Skip to main content

Advertisement

Log in

Acute Sleep Deprivation-Induced Anxiety and Disruption of Hypothalamic Cell Survival and Plasticity: A Mechanistic Study of Protection by Butanol Extract of Tinospora cordifolia

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Since sleep is a key homeostatic phenomenon of the body, therefore understanding the complex etiology of the neurological outcome of sleep deprivation (SD) such as anxiety, depression, cognitive dysfunctions, and their management is of utmost importance. The findings of the current study encompass the neurobehavioral as well as hormonal, and neuroinflammatory changes in serum and hypothalamus region of the brain as an outcome of acute SD and their amelioration by pre-treatment with butanol extract of Tinospora cordifolia. SD group animals showed anxiety-like behavior as evident from Elevated Plus Maze data and higher serum cortisol levels, whereas, pre-treatment with B-TCE showed anxiolytic activity and also reduced cortisol levels which was corroborated by an increase in leptin and insulin levels. Further, SD induced elevation of serum pro-inflammatory cytokines IL-6, TNF-α, IL-1β, and MCP-1 and subsequent activation of astroglial cells in the hypothalamus was suppressed in B-TCE pre-treated animals. The current findings suggest that besides the cortical structures, hypothalamus region’s synaptic plasticity and cell survival are adversely impacted by acute SD. Further active ingredients present in B-TCE may be useful for the management of SD-induced anxiety, systemic inflammation, and neuroinflammation by targeting hypothalamic BDNF-TrkB/PI3K-Akt pathways.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

All data generated or analysed during this study are included in this published article.

References

  1. Mullington JM, Haack M, Toth M, Serrador JM, Meier-Ewert HK (2009) Cardiovascular, inflammatory, and metabolic consequences of sleep deprivation. Prog Cardiovasc Dis 51:294–302. https://doi.org/10.1016/j.pcad.2008.10.003

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Suchecki D, Tiba PA, Tufik S (2002) Hormonal and behavioural responses of paradoxical sleep-deprived rats to the elevated plus maze. J Neuroendocrinol 14:549–554. https://doi.org/10.1046/j.1365-2826.2002.00812.x

    Article  CAS  PubMed  Google Scholar 

  3. Gopalakrishnan A, Ji LL, Cirelli C (2004) Sleep deprivation and cellular responses to oxidative stress. Sleep 27:27–35. https://doi.org/10.1093/sleep/27.1.27

    Article  PubMed  Google Scholar 

  4. Fukui K, Omoi NO, Hayasaka T, Shinnkai T, Suzuki S, Abe K, Urano S (2002) Cognitive impairment of rats caused by oxidative stress and aging, and its prevention by vitamin E. Ann N Y Acad Sci 959:275–284. https://doi.org/10.1111/j.1749-6632.2002.tb02099.x

    Article  CAS  PubMed  Google Scholar 

  5. Li H, Yu F, Sun X, Xu L, Miu J, Xiao P (2019) Dihydromyricetin ameliorates memory impairment induced by acute sleep deprivation. Eur J Pharmacol 853:220–228. https://doi.org/10.1016/j.ejphar.2019.03.014

    Article  CAS  PubMed  Google Scholar 

  6. Irwin MR, Carrillo C, Olmstead R (2010) Sleep loss activates cellular markers of inflammation: sex differences. Brain Behav Immun 24:54–57. https://doi.org/10.1016/j.bbi.2009.06.001

    Article  CAS  PubMed  Google Scholar 

  7. Mullington JM, Simpson NS, Meier-Ewert HK, Haack M (2010) Sleep loss and inflammation. Best Pract Res Clin Endocrinol Metab 24:775–784. https://doi.org/10.1016/j.beem.2010.08.014

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Pires GN, Tufik S, Andersen ML (2013) Grooming analysis algorithm: use in the relationship between sleep deprivation and anxiety-like behavior. Prog Neuropsychopharmacol Biol Psychiatry 41:6–10. https://doi.org/10.1016/j.pnpbp.2012.11.006

    Article  PubMed  Google Scholar 

  9. Mellman TA (2006) Sleep and anxiety disorders. Psychiatr Clin N Am 29:1047–1058. https://doi.org/10.1016/j.psc.2006.08.005 (abstract x)

    Article  Google Scholar 

  10. Neckelmann D, Mykletun A, Dahl AA (2007) Chronic insomnia as a risk factor for developing anxiety and depression. Sleep 30:873–880. https://doi.org/10.1093/sleep/30.7.873

    Article  PubMed Central  PubMed  Google Scholar 

  11. Ma N, Dinges DF, Basner M, Rao H (2015) How acute total sleep loss affects the attending brain: a meta-analysis of neuroimaging studies. Sleep 38:233–240. https://doi.org/10.5665/sleep.4404

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Bajaj P, Singh H, Kalotra S, Kaur G (2021) Butanol extract of Tinospora cordifolia alleviates acute sleep deprivation-induced impairments in cognitive functions and neuromuscular coordination in middle-aged female rats. Neuromol Med. https://doi.org/10.1007/s12017-021-08683-x

    Article  Google Scholar 

  13. Pace-Schott EF, Hobson JA (2002) The neurobiology of sleep: genetics, cellular physiology and subcortical networks. Nat Rev Neurosci 3:591–605. https://doi.org/10.1038/nrn895

    Article  CAS  PubMed  Google Scholar 

  14. de Kloet ER, Joels M, Holsboer F (2005) Stress and the brain: from adaptation to disease. Nat Rev Neurosci 6:463–475. https://doi.org/10.1038/nrn1683

    Article  CAS  PubMed  Google Scholar 

  15. Arborelius L, Owens MJ, Plotsky PM, Nemeroff CB (1999) The role of corticotropin-releasing factor in depression and anxiety disorders. J Endocrinol 160:1–12. https://doi.org/10.1677/joe.0.1600001

    Article  CAS  PubMed  Google Scholar 

  16. Johansson A, Ahren B, Nasman B, Carlstrom K, Olsson T (2000) Cortisol axis abnormalities early after stroke—relationships to cytokines and leptin. J Intern Med 247:179–187. https://doi.org/10.1046/j.1365-2796.2000.00600.x

    Article  CAS  PubMed  Google Scholar 

  17. Bornstein SR, Uhlmann K, Haidan A, Ehrhart-Bornstein M, Scherbaum WA (1997) Evidence for a novel peripheral action of leptin as a metabolic signal to the adrenal gland: leptin inhibits cortisol release directly. Diabetes 46:1235–1238. https://doi.org/10.2337/diab.46.7.1235

    Article  CAS  PubMed  Google Scholar 

  18. Sosanya NM, Garza TH, Stacey W, Crimmins SL, Christy RJ, Cheppudira BP (2019) Involvement of brain-derived neurotrophic factor (BDNF) in chronic intermittent stress-induced enhanced mechanical allodynia in a rat model of burn pain. BMC Neurosci 20:17. https://doi.org/10.1186/s12868-019-0500-1

    Article  PubMed Central  PubMed  Google Scholar 

  19. Radhakrishnan A, Jayakumari N, Kumar VM, Gulia KK (2018) α-Asarone in management of sleep deprivation induced memory deficits and anxiety in rat model. Sleep Biol Rhythms 17:37–47. https://doi.org/10.1007/s41105-018-0181-7

    Article  Google Scholar 

  20. Balkrishna A, Haldar S, Singh H, Roy P, Varshney A (2021) Coronil, a tri-herbal formulation, attenuates spike-protein-mediated SARS-CoV-2 viral entry into human alveolar epithelial cells and pro-inflammatory cytokines production by inhibiting spike protein-ACE-2 interaction. J Inflamm Res 14:869–884. https://doi.org/10.2147/JIR.S298242

    Article  PubMed Central  PubMed  Google Scholar 

  21. Umamaheswari S, Mainzen Prince PS (2007) Antihyperglycaemic effect of ‘Ilogen-Excel’, an ayurvedic herbal formulation in streptozotocin-induced diabetes mellitus. Acta Pol Pharm 64:53–61

    PubMed  Google Scholar 

  22. Prince PS, Kamalakkannan N, Menon VP (2004) Restoration of antioxidants by ethanolic Tinospora cordifolia in alloxan-induced diabetic Wistar rats. Acta Pol Pharm 61:283–287

    PubMed  Google Scholar 

  23. Desai VR, Ramkrishnan R, Chintalwar GJ, Sainis KB (2007) G1–4A, an immunomodulatory polysaccharide from Tinospora cordifolia, modulates macrophage responses and protects mice against lipopolysaccharide induced endotoxic shock. Int Immunopharmacol 7:1375–1386. https://doi.org/10.1016/j.intimp.2007.06.004

    Article  CAS  PubMed  Google Scholar 

  24. Velazquez EA, Kimura D, Torbati D, Ramachandran C, Totapally BR (2009) Immunological response to (1,4)-alpha-D-glucan in the lung and spleen of endotoxin-stimulated juvenile rats. Basic Clin Pharmacol Toxicol 105:301–306. https://doi.org/10.1111/j.1742-7843.2009.00447.x

    Article  CAS  PubMed  Google Scholar 

  25. Hussain L, Akash MS, Ain NU, Rehman K, Ibrahim M (2015) The analgesic, anti-inflammatory and anti-pyretic activities of Tinospora cordifolia. Adv Clin Exp Med 24:957–964. https://doi.org/10.17219/acem/27909

    Article  PubMed  Google Scholar 

  26. Bishayi B, Roychowdhury S, Ghosh S, Sengupta M (2002) Hepatoprotective and immunomodulatory properties of Tinospora cordifolia in CCl4 intoxicated mature albino rats. J Toxicol Sci 27:139–146. https://doi.org/10.2131/jts.27.139

    Article  PubMed  Google Scholar 

  27. Philip S, Tom G, Vasumathi AV (2018) Evaluation of the anti-inflammatory activity of Tinospora cordifolia (Willd.) Miers chloroform extract—a preclinical study. J Pharm Pharmacol 70:1113–1125. https://doi.org/10.1111/jphp.12932

    Article  CAS  PubMed  Google Scholar 

  28. Tiwari M, Dwivedi UN, Kakkar P (2014) Tinospora cordifolia extract modulates COX-2, iNOS, ICAM-1, pro-inflammatory cytokines and redox status in murine model of asthma. J Ethnopharmacol 153:326–337. https://doi.org/10.1016/j.jep.2014.01.031

    Article  CAS  PubMed  Google Scholar 

  29. Birla H, Rai SN, Singh SS, Zahra W, Rawat A, Tiwari N, Singh RK, Pathak A, Singh SP (2019) Tinospora cordifolia suppresses neuroinflammation in Parkinsonian mouse model. Neuromol Med 21:42–53. https://doi.org/10.1007/s12017-018-08521-7

    Article  CAS  Google Scholar 

  30. Dhingra D, Goyal PK (2008) Evidences for the involvement of monoaminergic and GABAergic systems in antidepressant-like activity of Tinospora cordifolia in mice. Indian J Pharm Sci 70:761–767. https://doi.org/10.4103/0250-474X.49118

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Kosaraju J, Chinni S, Roy PD, Kannan E, Antony AS, Kumar MN (2014) Neuroprotective effect of Tinospora cordifolia ethanol extract on 6-hydroxy dopamine induced Parkinsonism. Indian J Pharmacol 46:176–180. https://doi.org/10.4103/0253-7613.129312

    Article  PubMed Central  PubMed  Google Scholar 

  32. Mishra R, Manchanda S, Gupta M, Kaur T, Saini V, Sharma A, Kaur G (2016) Tinospora cordifolia ameliorates anxiety-like behavior and improves cognitive functions in acute sleep deprived rats. Sci Rep 6:25564. https://doi.org/10.1038/srep25564

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Sharma A, Kaur G (2018) Tinospora cordifolia as a potential neuroregenerative candidate against glutamate induced excitotoxicity: an in vitro perspective. BMC Complement Altern Med 18:268. https://doi.org/10.1186/s12906-018-2330-6

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Sharma A, Kalotra S, Bajaj P, Singh H, Kaur G (2020) Butanol extract of Tinospora cordifolia ameliorates cognitive deficits associated with glutamate-induced excitotoxicity: a mechanistic study using hippocampal neurons. Neuromol Med 22:81–99. https://doi.org/10.1007/s12017-019-08566-2

    Article  CAS  Google Scholar 

  35. Hajali V, Sheibani V, Esmaeili-Mahani S, Shabani M (2012) Female rats are more susceptible to the deleterious effects of paradoxical sleep deprivation on cognitive performance. Behav Brain Res 228:311–318. https://doi.org/10.1016/j.bbr.2011.12.008

    Article  PubMed  Google Scholar 

  36. Lindberg E, Janson C, Gislason T, Bjornsson E, Hetta J, Boman G (1997) Sleep disturbances in a young adult population: can gender differences be explained by differences in psychological status? Sleep 20:381–387. https://doi.org/10.1093/sleep/20.6.381

    Article  CAS  PubMed  Google Scholar 

  37. Reyner LA, Horne JA, Reyner A (1995) Gender- and age-related differences in sleep determined by home-recorded sleep logs and actimetry from 400 adults. Sleep 18:127–134

    CAS  PubMed  Google Scholar 

  38. Vargas I, Lopez-Duran N (2017) Investigating the effect of acute sleep deprivation on hypothalamic-pituitary-adrenal-axis response to a psychosocial stressor. Psychoneuroendocrinology 79:1–8. https://doi.org/10.1016/j.psyneuen.2017.01.030

    Article  CAS  PubMed  Google Scholar 

  39. Maes M, Song C, Lin A, De Jongh R, Van Gastel A, Kenis G, Bosmans E, De Meester I, Benoy I, Neels H, Demedts P, Janca A, Scharpe S, Smith RS (1998) The effects of psychological stress on humans: increased production of pro-inflammatory cytokines and a Th1-like response in stress-induced anxiety. Cytokine 10:313–318. https://doi.org/10.1006/cyto.1997.0290

    Article  CAS  PubMed  Google Scholar 

  40. Jia Y, Liu L, Sheng C, Cheng Z, Cui L, Li M, Zhao Y, Shi T, Yau TO, Li F, Chen L (2019) Increased serum levels of cortisol and inflammatory cytokines in people with depression. J Nerv Ment Dis 207:271–276. https://doi.org/10.1097/NMD.0000000000000957

    Article  PubMed  Google Scholar 

  41. Labad J, Salvat-Pujol N, Armario A, Cabezas A, Arriba-Arnau A, Nadal R, Martorell L, Urretavizcaya M, Monreal JA, Crespo JM, Vilella E, Palao DJ, Menchon JM, Soria V (2020) The role of sleep quality, trait anxiety and hypothalamic-pituitary-adrenal axis measures in cognitive abilities of healthy individuals. Int J Environ Res Public Health. https://doi.org/10.3390/ijerph17207600

    Article  PubMed Central  PubMed  Google Scholar 

  42. Kosari-Nasab M, Shokouhi G, Ghorbanihaghjo A, Mesgari-Abbasi M, Salari AA (2019) Quercetin mitigates anxiety-like behavior and normalizes hypothalamus-pituitary-adrenal axis function in a mouse model of mild traumatic brain injury. Behav Pharmacol 30:282–289. https://doi.org/10.1097/FBP.0000000000000480

    Article  CAS  PubMed  Google Scholar 

  43. Terlevic R, Isola M, Ragogna M, Meduri M, Canalaz F, Perini L, Rambaldelli G, Travan L, Crivellato E, Tognin S, Como G, Zuiani C, Bazzocchi M, Balestrieri M, Brambilla P (2013) Decreased hypothalamus volumes in generalized anxiety disorder but not in panic disorder. J Affect Disord 146:390–394. https://doi.org/10.1016/j.jad.2012.09.024

    Article  PubMed  Google Scholar 

  44. Sofroniew MV (2014) Multiple roles for astrocytes as effectors of cytokines and inflammatory mediators. Neuroscientist 20:160–172. https://doi.org/10.1177/1073858413504466

    Article  CAS  PubMed  Google Scholar 

  45. Hsu JC, Lee YS, Chang CN, Chuang HL, Ling EA, Lan CT (2003) Sleep deprivation inhibits expression of NADPH-d and NOS while activating microglia and astroglia in the rat hippocampus. Cells Tissues Organs 173:242–254. https://doi.org/10.1159/000070380

    Article  CAS  PubMed  Google Scholar 

  46. Kaur T, Singh H, Mishra R, Manchanda S, Gupta M, Saini V, Sharma A, Kaur G (2017) Withania somnifera as a potential anxiolytic and immunomodulatory agent in acute sleep deprived female Wistar rats. Mol Cell Biochem 427:91–101. https://doi.org/10.1007/s11010-016-2900-1

    Article  CAS  PubMed  Google Scholar 

  47. Manchanda S, Singh H, Kaur T, Kaur G (2018) Low-grade neuroinflammation due to chronic sleep deprivation results in anxiety and learning and memory impairments. Mol Cell Biochem 449:63–72. https://doi.org/10.1007/s11010-018-3343-7

    Article  CAS  PubMed  Google Scholar 

  48. Wadhwa M, Chauhan G, Roy K, Sahu S, Deep S, Jain V, Kishore K, Ray K, Thakur L, Panjwani U (2018) Caffeine and modafinil ameliorate the neuroinflammation and anxious behavior in rats during sleep deprivation by inhibiting the microglia activation. Front Cell Neurosci 12:49. https://doi.org/10.3389/fncel.2018.00049

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Fifel K, Meijer JH, Deboer T (2018) Long-term effects of sleep deprivation on neuronal activity in four hypothalamic areas. Neurobiol Dis 109:54–63. https://doi.org/10.1016/j.nbd.2017.10.005

    Article  PubMed  Google Scholar 

  50. Shehu A, Magaji MG, Yau J, Ahmed A (2019) Methanol stem bark extract of Adansonia digitata ameliorates chronic unpredictable mild stress-induced depression-like behavior: involvement of the HPA axis, BDNF, and stress biomarkers pathways. J Basic Clin Physiol Pharmacol. https://doi.org/10.1515/jbcpp-2018-0153

    Article  PubMed  Google Scholar 

  51. Muller HU, Riemann D, Berger M, Muller WE (1993) The influence of total sleep deprivation on urinary excretion of catecholamine metabolites in major depression. Acta Psychiatr Scand 88:16–20. https://doi.org/10.1111/j.1600-0447.1993.tb03407.x

    Article  CAS  PubMed  Google Scholar 

  52. Irwin M, Thompson J, Miller C, Gillin JC, Ziegler M (1999) Effects of sleep and sleep deprivation on catecholamine and interleukin-2 levels in humans: clinical implications. J Clin Endocrinol Metab 84:1979–1985. https://doi.org/10.1210/jcem.84.6.5788

    Article  CAS  PubMed  Google Scholar 

  53. Spiegel K, Leproult R, L’Hermite-Baleriaux M, Copinschi G, Penev PD, Van Cauter E (2004) Leptin levels are dependent on sleep duration: relationships with sympathovagal balance, carbohydrate regulation, cortisol, and thyrotropin. J Clin Endocrinol Metab 89:5762–5771. https://doi.org/10.1210/jc.2004-1003

    Article  CAS  PubMed  Google Scholar 

  54. Pejovic S, Vgontzas AN, Basta M, Tsaoussoglou M, Zoumakis E, Vgontzas A, Bixler EO, Chrousos GP (2010) Leptin and hunger levels in young healthy adults after one night of sleep loss. J Sleep Res 19:552–558. https://doi.org/10.1111/j.1365-2869.2010.00844.x

    Article  PubMed Central  PubMed  Google Scholar 

  55. Moraes DA, Venancio DP, Suchecki D (2014) Sleep deprivation alters energy homeostasis through non-compensatory alterations in hypothalamic insulin receptors in Wistar rats. Horm Behav 66:705–712. https://doi.org/10.1016/j.yhbeh.2014.08.015

    Article  CAS  PubMed  Google Scholar 

  56. Bains JS, Wamsteeker Cusulin JI, Inoue W (2015) Stress-related synaptic plasticity in the hypothalamus. Nat Rev Neurosci 16:377–388. https://doi.org/10.1038/nrn3881

    Article  CAS  PubMed  Google Scholar 

  57. Tsoory M, Guterman A, Richter-Levin G (2008) Exposure to stressors during juvenility disrupts development-related alterations in the PSA-NCAM to NCAM expression ratio: potential relevance for mood and anxiety disorders. Neuropsychopharmacology 33:378–393. https://doi.org/10.1038/sj.npp.1301397

    Article  PubMed  Google Scholar 

  58. Djordjevic A, Djordjevic J, Elakovic I, Adzic M, Matic G, Radojcic MB (2012) Fluoxetine affects hippocampal plasticity, apoptosis and depressive-like behavior of chronically isolated rats. Prog Neuropsychopharmacol Biol Psychiatry 36:92–100. https://doi.org/10.1016/j.pnpbp.2011.10.006

    Article  CAS  PubMed  Google Scholar 

  59. Lapshina KV, Ekimova IV (2010) Study of the protective effects of exogenous heat shock protein 70 kDa in the model of sleep deprivation in pigeons Columba livia. Zh Evol Biokhim Fiziol 46:387–394

    CAS  PubMed  Google Scholar 

  60. Duveau V, Arthaud S, Rougier A, Le Gal La Salle G (2007) Polysialylation of NCAM is upregulated by hyperthermia and participates in heat shock preconditioning-induced neuroprotection. Neurobiol Dis 26:385–395. https://doi.org/10.1016/j.nbd.2007.01.007

    Article  CAS  PubMed  Google Scholar 

  61. Francija E, Petrovic Z, Brkic Z, Mitic M, Radulovic J, Adzic M (2019) Disruption of the NMDA receptor GluN2A subunit abolishes inflammation-induced depression. Behav Brain Res 359:550–559. https://doi.org/10.1016/j.bbr.2018.10.011

    Article  CAS  PubMed  Google Scholar 

  62. Schuman EM, Madison DV (1994) Nitric oxide and synaptic function. Annu Rev Neurosci 17:153–183. https://doi.org/10.1146/annurev.ne.17.030194.001101

    Article  CAS  PubMed  Google Scholar 

  63. Datta S, Patterson EH, Siwek DF (1997) Endogenous and exogenous nitric oxide in the pedunculopontine tegmentum induces sleep. Synapse 27:69–78. https://doi.org/10.1002/(SICI)1098-2396(199709)27:1%3c69::AID-SYN7%3e3.0.CO;2-B

    Article  CAS  PubMed  Google Scholar 

  64. Chiem E, Nichols I, Van C, Kori S, Paul K (2021) Sleep loss mediates the effect of stress on nitrergic signaling in female mice. Neurosci Lett 740:135362. https://doi.org/10.1016/j.neulet.2020.135362

    Article  CAS  PubMed  Google Scholar 

  65. Liu HX, Zhang JJ, Zheng P, Zhang Y (2005) Altered expression of MAP-2, GAP-43, and synaptophysin in the hippocampus of rats with chronic cerebral hypoperfusion correlates with cognitive impairment. Brain Res Mol Brain Res 139:169–177. https://doi.org/10.1016/j.molbrainres.2005.05.014

    Article  CAS  PubMed  Google Scholar 

  66. Pandey SC, Zhang H, Roy A, Misra K (2006) Central and medial amygdaloid brain-derived neurotrophic factor signaling plays a critical role in alcohol-drinking and anxiety-like behaviors. J Neurosci 26:8320–8331. https://doi.org/10.1523/JNEUROSCI.4988-05.2006

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. JiaWen W, Hong S, ShengXiang X, Jing L (2018) Depression- and anxiety-like behaviour is related to BDNF/TrkB signalling in a mouse model of psoriasis. Clin Exp Dermatol 43:254–261. https://doi.org/10.1111/ced.13378

    Article  CAS  PubMed  Google Scholar 

  68. Yang J, Yan H, Li S, Zhang M (2018) Berberine ameliorates MCAO induced cerebral ischemia/reperfusion injury via activation of the BDNF-TrkB-PI3K/Akt signaling pathway. Neurochem Res 43:702–710. https://doi.org/10.1007/s11064-018-2472-4

    Article  CAS  PubMed  Google Scholar 

  69. Quintayo MA, Munro AF, Thomas J, Kunkler IH, Jack W, Kerr GR, Dixon JM, Chetty U, Bartlett JM (2012) GSK3beta and cyclin D1 expression predicts outcome in early breast cancer patients. Breast Cancer Res Treat 136:161–168. https://doi.org/10.1007/s10549-012-2229-8

    Article  CAS  PubMed  Google Scholar 

  70. Patel A, Bigoniya P, Singh CS, Patel NS (2013) Radioprotective and cytoprotective activity of Tinospora cordifolia stem enriched extract containing cordifolioside-A. Indian J Pharmacol 45:237–243. https://doi.org/10.4103/0253-7613.111919

    Article  PubMed Central  PubMed  Google Scholar 

  71. Gupta R, Sharma V (2011) Ameliorative effects of Tinospora cordifolia root extract on histopathological and biochemical changes induced by aflatoxin-b(1) in mice kidney. Toxicol Int 18:94–98. https://doi.org/10.4103/0971-6580.84259

    Article  PubMed Central  PubMed  Google Scholar 

  72. Mishra A, Kumar S, Pandey AK (2013) Scientific validation of the medicinal efficacy of Tinospora cordifolia. Sci World J 2013:292934. https://doi.org/10.1155/2013/292934

    Article  Google Scholar 

  73. Sharma A, Bajaj P, Bhandari A, Kaur G (2020) From ayurvedic folk medicine to preclinical neurotherapeutic role of a miraculous herb Tinospora cordifolia. Neurochem Int 141:104891. https://doi.org/10.1016/j.neuint.2020.104891

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

PB is thankful to the Department of Science and Technology-Cognitive Science Research Initiative (DST-CSRI) for fellowship during the course of this work. Authors acknowledge infrastructure provided by University Grants Commission (UGC), India under University with Potential for Excellence (UPE) and Department of Biotechnology (DBT), India under DISC facility.

Funding

This work was supported by the Department of Science and Technology- Cognitive Science Research Initiative (DST-CSRI), Government of India (GOI) [Grant No. C/639/(IFD)/2015-2016] to Gurcharan Kaur. The funding agency has no role in study design, analysis, and data interpretation; in the writing of the manuscript; and in the decision to submit the article for publication.

Author information

Authors and Affiliations

Authors

Contributions

PB and GK designed the study. PB carried out the experiments. PB and GK analyzed the data and wrote the manuscript. GK provided the infrastructure to carry out the work. Both the authors have read and approved the final manuscript.

Corresponding author

Correspondence to Gurcharan Kaur.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethical Approval

All animal experimental protocols were approved by the Institutional Animal Ethical Committee (IAEC) of Guru Nanak Dev University, Amritsar, Punjab, India (Reference no: 226/CPCSEA/2019/10). Protocols were performed according to the guidelines of ‘Animal care and use’ laid down by IAEC.

Consent to Participate

Not applicable.

Consent to Publish

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bajaj, P., Kaur, G. Acute Sleep Deprivation-Induced Anxiety and Disruption of Hypothalamic Cell Survival and Plasticity: A Mechanistic Study of Protection by Butanol Extract of Tinospora cordifolia. Neurochem Res 47, 1692–1706 (2022). https://doi.org/10.1007/s11064-022-03562-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-022-03562-8

Keywords

Navigation