resistance in vitro and in vivo. Toxicol Appl Pharmacol 341:98–105

    Article  CAS  PubMed  Google Scholar 

  33. Langston JW, Ballard P, Tetrud JW, Irwin I (1983) Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science 219:979–980

    Article  CAS  PubMed  Google Scholar 

  34. Bove J, Perier C (2012) Neurotoxin-based models of Parkinson’s disease. Neuroscience 211:51–76

    Article  CAS  PubMed  Google Scholar 

  35. Petroske E, Meredith GE, Callen S, Totterdell S, Lau YS (2001) Mouse model of Parkinsonism: a comparison between subacute MPTP and chronic MPTP/probenecid treatment. Neuroscience 106:589–601

    Article  CAS  PubMed  Google Scholar 

  36. Schapira AHV, Chaudhuri KR, Jenner P (2017) Non-motor features of Parkinson disease. Nat Rev Neurosci 18:509

    Article  CAS  PubMed  Google Scholar 

  37. Howard CD, Li H, Geddes CE, Jin X (2017) Dynamic nigrostriatal dopamine biases action selection. Neuron 93:1436–1450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yager LM, Garcia AF, Wunsch AM, Ferguson SM (2015) The ins and outs of the striatum: role in drug addiction. Neuroscience 301:529–541

    Article  CAS  PubMed  Google Scholar 

  39. Zhai S, Tanimura A, Graves SM, Shen W, Surmeier DJ (2018) Striatal synapses, circuits, and Parkinson’s disease. Curr Opin Neurobiol 48:9–16

    Article  CAS  PubMed  Google Scholar 

  40. Gerfen CR, Surmeier DJ (2011) Modulation of striatal projection systems by dopamine. Annu Rev Neurosci 34:441–466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kravitz AV, Freeze BS, Parker PR, Kay K, Thwin MT, Deisseroth K, Kreitzer AC (2010) Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry. Nature 466:622–626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Mallet N, Ballion B, Le Moine C, Gonon F (2006) Cortical inputs and GABA interneurons imbalance projection neurons in the striatum of parkinsonian rats. J Neurosci 26:3875–3884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Brieger K, Schiavone S, Miller FJ Jr, Krause KH (2012) Reactive oxygen species: from health to disease. Swiss Medl Wkly 142:w13659

    CAS  Google Scholar 

  44. Lee DH, Gold R, Linker RA (2012) Mechanisms of oxidative damage in multiple sclerosis and neurodegenerative diseases: therapeutic modulation via fumaric acid esters. Int J Mol Sci 13:11783–11803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Shukla V, Mishra SK, Pant HC (2011) Oxidative stress in neurodegeneration. Adv Pharmacol Sci 2011:572634

    PubMed  PubMed Central  Google Scholar 

  46. Ho PW, Ho JW, Liu HF, So DH, Tse ZH, Chan KH, Ramsden DB, Ho SL (2012) Mitochondrial neuronal uncoupling proteins: a target for potential disease-modification in Parkinson’s disease. Transl Neurodegen 1:3

    Article  CAS  Google Scholar 

  47. Zucca FA, Segura-Aguilar J, Ferrari E, Munoz P, Paris I, Sulzer D, Sarna T, Casella L, Zecca L (2017) Interactions of iron, dopamine and neuromelanin pathways in brain aging and Parkinson’s disease. Prog Neurobiol 155:96–119

    Article  CAS  PubMed  Google Scholar 

  48. Costa-Mallen P, Gatenby C, Friend S, Maravilla KR, Hu SC, Cain KC, Agarwal P, Anzai Y (2017) Brain iron concentrations in regions of interest and relation with serum iron levels in Parkinson disease. J Neurol Sci 378:38–44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Madenci G, Bilen S, Arli B, Saka M, Ak F (2012) Serum iron, vitamin B12 and folic acid levels in Parkinson’s disease. Neurochem Res 37:1436–1441

    Article  CAS  PubMed  Google Scholar 

  50. Crichton R, Ward R (2006) From molecular mechanisms to therapeutic strategies, 2nd edn

  51. Perluigi M, Coccia R, Butterfield DA (2012) 4-Hydroxy-2-nonenal, a reactive product of lipid peroxidation, and neurodegenerative diseases: a toxic combination illuminated by redox proteomics studies. Antioxid Redox Signal 17:1590–1609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Mena NP, Urrutia PJ, Lourido F, Carrasco CM, Nunez MT (2015) Mitochondrial iron homeostasis and its dysfunctions in neurodegenerative disorders. Mitochondrion 21:92–105

    Article  CAS  PubMed  Google Scholar 

  53. Horowitz MP, Greenamyre JT (2010) Mitochondrial iron metabolism and its role in neurodegeneration. J Alzheimer’s Dis 20(Suppl 2):S551-568

    Article  CAS  Google Scholar 

  54. Salazar J, Mena N, Hunot S, Prigent A, Alvarez-Fischer D, Arredondo M, Duyckaerts C, Sazdovitch V, Zhao L, Garrick LM, Nunez MT, Garrick MD, Raisman-Vozari R, Hirsch EC (2008) Divalent metal transporter 1 (DMT1) contributes to neurodegeneration in animal models of Parkinson’s disease. Proc Natl Acad Sci USA 105:18578–18583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Groger A, Berg D (2012) Does structural neuroimaging reveal a disturbance of iron metabolism in Parkinson’s disease? Implications from MRI and TCS studies. J Neural Transm 119:1523–1528

    Article  PubMed  CAS  Google Scholar 

  56. Connor JR, Menzies SL, St Martin SM, Mufson EJ (1990) Cellular distribution of transferrin, ferritin, and iron in normal and aged human brains. J Neurosci Res 27:595–611

    Article  CAS  PubMed  Google Scholar 

  57. Todorich B, Pasquini JM, Garcia CI, Paez PM, Connor JR (2009) Oligodendrocytes and myelination: the role of iron. Glia 57:467–478

    Article  PubMed  Google Scholar 

  58. Pinero DJ, Li NQ, Connor JR, Beard JL (2000) Variations in dietary iron alter brain iron metabolism in developing rats. J Nutr 130:254–263

    Article  CAS  PubMed  Google Scholar 

  59. Rosato-Siri MV, Marziali L, Guitart ME, Badaracco ME, Puntel M, Pitossi F, Correale J, Pasquini JM (2018) Iron availability compromises not only oligodendrocytes but also astrocytes and microglial cells. Mol Neurobiol 55:1068–1081

    Article  CAS  PubMed  Google Scholar 

  60. Franklin RJM, Ffrench-Constant C (2017) Regenerating CNS myelin—from mechanisms to experimental medicines. Nat Rev Neurosci 18:753–769

    Article  CAS  PubMed  Google Scholar 

  61. Xue W, Liu Y, Qi WY, Gao Y, Li M, Shi AX, Li KX (2016) Pharmacokinetics of ginsenoside Rg1 in rat medial prefrontal cortex, hippocampus, and lateral ventricle after subcutaneous administration. J Asian Nat Prod Res 18:587–595

    Article  CAS  PubMed  Google Scholar 

  62. Liu Y, Gao Y, Li KX, Xue W (2019) Pharmacokinetics and acetylcholine releasing effects of ginsenoside Rg1 in hippocampus of beta-amyloid model rats. J Asian Nat Prod Res 21:772–781

    Article  CAS  PubMed  Google Scholar 

  63. Sweeney MD, Zhao Z, Montagne A, Nelson AR, Zlokovic BV (2019) Blood-brain barrier: from physiology to disease and back. Physiol Rev 99:21–78

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support from the National Natural Science Foundation of China (81773925), the Beijing Natural Science Foundation (7212156) and CAMS Innovation Fund for Medical Sciences (CIFMS) (2021-I2M-1-026), the Fundamental Research Funds for the Central Universities (3332019154), NHC Key Laboratory of Drug Addiction Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, China (2020DAMOP-008).

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

YY and NC designed the experiments; YL and YC wrote the manuscript and prepared the figures; YC, YL and SW performed the animal model and behavior tests; YC and TZ performed western blotting assays, IHC and IF assays. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Nai-hong Chen or Yu-he Yuan.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 133 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Li, YY., Wang, S. et al. Ginsenoside Rg1 Plays a Neuroprotective Role in Regulating the Iron-Regulated Proteins and Against Lipid Peroxidation in Oligodendrocytes. Neurochem Res 47, 1721–1735 (2022). https://doi.org/10.1007/s11064-022-03564-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-022-03564-6

Keywords

Navigation