Skip to main content

Advertisement

Log in

Stanniocalcin-1 Protected Astrocytes from Hypoxic Damage Through the AMPK Pathway

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Our previous studies revealed that the expression of stanniocalcin-1 (STC1) in astrocytes increased under hypoxic conditions. However, the role of STC1 in hypoxic astrocytes is not well understood. In this work, we first showed the increased expression of STC1 in astrocyte cell line and astrocytes in the brain tissues of mice after exposure to hypoxia. Then, we found that knockdown of STC1 inhibited cell viability and increased apoptosis. These effects were mediated by decreasing the levels of SIRT3, UCP2, and glycolytic genes and increasing the levels of ROS. Further studies suggested that STC1 silencing promoted oxidative stress and suppressed glycolysis by downregulating AMPKα1. Moreover, HIF-1α knockdown in hypoxic astrocytes led to decreased expression of STC1 and AMPKα1, indicating that the expression of STC1 was regulated by HIF-1α. In conclusion, our study showed that HIF-1α-induced STC1 could protect astrocytes from hypoxic damage by regulating glycolysis and redox homeostasis in an AMPKα1-dependent manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The data used to support the findings of this study are available from the corresponding author upon request.

Abbreviations

ALDOA:

Aldolase A

AMPK:

AMP-Activated Protein Kinase

ERK:

Extracellular Signal-Regulated Protein Kinases

GDNF:

Glial Cell Line-Derived Neurotrophic Factor

GLUT1:

Glucose Transporter 1

HIF-1α:

Hypoxia Inducible Factor-1α

IHC:

Immunohistochemical (IHC)

LDHA:

Lactate Dehydrogenase A

NRF2:

Nuclear Factor E2-Related Factor 2

PGK1:

Phosphoglycerate Kinase 1

ROS:

Reactive Oxygen Species

SIRT3:

Sirtuin 3

STC1:

Stanniocalcin-1

UCP2:

Uncoupling Protein 2

References

  1. Santello M et al (2019) Astrocyte function from information processing to cognition and cognitive impairment. Nat Neurosci 22:154–166. https://doi.org/10.1038/s41593-018-0325-8

    Article  PubMed  CAS  Google Scholar 

  2. Vangeison G, Rempe DA (2009) The Janus-faced effects of hypoxia on astrocyte function. Neuroscientist 15:579–588. https://doi.org/10.1177/1073858409332405

    Article  PubMed  PubMed Central  Google Scholar 

  3. Marina N et al (2016) Astrocytes and brain hypoxia. Adv Exp Med Biol 903:201–207. https://doi.org/10.1007/978-1-4899-7678-9_14

    Article  PubMed  CAS  Google Scholar 

  4. Mitroshina ЕV et al (2019) Intracellular neuroprotective mechanisms in neuron-glial networks mediated by glial cell line-derived neurotrophic factor. Oxid Med Cell Longev 2019:1036907. https://doi.org/10.1155/2019/1036907

    Article  CAS  Google Scholar 

  5. Toriuchi K et al (2020) Prolonged astrocyte-derived erythropoietin expression attenuates neuronal damage under hypothermic conditions. J Neuroinflammation 17:141. https://doi.org/10.1186/s12974-020-01831-3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Bolanos JP (2016) Bioenergetics and redox adaptations of astrocytes to neuronal activity. J Neurochem 139 Suppl 2:115–125. https://doi.org/10.1111/jnc.13486

    Article  CAS  Google Scholar 

  7. Brekke E et al (2015) Glucose metabolism and astrocyte-neuron interactions in the neonatal brain. Neurochem Int 82:33–41. https://doi.org/10.1016/j.neuint.2015.02.002

    Article  PubMed  CAS  Google Scholar 

  8. Chen K et al (2018) Lactate transport facilitates neurite outgrowth. Biosci Rep 38:BSR20180157. https://doi.org/10.1042/BSR20180157

    Article  PubMed  PubMed Central  Google Scholar 

  9. Gao Y et al (2019) Integrated analysis identified core signal pathways and hypoxic characteristics of human glioblastoma. J Cell Mol Med 23:6228–6237. https://doi.org/10.1111/jcmm.14507

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Zhao F et al (2020) Expression, function and clinical application of stanniocalcin-1 in cancer. J Cell Mol Med 24:7686–7696. https://doi.org/10.1111/jcmm.15348

    Article  PubMed  PubMed Central  Google Scholar 

  11. Pan JS et al (2015) Stanniocalcin-1 inhibits renal ischemia/reperfusion injury via an AMP-activated protein kinase-dependent pathway. J Am Soc Nephrol 26:364–378. https://doi.org/10.1681/ASN.2013070703

    Article  PubMed  CAS  Google Scholar 

  12. Liu D et al (2016) Stanniocalcin-1 protects a mouse model from renal ischemia-reperfusion injury by affecting ROS-mediated multiple signaling pathways. Int J Mol Sci 17:1051. https://doi.org/10.3390/ijms17071051

    Article  PubMed Central  CAS  Google Scholar 

  13. Huang L et al (2012) Overexpression of stanniocalcin-1 inhibits reactive oxygen species and renal ischemia/reperfusion injury in mice. Kidney Int 82:867–877. https://doi.org/10.1038/ki.2012.223

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Zhao F et al (2020) Stanniocalcin-1 alleviates contrast-induced acute kidney injury by regulating mitochondrial quality control via the Nrf2 pathway. Oxid Med Cell Longev 2020:1898213–1898213. https://doi.org/10.1155/2020/1898213

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Mohammadipoor A et al (2016) Stanniocalcin-1 attenuates ischemic cardiac injury and response of differentiating monocytes/macrophages to inflammatory stimuli. Transl Res 177:127–142. https://doi.org/10.1016/j.trsl.2016.06.011

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Liu Z et al (2019) STC-1 ameliorates renal injury in diabetic nephropathy by inhibiting the expression of BNIP3 through the AMPK/SIRT3 pathway. Lab Invest 99:684–697. https://doi.org/10.1038/s41374-018-0176-7

    Article  PubMed  CAS  Google Scholar 

  17. Zhang Y et al (2019) Endothelial stanniocalcin 1 maintains mitochondrial bioenergetics and prevents oxidant-induced lung injury via toll-like receptor 4. Antioxid Redox Signal 30:1775–1796. https://doi.org/10.1089/ars.2018.7514

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Huang L et al (2015) Stanniocalcin-1 inhibits thrombin-induced signaling and protects from bleomycin-induced lung injury. Sci Rep 5:18117. https://doi.org/10.1038/srep18117

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Tang SE et al (2014) Stanniocalcin-1 ameliorates lipopolysaccharide-induced pulmonary oxidative stress, inflammation, and apoptosis in mice. Free Radic Biol Med 71:321–331. https://doi.org/10.1016/j.freeradbiomed.2014.03.034

    Article  PubMed  CAS  Google Scholar 

  20. Bonfante S et al (2020) Stanniocalcin-1 ameliorates cerebral ischemia by decrease oxidative stress and blood brain barrier permeability. Microvasc Res 128:103956. https://doi.org/10.1016/j.mvr.2019.103956

    Article  PubMed  CAS  Google Scholar 

  21. Bonfante S et al (2020) Stanniocalcin 1 inhibits the inflammatory response in microglia and protects against sepsis-associated encephalopathy. Neurotox Res. https://doi.org/10.1007/s12640-020-00293-y

    Article  PubMed  Google Scholar 

  22. Barialai L et al (2020) AMPK activation protects astrocytes from hypoxia–induced cell death. Int J Mol Med 45:1385–1396. https://doi.org/10.3892/ijmm.2020.4528

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Waclawiczek A et al (2020) Mesenchymal niche remodeling impairs hematopoiesis via stanniocalcin 1 in acute myeloid leukemia. J Clin Invest 130:3038–3050. https://doi.org/10.1172/JCI133187

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Ito Y et al (2014) Stanniocalcin-1 is induced by hypoxia inducible factor in rat alveolar epithelial cells. Biochem Biophys Res Commun 452:1091–1097. https://doi.org/10.1016/j.bbrc.2014.09.060

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Yeung HY et al (2005) Hypoxia-inducible factor-1-mediated activation of stanniocalcin-1 in human cancer cells. Endocrinology 146:4951–4960. https://doi.org/10.1210/en.2005-0365

    Article  PubMed  CAS  Google Scholar 

  26. Vestergaard MB et al (2020) Higher physiological vulnerability to hypoxic exposure with advancing age in the human brain. J Cereb Blood Flow Metab 40:341–353. https://doi.org/10.1177/0271678X18818291

    Article  PubMed  Google Scholar 

  27. Gallagher CN et al (2009) The human brain utilizes lactate via the tricarboxylic acid cycle: a 13 C-labelled microdialysis and high-resolution nuclear magnetic resonance study. Brain 132:2839–2849. https://doi.org/10.1093/brain/awp202

    Article  PubMed  Google Scholar 

  28. Bouzat P et al (2014) Cerebral metabolic effects of exogenous lactate supplementation on the injured human brain. Intensive Care Med 40:412–421. https://doi.org/10.1007/s00134-013-3203-6

    Article  PubMed  CAS  Google Scholar 

  29. Zhang K et al (2000) Stanniocalcin: a molecular guard of neurons during cerebral ischemia. Proc Natl Acad Sci USA 97:3637–3642. https://doi.org/10.1073/pnas.070045897

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Westberg JA et al (2007) Hypoxic preconditioning induces neuroprotective stanniocalcin-1 in brain via IL-6 signaling. Stroke 38:1025–1030. https://doi.org/10.1161/01.STR.0000258113.67252.fa

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by grants from Army Medical University (Grant No. 2017XQN05), Youth Cultivation Project of PLA (Grant No. 19QNP002) and the program of Chongqing Talents.

Author information

Authors and Affiliations

Authors

Contributions

BS performed experiments, interpreted the data, and wrote the manuscript. SH, BL, GX, GE, LF, LX and WZ participated experiments. DC and JC participated in data analysis and manuscript writing. EZ and YG conceived the study design, experimental plan, and manuscript writing. All authors discussed the results and critically reviewed the manuscript.

Corresponding authors

Correspondence to Yuqi Gao or Erlong Zhang.

Ethics declarations

Conflict of interest

The authors have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Figure S1. The expression of GFAP in HEB cells. Green: GFAP; Purple: Nucleoli. Supplementary material 1 (TIF 1072.4 kb)

11064_2021_3393_MOESM2_ESM.tif

Figure S2. STC1 expression in immunohistochemcal analysis of mouse brain tissues. Supplementary material 2 (TIF 10995.7 kb)

11064_2021_3393_MOESM3_ESM.tif

Figure S3. 1 The TUNEL assay in mouse brain tissues under normoxic and 5,800-m hypobaric hypoxic conditions for 1, 3 and 7 days (n=6). Blue: DAPI; Green: GFAP; Red: TUNEL. Supplementary material 3 (TIF 9787.2 kb)

Supplementary material 4 (DOCX 17.4 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, B., He, S., Liu, B. et al. Stanniocalcin-1 Protected Astrocytes from Hypoxic Damage Through the AMPK Pathway. Neurochem Res 46, 2948–2957 (2021). https://doi.org/10.1007/s11064-021-03393-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-021-03393-z

Keywords

Navigation