Skip to main content

Advertisement

Log in

Spinal Microglia and Astrocytes: Two Key Players in Chronic Visceral Pain Pathogenesis

  • Review
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Chronic visceral pain (CVP) is one of the common symptoms of many diseases triggered by underlying diseases of the internal organs of the human body. Its causes include vascular mechanisms, mechanical factors, persistent inflammation, and unexplained functional mechanisms. Although the pathogenesis is unclear, more and more research has begun to shift from the neuronal aspect to the glial cells in recent years. Some data highlight that the spinal glial cells, particularly the microglia and astrocytes, play an essential role in CVP. Based on this, we highlight the mechanisms of microglia and astrocytes in CVP concerning the release of cytokines, chemokines, and neuroactive substances and alterations in intracellular signaling pathways during the process. Finally, because CVP is widespread in various diseases, we present future perspectives targeting microglia and astrocytes for treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Grundy L, Erickson A, Brierley SM (2019) Visceral pain. Annu Rev Physiol 81:261–284. https://doi.org/10.1146/annurev-physiol-020518-114525

    Article  CAS  PubMed  Google Scholar 

  2. Aziz Q, Giamberardino MA, Barke A, Korwisi B, Baranowski AP, Wesselmann U, Rief W, Treede RD, IASP Taskforce for the Classification of Chronic Pain (2019) The IASP classification of chronic pain for ICD-11: chronic secondary visceral pain. Pain 160(1):69–76. https://doi.org/10.1097/j.pain.0000000000001362

    Article  PubMed  Google Scholar 

  3. Treede RD, Rief W, Barke A, Aziz Q, Bennett MI, Benoliel R, Cohen M, Evers S, Finnerup NB, First MB, Giamberardino MA, Kaasa S, Korwisi B, Kosek E, Lavand’homme P, Nicholas M, Perrot S, Scholz J, Schug S, Smith BH et al (2019) Chronic pain as a symptom or a disease: the IASP classification of chronic pain for the international classification of diseases (ICD-11). Pain 160(1):19–27. https://doi.org/10.1097/j.pain.0000000000001384

    Article  PubMed  Google Scholar 

  4. Johnson AC, Farmer AD, Ness TJ, Greenwood-Van Meerveld B (2020) Critical evaluation of animal models of visceral pain for therapeutics development: a focus on irritable bowel syndrome. Neurogastroenterol Motil 32(4):e13776. https://doi.org/10.1111/nmo.13776

    Article  PubMed  Google Scholar 

  5. Chey WD, Kurlander J, Eswaran S (2015) Irritable bowel syndrome: a clinical review. JAMA 313(9):949–958. https://doi.org/10.1001/jama.2015.0954

    Article  CAS  PubMed  Google Scholar 

  6. Seth P, Rudd RA, Noonan RK, Haegerich TM (2018) Quantifying the epidemic of prescription opioid overdose deaths. Am J Public Health 108(4):500–502. https://doi.org/10.2105/AJPH.2017.304265

    Article  PubMed  PubMed Central  Google Scholar 

  7. Mercadante S (2019) Opioid analgesics adverse effects: the other side of the coin. Curr Pharm Des 25(30):3197–3202. https://doi.org/10.2174/1381612825666190717152226

    Article  CAS  PubMed  Google Scholar 

  8. Murphy DL, Lebin JA, Severtson SG, Olsen HA, Dasgupta N, Dart RC (2018) Comparative rates of mortality and serious adverse effects among commonly prescribed opioid analgesics. Drug Saf 41(8):787–795. https://doi.org/10.1007/s40264-018-0660-4

    Article  PubMed  Google Scholar 

  9. Zhang WJ, Luo HL, Zhu ZM (2016) Relieving pain in America: a blueprint for transforming prevention, care, education, and research. Mil Med 181(5): 397–399. https://doi.org/10.7205/MILMED-D-16-00012

    Article  Google Scholar 

  10. Jäkel S, Agirre E, Mendanha Falcão A, van Bruggen D, Lee KW, Knuesel I, Malhotra D, Ffrench-Constant C, Williams A, Castelo-Branco G (2019) Altered human oligodendrocyte heterogeneity in multiple sclerosis. Nature 566(7745):543–547. https://doi.org/10.1038/s41586-019-0903-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yeung M, Djelloul M, Steiner E, Bernard S, Salehpour M, Possnert G, Brundin L, Frisén J (2019) Dynamics of oligodendrocyte generation in multiple sclerosis. Nature 566(7745):538–542. https://doi.org/10.1038/s41586-018-0842-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rone MB, Cui QL, Fang J, Wang LC, Zhang J, Khan D, Bedard M, Almazan G, Ludwin SK, Jones R, Kennedy TE, Antel JP (2016) Oligodendrogliopathy in multiple sclerosis: low glycolytic metabolic rate promotes oligodendrocyte survival. J Neurosci 36(17):4698–4707. https://doi.org/10.1523/JNEUROSCI.4077-15.2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Borghi SM, Fattori V, Hohmann M, Verri WA (2019) Contribution of spinal cord oligodendrocytes to neuroinflammatory diseases and pain. Curr Med Chem 26(31):5781–5810. https://doi.org/10.2174/0929867325666180522112441

    Article  CAS  PubMed  Google Scholar 

  14. Jessen KR (2004) Glial cells. Int J Biochem Cell Biol 36(10):1861–1867. https://doi.org/10.1016/j.biocel.2004.02.023

    Article  CAS  PubMed  Google Scholar 

  15. Quagliato LA, Nardi AE (2018) The role of convergent ion channel pathways in microglia phenotypes: a systematic review of the implications for neurological and psychiatric disorders. Transl Psychiatry 8(1):259. https://doi.org/10.1038/s41398-018-0318-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Fan Y, Xie L, Chung CY (2017) Signaling pathways controlling microglia chemotaxis. Mol Cells 40(3):163–168. https://doi.org/10.14348/molcells.2017.0011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Madry C, Kyrargyri V, Arancibia-Cárcamo IL, Jolivet R, Kohsaka S, Bryan RM, Attwell D (2018) Microglia ramification, surveillance, and interleukin-1β release are regulated by the two-pore domain K+ channel THIK-1. Neuron 97(2):299-312.e6. https://doi.org/10.1016/j.neuron.2017.12.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Garaschuk O, Verkhratsky A (2019) Physiology of microglia. Methods Mol Biol (Clifton, N.J.) 2034:27–40. https://doi.org/10.1007/978-1-4939-9658-2_3

    Article  CAS  Google Scholar 

  19. Vanderwall AG, Milligan ED (2019) Cytokines in pain: harnessing endogenous anti-inflammatory signaling for improved pain management. Front Immunol 10:3009. https://doi.org/10.3389/fimmu.2019.03009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chen G, Zhang YQ, Qadri YJ, Serhan CN, Ji RR (2018) Microglia in pain: detrimental and protective roles in pathogenesis and resolution of pain. Neuron 100(6):1292–1311. https://doi.org/10.1016/j.neuron.2018.11.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gong T, Liu L, Jiang W, Zhou R (2020) DAMP-sensing receptors in sterile inflammation and inflammatory diseases. Nat Rev Immunol 20(2):95–112. https://doi.org/10.1038/s41577-019-0215-7

    Article  CAS  PubMed  Google Scholar 

  22. Liu YU, Ying Y, Li Y, Eyo UB, Chen T, Zheng J, Umpierre AD, Zhu J, Bosco DB, Dong H, Wu LJ (2019) Neuronal network activity controls microglia process surveillance in awake mice via norepinephrine signaling. Nat Neurosci 22(11):1771–1781. https://doi.org/10.1038/s41593-019-0511-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ji RR, Donnelly CR, Nedergaard M (2019) Astrocytes in chronic pain and itch. Nat Rev Neurosci 20(11):667–685. https://doi.org/10.1038/s41583-019-0218-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Durkee CA, Araque A (2019) Diversity and specificity of astrocyte-neuron communication. Neuroscience 396:73–78. https://doi.org/10.1016/j.neuroscience.2018.11.010

    Article  CAS  PubMed  Google Scholar 

  25. Spray DC, Hanani M (2019) Gap junctions, pannexins and pain. Neurosci Lett 695:46–52. https://doi.org/10.1016/j.neulet.2017.06.035

    Article  CAS  PubMed  Google Scholar 

  26. Retamal MA, Alcayaga J, Verdugo CA, Bultynck G, Leybaert L, Sáez PJ, Fernández R, León LE, Sáez JC (2014) Opening of pannexin- and connexin-based channels increases the excitability of nodose ganglion sensory neurons. Front Cell Neurosci 8:158. https://doi.org/10.3389/fncel.2014.00158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Nakagawa T, Kaneko S (2010) Spinal astrocytes as therapeutic targets for pathological pain. J Pharmacol Sci 114(4):347–353. https://doi.org/10.1254/jphs.10r04cp

    Article  CAS  PubMed  Google Scholar 

  28. Jha MK, Jo M, Kim JH, Suk K (2019) Microglia-astrocyte crosstalk: an intimate molecular conversation. Neurosci 25(3):227–240. https://doi.org/10.1177/1073858418783959

    Article  CAS  Google Scholar 

  29. Liddelow SA, Marsh SE, Stevens B (2020) Microglia and astrocytes in disease: dynamic duo or partners in crime? Trends Immunol 41(9):820–835. https://doi.org/10.1016/j.it.2020.07.006

    Article  CAS  PubMed  Google Scholar 

  30. Lee JH, Kim W (2020) The role of satellite glial cells, astrocytes, and microglia in oxaliplatin-induced neuropathic pain. Biomedicines 8(9):324. https://doi.org/10.3390/biomedicines8090324

    Article  CAS  PubMed Central  Google Scholar 

  31. Xing L, Yang T, Cui S, Chen G (2019) Connexin hemichannels in astrocytes: role in CNS disorders. Front Mol Neurosci 12:23. https://doi.org/10.3389/fnmol.2019.00023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ding H, Chen J, Su M, Lin Z, Zhan H, Yang F, Li W, Xie J, Huang Y, Liu X, Liu B, Zhou X (2020) BDNF promotes activation of astrocytes and microglia contributing to neuroinflammation and mechanical allodynia in cyclophosphamide-induced cystitis. J Neuroinflamm 17(1):19. https://doi.org/10.1186/s12974-020-1704-0

    Article  CAS  Google Scholar 

  33. Ho I, Chan M, Wu W, Liu X (2020) Spinal microglia-neuron interactions in chronic pain. J Leukoc Biol 108(5):1575–1592. https://doi.org/10.1002/JLB.3MR0520-695R

    Article  CAS  PubMed  Google Scholar 

  34. Wolf SA, Boddeke HW, Kettenmann H (2017) Microglia in physiology and disease. Annu Rev Physiol 79:619–643. https://doi.org/10.1146/annurev-physiol-022516-034406

    Article  CAS  PubMed  Google Scholar 

  35. Olmos G, Lladó J (2014) Tumor necrosis factor alpha: a link between neuroinflammation and excitotoxicity. Mediat Inflamm 2014:861231. https://doi.org/10.1155/2014/861231

    Article  CAS  Google Scholar 

  36. Yao YY, Bian LG, Yang P, Sui Y, Li R, Chen YL, Sun L, Ai QL, Zhong LM, Lu D (2019) Gastrodin attenuates proliferation and inflammatory responses in activated microglia through Wnt/β-catenin signaling pathway. Brain Res 1717:190–203. https://doi.org/10.1016/j.brainres.2019.04.025

    Article  CAS  PubMed  Google Scholar 

  37. Ji RR, Nackley A, Huh Y, Terrando N, Maixner W (2018) Neuroinflammation and central sensitization in chronic and widespread pain. Anesthesiology 129(2):343–366. https://doi.org/10.1097/ALN.0000000000002130

    Article  PubMed  Google Scholar 

  38. Lucarini E, Parisio C, Branca J, Segnani C, Ippolito C, Pellegrini C, Antonioli L, Fornai M, Micheli L, Pacini A, Bernardini N, Blandizzi C, Ghelardini C, Di Cesare Mannelli L (2020) Deepening the mechanisms of visceral pain persistence: an evaluation of the gut-spinal cord relationship. Cells 9(8):1772. https://doi.org/10.3390/cells9081772

    Article  CAS  PubMed Central  Google Scholar 

  39. Zhang WJ, Luo HL, Zhu ZM (2020) The role of P2X4 receptors in chronic pain: a potential pharmacological target. Biomed Pharmacother 129:110447. https://doi.org/10.1016/j.biopha.2020.110447

    Article  CAS  PubMed  Google Scholar 

  40. Sawicki CM, Kim JK, Weber MD, Faw TD, McKim DB, Madalena KM, Lerch JK, Basso DM, Humeidan ML, Godbout JP, Sheridan JF (2019) Microglia promote increased pain behavior through enhanced inflammation in the spinal cord during repeated social defeat stress. J Neurosci 39(7):1139–1149. https://doi.org/10.1523/JNEUROSCI.2785-18.2018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yue J, López JM (2020) Understanding mapk signaling pathways in apoptosis. Int J Mol Sci 21(7):2346. https://doi.org/10.3390/ijms21072346

    Article  CAS  PubMed Central  Google Scholar 

  42. Ji RR, Berta T, Nedergaard M (2013) Glia and pain: is chronic pain a gliopathy? Pain 154(Suppl 1):S10–S28. https://doi.org/10.1016/j.pain.2013.06.022

    Article  PubMed  PubMed Central  Google Scholar 

  43. Sun L, Zhou J, Sun C (2019) MicroRNA-211-5p enhances analgesic effect of dexmedetomidine on inflammatory visceral pain in rats by suppressing ERK signaling. J Mol Neurosci MN 68(1):19–28. https://doi.org/10.1007/s12031-019-01278-z

    Article  CAS  PubMed  Google Scholar 

  44. Zhao J, Li H, Shi C, Yang T, Xu B (2020) Electroacupuncture inhibits the activity of astrocytes in spinal cord in rats with visceral hypersensitivity by inhibiting P2Y1 receptor-mediated MAPK/ERK signaling pathway. Evid Based Complement Altern Med eCAM 2020:4956179. https://doi.org/10.1155/2020/4956179

    Article  Google Scholar 

  45. Huang Y, Zhang D, Li ZY, Yang YT, Wu LJ, Zhang J, Zhi FY, Li XY, Shi Z, Hong J, Ma XP (2019) Moxibustion eases chronic inflammatory visceral pain in rats via MAPK signaling pathway in the spinal cord. J Pain Res 12:2999–3012. https://doi.org/10.2147/JPR.S218588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Mitchell JP, Carmody RJ (2018) NF-κB and the transcriptional control of inflammation. Int Rev Cell Mol Biol 335:41–84. https://doi.org/10.1016/bs.ircmb.2017.07.007

    Article  CAS  PubMed  Google Scholar 

  47. Sun L, Hu C, Zhang X (2017) TRAF3 delays cyst formation induced by NF-κB signaling. IUBMB Life 69(3):170–178. https://doi.org/10.1002/iub.1601

    Article  CAS  PubMed  Google Scholar 

  48. Gupta AS, Waters MR, Biswas DD, Brown LN, Surace MJ, Floros C, Siebenlist U, Kordula T (2019) RelB controls adaptive responses of astrocytes during sterile inflammation. Glia 67(8):1449–1461. https://doi.org/10.1002/glia.23619

    Article  PubMed  PubMed Central  Google Scholar 

  49. Millet P, McCall C, Yoza B (2013) RelB: an outlier in leukocyte biology. J Leukoc Biol 94(5):941–951. https://doi.org/10.1189/jlb.0513305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Harb J, Lin PJ, Hao J (2019) Recent development of Wnt signaling pathway inhibitors for cancer therapeutics. Curr Oncol Rep 21(2):12. https://doi.org/10.1007/s11912-019-0763-9

    Article  PubMed  Google Scholar 

  51. Katoh M (2017) Canonical and non-canonical WNT signaling in cancer stem cells and their niches: cellular heterogeneity, omics reprogramming, targeted therapy and tumor plasticity (Review). Int J Oncol 51(5):1357–1369. https://doi.org/10.3892/ijo.2017.4129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Robinson KF, Narasipura SD, Wallace J, Ritz EM, Al-Harthi L (2020) Negative regulation of IL-8 in human astrocytes depends on β-catenin while positive regulation is mediated by TCFs/LEF/ATF2 interaction. Cytokine 136:155252. https://doi.org/10.1016/j.cyto.2020.155252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lu PP, Ramanan N (2012) A critical cell-intrinsic role for serum response factor in glial specification in the CNS. J Neurosci 32(23):8012–8023. https://doi.org/10.1523/JNEUROSCI.5633-11.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wang J, Li G, Wang Z, Zhang X, Yao L, Wang F, Liu S, Yin J, Ling EA, Wang L, Hao A (2012) High glucose-induced expression of inflammatory cytokines and reactive oxygen species in cultured astrocytes. Neuroscience 202:58–68. https://doi.org/10.1016/j.neuroscience.2011.11.062

    Article  CAS  PubMed  Google Scholar 

  55. Ceyzériat K, Abjean L, Carrillo-de Sauvage MA, Ben Haim L, Escartin C (2016) The complex STATes of astrocyte reactivity: how are they controlled by the JAK-STAT3 pathway? Neuroscience 330:205–218. https://doi.org/10.1016/j.neuroscience.2016.05.043

    Article  CAS  PubMed  Google Scholar 

  56. Zhen XC, Chu HY (2020) Emerging novel approaches to drug research and diagnosis of Parkinson’s disease. Acta Pharmacol Sin 41(4):439–441. https://doi.org/10.1038/s41401-020-0369-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Liu JQ, Zhao M, Zhang Z, Cui LY, Zhou X, Zhang W, Chu SF, Zhang DY, Chen NH (2020) Rg1 improves LPS-induced Parkinsonian symptoms in mice via inhibition of NF-κB signaling and modulation of M1/M2 polarization. Acta Pharmacol Sin 41(4):523–534. https://doi.org/10.1038/s41401-020-0358-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. He D, Fu S, Zhou A, Su Y, Gao X, Zhang Y, Huang B, Du J, Liu D (2021) Camptothecin regulates microglia polarization and exerts neuroprotective effects via activating AKT/Nrf2/HO-1 and inhibiting NF-κB pathways in vivo and in vitro. Front Immunol 12:619761. https://doi.org/10.3389/fimmu.2021.619761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Qiu Z, Lu P, Wang K, Zhao X, Li Q, Wen J, Zhang H, Li R, Wei H, Lv Y, Zhang S, Zhang P (2020) Dexmedetomidine inhibits neuroinflammation by altering microglia M1/M2 polarization through MAPK/ERK pathway. Neurochem Res 45(2):345–353. https://doi.org/10.1007/s11064-019-02922-1

    Article  CAS  PubMed  Google Scholar 

  60. Zeng H, Liu N, Yang YY, Xing HY, Liu XX, Li F, La GY, Huang MJ, Zhou MW (2019) Lentivirus-mediated downregulation of α-synuclein reduces neuroinflammation and promotes functional recovery in rats with spinal cord injury. J Neuroinflamm 16(1):283. https://doi.org/10.1186/s12974-019-1658-2

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Nos. 81674073, 81273843); Natural Science Foundation of Shanghai (No. 20ZR1453000, 19ZR1451600); Outstanding Discipline Leader Plan of Shanghai Health and Family Planning System (No. 2017BR047).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Peng Ma.

Ethics declarations

Conflict of interest

The authors declared no potential conflicts of interest with respect to the research, authorship and/or publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Long, JY., Wang, XJ., Li, XY. et al. Spinal Microglia and Astrocytes: Two Key Players in Chronic Visceral Pain Pathogenesis. Neurochem Res 47, 545–551 (2022). https://doi.org/10.1007/s11064-021-03486-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-021-03486-9

Keywords

Navigation