Skip to main content

Advertisement

Log in

Nrf2/HO-1 Signaling Activator Acetyl-11-keto-beta Boswellic Acid (AKBA)-Mediated Neuroprotection in Methyl Mercury-Induced Experimental Model of ALS

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Methylmercury (MeHg) is a potent neurotoxin that causes neurotoxicity and neuronal cell death. MeHg exposure also leads to oligodendrocyte destruction, glial cell overactivation, and demyelination of motor neurons in the motor cortex and spinal cord. As a result, MeHg plays an important role in the progression of amyotrophic lateral sclerosis (ALS)-like neurocomplications. ALS is a fatal neurodegenerative disorder in which neuroinflammation is the leading cause of further CNS demyelination. Nuclear factor erythroid-2-related factor-2 (Nrf2)/Heme oxygenase-1 (HO-1) signaling pathway was thought to be a potential target for neuroprotection in ALS. Acetyl-11-keto-beta-boswellic acid (AKBA) is a multi-component pentacyclic triterpenoid mixture derived from Boswellia serrata with anti-inflammatory and antioxidant properties. The research aimed to investigate whether AKBA, as a Nrf2 / HO-1 activator, can provide protection against ALS. Thus, we explored the role of AKBA on the Nrf2/HO-1 signaling pathway in a MeHg-induced experimental ALS model. In this study, ALS was induced in Wistar rats by oral gavage of MeHg 5 mg/kg for 21 days. An open field test, force swim test, and grip strength were performed to observe experimental rats' motor coordination behaviors. In contrast, a morris water maze was performed for learning and memory. Administration of AKBA 50 mg/kg and AKBA 100 mg/kg continued from day 22 to 42. Neurochemical parameters were evaluated in the rat's brain homogenate. In the meantime, post-treatment with AKBA significantly improved behavioral, neurochemical, and gross pathological characteristics in the brain of rats by increasing the amount of Nrf2/HO-1 in brain tissue. Collectively, our findings indicated that AKBA could potentially avoid demyelination and encourage remyelination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this article. There are no separate or additional files.

Abbreviations

Ach:

Acetylcholine

AchE:

Acetylcholinesterase

AD:

Alzheimer’s disease

AKBA:

Acetyl-11-keto-beta-bosellic acid

ALS:

Amyotrophic lateral sclerosis

ARE:

Antioxidant response element

Bcl-2:

B-cell lymphoma 2

Bzip:

Basic leucin zipper

Caspase-3:

Cysteine-aspartic proteases, cysteine aspartases or cysteine-dependent aspartate-directed proteases-3

CAT:

Catalase

FST:

Forced swim test

GABA:

Gamma amino butyric acid

GCL:

Glutamate cysteine ligase

GPx:

Glutathione peroxidase

GSH:

Glutathione

HD:

Huntington’s disease

HO-1:

Hemeoxygenase 1

IL:

Interleukin

LDH:

Lactate dehydrogenase

MBP:

Myelin basic protein

MDA:

Melanodialdehyde

MeHg:

Methylmercury

MS:

Multiple sclerosis

MWM:

Morris water maze

NIT:

Nitrite

NQO1:

NAD (P)H-quinone oxidoreductase 1

Nrf2:

Nuclear erythroid 2 related factor

OPC’S:

Oligodendrocytes

PD:

Parkinson’s disease

RNA:

Reactive nitrogen species

ROS:

Reactive oxygen species

SOD1:

Superoxide dismutase 1

TSTQ:

Time spend in target quadrant

Txnrd1:

Thioredoxin reductase 1

References

  1. Hubbard JA, Szu JI, Binder DK (2018) The role of aquaporin-4 in synaptic plasticity memory and disease. Brain Res Bull 136:118–129. https://doi.org/10.1016/j.brainresbull.2017.02.011

    Article  PubMed  CAS  Google Scholar 

  2. Alam M, Yadav RK, Minj E, Tiwari A, Mehan S (2020) Exploring molecular approaches in Amyotrophic lateral sclerosis: drug targets from clinical and pre-clinical findings. Curr Mol Pharmacol. https://doi.org/10.2174/1566524020666200427214356

    Article  Google Scholar 

  3. Gordon PH (2013) Amyotrophic Lateral Sclerosis: an update for 2013 clinical features, pathophysiology, management and therapeutic trials. Aging Dis 4:295–310

    Article  Google Scholar 

  4. Harms MB, Baloh RH (2013) Clinical neurogenetics: amyotrophic lateral sclerosis. Neurol Clin 31:929–950. https://doi.org/10.1016/j.ncl.2013.05.003

    Article  PubMed  Google Scholar 

  5. Mhatre M, Floyd RA, Hensley K (2004) Oxidative stress and neuroinflammation in Alzheimer’s disease and amyotrophic lateral sclerosis: common links and potential therapeutic targets. J Alzheimer’s Dis 6:147–157. https://doi.org/10.3233/jad-2004-6206

    Article  CAS  Google Scholar 

  6. Yadav R, Minj E, Mehan S (2021) Understanding correlation of abnormal c-JNK/p38MAPK signaling in amyotrophic lateral sclerosis: Potential drug targets and influences on neurological disorders. CNS Neurol Disord Drug Targets. https://doi.org/10.2174/1871527320666210126113848

    Article  PubMed  Google Scholar 

  7. Philips T (2013) Oligodendrocyte dysfunction in the pathogenesis of amyotrophic lateral sclerosis. Brain 136:471–482. https://doi.org/10.1093/brain/aws339

    Article  PubMed  PubMed Central  Google Scholar 

  8. Kang SH (2013) Degeneration and impaired regeneration of gray matter oligodendrocytes in amyotrophic lateral sclerosis. Nat Neurosci 16:571–579. https://doi.org/10.1038/nn.3357

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Nakamura K, Houzawa U, Uemura T (1986) Auditory brainstem responses in rats with methylmercury poisoning. Audiol Jpn 29:445–446. https://doi.org/10.1016/j.toxlet.2012.07.011

    Article  CAS  Google Scholar 

  10. Murata K, Weihe P, Budtz-Jorgensen EJ, Grandjean PJ (2004) Delayed brainstem auditory evoked potential latencies in 14-year-old children exposed to methylmercury. J Pediatr 144:177–183. https://doi.org/10.1016/j.jpeds.2003.10.059

    Article  PubMed  CAS  Google Scholar 

  11. Dong Li Z, Proschel TC, Noble M (2007) Chemically diverse toxicants converge on Fyn and c-Cbl to disrupt precursor cell function. PLoS Biol. https://doi.org/10.1371/journal.pbio.0050035

    Article  Google Scholar 

  12. Padhi BK, Pelletier G, Williams A, Berndt-Weis L, Yauk C, Bowers WJ, Chu I (2008) Gene expression profiling in rat cerebellum following in utero and lactational exposure to mixtures of methylmercury, polychlorinated biphenyls and organochlorine pesticides. Toxicol Lett 176:93–103. https://doi.org/10.1016/j.toxlet.2007.08.016

    Article  PubMed  CAS  Google Scholar 

  13. NRC (National Research Council) (2000) Toxicological effects of methylmercury. National Academy Press, Washington DC

    Google Scholar 

  14. Castoldi AF, Johansson C, Onishchenko N, Coccini T, Roda E, Vahter M, Ceccatelli S, Manzo (2008) Human developmental neurotoxicity of methylmercury: impact of variables and risk modifiers. Regul Toxicol Pharmacol 51:201–214. https://doi.org/10.1016/j.yrtph.2008.01.016

    Article  PubMed  CAS  Google Scholar 

  15. Farina M, Rocha JB, Aschner M (2011) Mechanisms of methylmercury induced neurotoxicity: evidence from experimental studies. Life Sci 89:555–563. https://doi.org/10.1016/j.lfs.2011.05.019

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Alam MM, Minj E, Yadav RK, Mehan S (2020) Neuroprotective potential of adenyl cyclase/cAMP/CREB and mitochondrial CoQ10 activator in amyotrophic lateral sclerosis rats. Curr Bioact Compd. https://doi.org/10.2174/1573407216999200723113054

    Article  Google Scholar 

  17. Castoldi AF, Onishchenko N, Johansson C, Coccini T, Roda E, Vahter M, Ceccatelli S, Manzo L (2008) Neurodevelopmental toxicity of methylmercury: laboratory animal data and their contribution to human risk assessment. Regul Toxicol Pharmacol 51(2):215–229. https://doi.org/10.1016/j.yrtph.2008.03.005

    Article  PubMed  CAS  Google Scholar 

  18. Fahrion JK, Komuro Y, Li Y, Ohno N, Littner Y, Raoult E, Galas L, Vaudry D, Komuro H (2012) Rescue of neuronal migration deficits in a mouse model of fetal Minamata disease by increasing neuronal Ca2+ spike frequency. Proc Natl Acad Sci USA 109:5057–5062. https://doi.org/10.1073/pnas.1120747109

    Article  PubMed  PubMed Central  Google Scholar 

  19. Kensler TW, Wakabayashi N, Biswal S (2007) Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway. Annu Rev Pharmacol Toxicol 47:89–116. https://doi.org/10.1146/annurev.pharmtox.46.120604.141046

    Article  PubMed  CAS  Google Scholar 

  20. Mitsuishi Y, Motohashi H, Yamamoto M (2012) The Keap1-Nrf2 system in cancers: stress response and anabolic metabolism. Front Oncol 2:200. https://doi.org/10.3389/fonc.2012.00200

    Article  PubMed  PubMed Central  Google Scholar 

  21. Kansanen E, Kuosmanen SM, Leinonen H, Levonen AL (2013) The Keap1-Nrf2 pathway: mechanisms of activation and dysregulation in cancer. Redox Biol 1:45–49. https://doi.org/10.1016/j.redox.2012.10.001

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Wang J (2018) Inflammatory cytokines and cells are potential markers for patients with cerebral apoplexy in intensive care unit. Exp Therapeutic Med 16(2):1014–1020. https://doi.org/10.3892/etm.2018.6213

    Article  CAS  Google Scholar 

  23. Holmström KM, Baird L, Zhang Y (2013) Nrf2 impacts cellular bioenergetics by controlling substrate availability for mitochondrial respiration. Biol Open 2:761–770. https://doi.org/10.1242/bio.20134853

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Li T, Wang H, Ding Y (2014) Genetic elimination of Nrf2 aggravates secondary complications except for vasospasm after experimental subarachnoid haemorrhage in mice. Brain Res 1558:90–99. https://doi.org/10.1016/j.brainres.2014.02.036

    Article  PubMed  CAS  Google Scholar 

  25. Mitsuishi Y, Taguchi K, Kawatani Y (2012) Nrf2 redirects glucose and glutamine into anabolic pathways in metabolic reprogramming. Cancer Cell 22:66–79. https://doi.org/10.1016/j.ccr.2012.05.016

    Article  PubMed  CAS  Google Scholar 

  26. Lee JM, Shih AY, Murphy TH (2003) NF-E2-related factor-2 mediates neuroprotection against mitochondrial complex I inhibitors and increased concentrations of intracellular calcium in primary cortical neurons. J Biol Chem 278:37948–37956. https://doi.org/10.1074/jbc.M305204200

    Article  PubMed  CAS  Google Scholar 

  27. DoNascimento JL, Oliveira KR, Crespo-Lopez ME, Macchi BM, Maues LA, Pinheiro Mda C, Silveira LC, Herculano AM (2008) Methylmercury neurotoxicity & anti-oxidant defenses. Indian J Med Res 128:373–382

    CAS  Google Scholar 

  28. Hwang GW (2012) Role of intracellular defense factors against methylmercury toxicity. Biol Pharm Bull 35:1881–1884. https://doi.org/10.1248/bpb.b212019

    Article  PubMed  CAS  Google Scholar 

  29. Feng S, Xu Z, Wang F, Yang T, Liu W, Deng Y, Xu B (2017) Sulforaphane prevents methylmercury-induced oxidative damage and excitotoxicity through activation of the Nrf2-ARE pathway. Mol Neurobiol 54:375–391. https://doi.org/10.1007/s12035-015-9643-y

    Article  PubMed  CAS  Google Scholar 

  30. Sykiotis GP, Bohmann D (2008) Keap1/Nrf2 signalling regulates oxidative stress tolerance and lifespan in Drosophila. Dev Cell 14:76–85. https://doi.org/10.1016/j.devcel.2007.12.002

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Piantadosi CA, Withers CM, Bartz RR (2011) Heme oxygenase-1 couples activation of mitochondrial biogenesis to anti-inflammatory cytokine expression. J Biol Chem 286(18):16374–85. https://doi.org/10.1074/jbc.M110.207738

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Cuadrado MPAIRA (2017) P 087 - NRF2 controls proteostasis through the transcriptionalregulation of autophagy. In: Proceedings of the OCC World Congress and Annual SFRR-E Conference Metabolic Stress and Redox Regulation Berlin. Free Radical Biology and Medicine 108. https://doi.org/10.1016/j.freeradbiomed.2017.04.172

  33. Pajares M, Rojo AI, Arias E (2018) Transcription factor NFE2L2/NRF2 modulates chaperone-mediated autophagy through the regulation of LAMP2A (2018/06/29). Autophagy 14:1310–1322. https://doi.org/10.1080/15548627.2018.1474992

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Sakata H, Niizuma K, Yoshioka H (2012) Minocycline-preconditioned neural stem cells enhance neuroprotection after ischemic stroke in rats. J Neurosci 32:3462–3473. https://doi.org/10.1523/JNEUROSCI.5686-11.2012

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Unoki T, Akiyama M, Kumagai Y, Gonçalves FM, Farina M, Rocha JB, Aschner M (2018) Molecular pathways associated with methylmercury-induced Nrf2 modulation. Front Genet 9:373. https://doi.org/10.3389/fgene.2018.00373

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Joshi G, Johnson JA (2012) The Nrf2-ARE pathway: a valuable therapeutic target for the treatment of neurodegenerative diseases. Recent Pat CNS Drug Discov 7(3):218–229. https://doi.org/10.2174/157488912803252023

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Sarlette A, Krampfl K, Grothe C, Neuhoff N, Dengler R, Petri S (2008) Nuclear erythroid 2-related factor 2-antioxidative response element signaling pathway in motor cortex and spinal cord in amyotrophic lateral sclerosis. J Neuropathol Exp Neurol 67(11):1055–1062. https://doi.org/10.1097/NEN.0b013e31818b4906

    Article  PubMed  CAS  Google Scholar 

  38. Minj E, Yadav RK, Mehan S (2021) Targeting abnormal Nrf2/HO-1 signaling in amyotrophic lateral sclerosis: current Insights on drug targets and influences on neurological disorders. Curr Mol Med. https://doi.org/10.2174/1566524021666210111104920

    Article  PubMed  Google Scholar 

  39. Chien MH, Chow JM, Lee WJ (2017) Tricetin induces apoptosis of human leukemic HL-60 cells through are active oxygen species-mediated c-Jun N-Terminal kinase activation pathway. Int J Mol Sci 18(8):1667. https://doi.org/10.3390/ijms18081667

    Article  PubMed Central  CAS  Google Scholar 

  40. Park JH, Lee JK, Kim HS, Chung ST, Eom JH, Kim KA (2004) Immunomodulatory effect of caffeic acid phenethyl ester in Balb/c mice. Int Immuno Pharmacol 4(3):429–436. https://doi.org/10.1016/j.intimp.2004.01.013

    Article  CAS  Google Scholar 

  41. Linker RA, Lee DH, Ryan S (2011) Fumaric acid esters exert neuroprotective effects in neuroinflammation via activation of theNrf2 anti-oxidant pathway. Brain 134:678–692. https://doi.org/10.1093/brain/awq386

    Article  PubMed  Google Scholar 

  42. Van Horssen J, Schreibelt G, Drexhage J, Hazes T, Dijkstra CD, van der Valk P, de Vries HE (2008) Severe oxidative damage in multiple sclerosis lesions coincides with enhanced anti-oxidant enzyme expression. Free Radic Biol Med 45(12):1729–1737. https://doi.org/10.1016/j.freeradbiomed.2008.09.023

    Article  PubMed  CAS  Google Scholar 

  43. Ellrichmann G, Petrasch-Parwez E, Lee DH, Reick C, Arning L, Saft C (2011) Efficacy of fumaric acid esters in the R6/2 and YAC128 models of Huntington’s disease. PLoS ONE. https://doi.org/10.1371/journal.pone.0016172

    Article  PubMed  PubMed Central  Google Scholar 

  44. Johnson JA, Johnson DA, Kraft AD, Calkins MJ, Jakel RJ, Vargas MR, Chen PC (2008) The Nrf2-ARE pathway: an indicator and modulator of oxidative stress in neurodegeneration. Ann N Y Acad Sci 1147:61–69. https://doi.org/10.1196/annals.1427.036

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Lee JM, Calkins MJ, Chan K, Kan YW, Johnson JA (2003) Identification of the NF-E2-related factor-2-dependent genes conferring protection against oxidative stress in primary cortical astrocytes using oligonucleotide microarray analysis. J Biol Chem 278(14):12029–12038. https://doi.org/10.1074/jbc.M211558200

    Article  PubMed  CAS  Google Scholar 

  46. Shih AY, Imbeault S, Barakauskas V, Erb H, Jiang L, Li P, Murphy TH (2005) Induction of the Nrf2-driven anti-oxidant response confers neuroprotection during mitochondrial stress in vivo. J Biol Chem 280(24):22925–36. https://doi.org/10.1074/jbc.M414635200

    Article  PubMed  CAS  Google Scholar 

  47. Cuadrado A, Rojo AI (2008) Heme oxygenase-1 as a therapeutic target in neurodegenerative diseases and brain infections. Curr Pharm Des 14(5):429–442. https://doi.org/10.2174/13816120878359740

    Article  PubMed  CAS  Google Scholar 

  48. Ernst E (2008) Frankincense: systematic review. BMJ. https://doi.org/10.1136/bmj.a2813

    Article  PubMed  PubMed Central  Google Scholar 

  49. Ammon HP (2006) Boswellic acids in chronic inflammatory diseases. Planta Med 72(12):1100–1116. https://doi.org/10.1055/s-2006-947227

    Article  PubMed  CAS  Google Scholar 

  50. Singh S, Khajuria A, Taneja SC, Khajuria RK, Singh J, Qazi GN (2007) Boswellic acids and glucosamine show synergistic effect in preclinical anti-inflammatory study in rats. Bio Org Med Chem Lett 17(13):3706–3711. https://doi.org/10.1016/j.bmcl.2007.04.034

    Article  CAS  Google Scholar 

  51. Doaee P, Rajaei Z, Roghani M, Alaei H, Kamalinejad M (2019) Effects of Boswellia serrataresin extract on motor dysfunction and brain oxidative stress in an experimental model of Parkinson’s disease. Avicenna J Phyto med 9(3):281–290

    Google Scholar 

  52. Wei C, Fan J, Sun X, Yao J, Guo Y, Zhou B, Shang Y (2020) Acetyl-11-keto-β-boswellic acid ameliorates cognitive deficits and reduces amyloid-β levels in APPswe/PS1dE9 mice through anti-oxidant and anti-inflammatory pathways. Free Radic Biol Med 150:96–108. https://doi.org/10.1016/j.freeradbiomed.2020.02.022

    Article  PubMed  CAS  Google Scholar 

  53. Rajabian A, Sadeghnia HR, Fanoudi S, Hosseini A (2020) Genus Boswelliaas a new candidate for neurodegenerative disorders. Iran J Basic Med Sci 23(3):277–286

    PubMed  PubMed Central  Google Scholar 

  54. Winking M, Sarikaya S, Rahmanian A, Jödicke A, Böker DK (2000) Boswellic acids inhibit glioma growth: a new treatment option? J Neurooncol 46(2):97–103. https://doi.org/10.1023/a:1006387010528

    Article  PubMed  CAS  Google Scholar 

  55. Sayed AS, Gomaa IEO, Bader M, El Sayed N (2018) Role of 3-acetyl-11-keto-beta-boswellic acid in counteracting LPS-induced neuroinflammation via modulation of miRNA-155. Mol Neuro Biol 55(7):5798–5808. https://doi.org/10.1007/s12035-017-0801-2

    Article  CAS  Google Scholar 

  56. Girardi B, Principi M, Pricci M, Giorgio F, Annone A, Losurdo G, Ierardi E, Di Leo A, Barone M (2018) Chemoprevention of inflammation-related colorectal cancer by silymarin, acetyl-11-keto-beta-boswellic acid, curcumin and maltodextrin-enriched dietetic formulation in animal model. Carcinogenesis 39(10):1274–1282. https://doi.org/10.1093/carcin/bgy104

    Article  PubMed  CAS  Google Scholar 

  57. Kruger P, Daneshfar R, Eckert GP, Klein J, Volmer DA, Bahr U, Muller WE, Karas M (2008) Metabolism of boswellic acids in vitro and in vivo. Drug Metab Dispos 36(6):1135–1142. https://doi.org/10.1124/dmd.107.018424

    Article  PubMed  CAS  Google Scholar 

  58. Iram F, Khan SA, Husain A (2017) Phytochemistry and potential therapeutic actions of Boswellic acids: a mini-review. Asian Pac J Trop Biomed 7(6):513–523. https://doi.org/10.1016/j.apjtb.2017.05.001

    Article  Google Scholar 

  59. Guedes J, Cardoso AL, Pedroso de Lima MC (2013) Involvement of microRNA in microglia-mediated immune response. Clin Dev Immunol. https://doi.org/10.1155/2013/18687

    Article  PubMed  PubMed Central  Google Scholar 

  60. Beghelli D, Isani G, Roncada P, Andreani G, Bistoni O, Bertocchi M, Lupidi G, Alunno A (2017) Anti-oxidant and ex vivo immune system regulatory properties of Boswellia serrata extracts. Oxid Med Cell Longev 2017:7468064. https://doi.org/10.1155/2017/7468064

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Ding Y, Chen M, Wang M, Wang M, Zhang T, Park J, Zhu Y, Guo C, Jia Y, Li Y, Wen A (2014) Neuroprotection by acetyl-11-keto-β-Boswellic acid, in ischemic brain injury involves the Nrf2/HO-1 defense pathway. Sci Rep 4:7002. https://doi.org/10.1038/srep07002

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Yi D, Chen M, Wang M, Li WY, Ai DW (2015) Posttreatment with 11-keto-β-boswellic acid ameliorates cerebral ischemia-reperfusion injury: Nrf2/HO-1 pathway as a potential mechanism. Mol Neurobiol 52(3):1430–1439. https://doi.org/10.1007/s12035-014-8929-9

    Article  CAS  Google Scholar 

  63. Bishnoi M, Patil CS, Shrinivas AK, Kulkarni K (2007) Co-Administration of acetyl-11-keto-β-boswellic acid, a specific 5-lipoxygenase inhibitor, potentiates the protective effect of cox-2 inhibitors in kainic acid induced neurotoxicity in mice. Pharmacology 79(1):34–41. https://doi.org/10.1159/000097627

    Article  PubMed  CAS  Google Scholar 

  64. Christinal J, Sumathi T (2013) Effect of Bacopa monniera extract on methylmercury-induced behavioral and histopathological changes in rats. Biol Trace Elem Res 155(1):56–64. https://doi.org/10.1007/s12011-013-9756-y

    Article  PubMed  CAS  Google Scholar 

  65. Qin Y, Li GL, Xu XH, Sun ZY, Gu JW, Gao FB (2018) Brain structure alterations and cognitive impairment following repetitive mild head impact: an in vivo MRI and behavioral study in rat. Behav Brain Res 340:41–488. https://doi.org/10.1016/j.bbr.2016.08.008

    Article  PubMed  Google Scholar 

  66. Sândor PS, Di Clemente L, Coppola G (2005) Efficacy of coenzyme Q10 in migraine prophylaxis: a randomized controlled trial. Neurology 64(4):713–715. https://doi.org/10.1212/01.WNL.0000151975.03598.ED

    Article  PubMed  CAS  Google Scholar 

  67. Zhu W, Gao Y, Chang CF, Wan JR, Zhu SS, Wang J (2014) Mouse models of intracerebral hemorrhage in ventricle, cortex, and hippocampus by injections of autologous blood or collagenase. PLoS ONE. https://doi.org/10.1371/journal.pone.0097423

    Article  PubMed  PubMed Central  Google Scholar 

  68. Kumar Jha M, Ho Park D, Kook H (2016) Metabolic control of glia-mediated neuroinflammation. Curr Alzheimer Res 13(4):387–402. https://doi.org/10.2174/1567205013666151116124755

    Article  CAS  Google Scholar 

  69. Silva-Islas CA, Chánez-Cárdenas ME, Barrera-Oviedo D, Ortiz-Plata A, Pedraza-Chaverri J, Maldonado PD (2019) Diallyl trisulfide protects rat brain tissue against the damage induced by ischemia-reperfusion through the nrf2 pathway. Antioxidants 8(9):410. https://doi.org/10.3390/antiox8090410

    Article  PubMed Central  CAS  Google Scholar 

  70. Li H, Lan T, Yun C, Yang K, Du Z, Luo X, Hao E, Deng J (2020) Mangiferin exerts neuroprotective activity against lead-induced toxicity and oxidative stress via Nrf2 pathway. Chin Herbal Med 12:36–46. https://doi.org/10.1016/j.chmed.2019.12.002

    Article  Google Scholar 

  71. El-Ghaiesh SH, Bahr HI, Ibrahiem AT, Ghorab D, Alomar SY, Farag NE, Zaitone SA (2020) Metformin protects from rotenone-induced nigrostriatal neuronal death in adult mice by activating AMPK-FOXO3 signaling and mitigation of angiogenesis. Front Mol Neuro Sci 13:84. https://doi.org/10.3389/fnmol.2020.00084

    Article  CAS  Google Scholar 

  72. Sharma N, Upadhayay S, Shandilya A, Sahu R, Singh A, Rajkhowa B, Mehan S (2021) Neuroprotection by solanesol against ethidium bromide-induced multiple sclerosis-like neurobehavioral, molecular, and neurochemical alterations in experimental rats. Phytomed Plus. https://doi.org/10.1016/j.phyplu.2021.100051

    Article  Google Scholar 

  73. Rahi S, Gupta R, Sharma A, Mehan S (2021) Smo-Shh signaling activator purmorphamine ameliorates neurobehavioral, molecular, and morphological alterations in an intracerebroventricular propionic acid-induced experimental model of autism. Hum Exp Toxicol. https://doi.org/10.1177/09603271211013456

    Article  PubMed  Google Scholar 

  74. Moneim AEA (2015) The neuroprotective effect of berberine in mercury-induced neurotoxicity in rats. Metab Brain Dis 30(4):935–942. https://doi.org/10.1007/s11011-015-9652-6

    Article  PubMed  CAS  Google Scholar 

  75. Mesole SB, Alfred OO, Yusuf UA, Lukubi L, Ndhlovu D (2020) Apoptotic inducement of neuronal cells by aluminium chloride and the neuroprotective effect of eugenol in Wistar rats. Oxid Med Cell Longev 2:1–7. https://doi.org/10.1155/2020/8425643

    Article  CAS  Google Scholar 

  76. Rajdev K, Siddiqui EM, Jadaun KS (2020) Mehan S (2020) Neuroprotective potential of solanesol in acombined model of intracerebral and intraventricular hemorrhage in rats. IBRO Rep 8:101–114. https://doi.org/10.1016/j.ibror.2020.03.001

    Article  PubMed  PubMed Central  Google Scholar 

  77. Donzanti BA, Yamamoto BK (1988) An improved and rapid HPLC-EC method for the isocratic separation of amino acid neurotransmitters from brain tissue and microdialysis perfusates. Life Sci 43(11):913–922. https://doi.org/10.1016/0024-3205(88)90267-6

    Article  PubMed  CAS  Google Scholar 

  78. Mehan S, Rahi S, Tiwari A, Kapoor T, Rajdev K, Sharma R, Khera H, Kosey S, Kukkar U, Dudi R (2020) Adenylate cyclase activator forskolin alleviates intracerebroventricular propionic acid-induced mitochondrial dysfunction of autistic rats. Neural Regen Res 15(6):1140. https://doi.org/10.4103/1673-5374.270316

    Article  PubMed  Google Scholar 

  79. Singh S, Kumar P (2016) Neuroprotective activity of curcumin in combination with piperine against quinolinic acid induced neurodegeneration in rats. Pharmacology 97(3–4):151–160. https://doi.org/10.1159/000443896

    Article  PubMed  CAS  Google Scholar 

  80. Abdel-Salam OM, Khadrawy YA, Mohammed NA (2012) Neuroprotective effect of nitric oxide donor isosorbide-dinitrate against oxidative stress induced by ethidium bromide in rat brain. EXCLI J 11:125–41

    PubMed  PubMed Central  Google Scholar 

  81. Deshmukh R, Sharma V, Mehan S, Sharma N, Bedi KL (2009) Amelioration of intracerebroventricular streptozotocin induced cognitive dysfunction and oxidative stress by vinpocetine – a PDE1 inhibitor. Eur J Pharmacol 620(1–3):49–56. https://doi.org/10.1016/j.ejphar.2009.08.027

    Article  PubMed  CAS  Google Scholar 

  82. Kapoor T, Mehan S (2020) Neuroprotective methodologies in treatment of multiple sclerosis: current status of clinical and pre-clinical findings. Curr Drug Discov Technol. https://doi.org/10.2174/1570163817666200207100903

    Article  Google Scholar 

  83. Cai J (2015) Progesterone alleviates acute brain injury via reducing apoptosis and oxidative stress in a rat experimental subarachnoid hemorrhage model. Neurosci Lett 600:238–243. https://doi.org/10.1016/j.neulet.2015.06.023

    Article  PubMed  CAS  Google Scholar 

  84. Gornall AG, Bardawill CJ, David MM (1949) Determination of serum proteins by means of the biuret reaction. J Biol Chem 177(2):751–766

    Article  CAS  Google Scholar 

  85. Liu M, Zhang C, Liu W, Luo P, Zhang L, Wang Y, Wang Z, Fei Z (2015) A novel rat model of blast-induced traumatic brain injury simulating different damage degree: implications for morphological, neurological, and biomarker changes. Front Cell Neurosci 9:168. https://doi.org/10.3389/fncel.2015.00168

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Beckmann N, Giorgetti E, Neuhaus A, Zurbruegg S, Accart N, Smith P, Perdoux J, Perrot L, Nash M, Desrayaud S, Wipfli P, Frieauff W, Shimshek DR (2018) Brain region-specific enhancement of remyelination and prevention of demyelination by the CSF1R kinase inhibitor BLZ945. Acta Neuropathol Commun 6(1):9. https://doi.org/10.1186/s40478-018-0510-8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Rajagopalan V, Liu Z, Allexandre D, Zhang L, Wang X-F (2013) Brain white matter shape changes in amyotrophic lateral sclerosis (ALS): a fractal dimension study. PLoS ONE. https://doi.org/10.1371/journal.pone.0073614

    Article  PubMed  PubMed Central  Google Scholar 

  88. Tiwari A, Khera R, Rahi S, Mehan S, Makeen HA, Khormi YH, Rehman MU, Khan A (2021) Neuroprotective effect of α-mangostin in the ameliorating propionic acid-induced experimental model of autism in Wistar rats. Brain Sci 11(3):288. https://doi.org/10.3390/brainsci11030288

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Kumar N, Sharma N, Khera R et al (2021) Guggulsterone ameliorates ethidium bromide-induced experimental model of multiple sclerosis via restoration of behavioral, molecular, neurochemical and morphological alterations in rat brain. Metab Brain Dis. https://doi.org/10.1007/s11011-021-00691-x

    Article  PubMed  Google Scholar 

  90. dos Santos AA, Hort MA, Culbreth M, López-Granero C, Farina M, Rocha JBT, Aschner M (2016) Methylmercury and brain development: a review of recent literature. J Trace Elem Med Biol 38:99–107. https://doi.org/10.1016/j.jtemb.2016.03.001

    Article  PubMed Central  CAS  Google Scholar 

  91. Mehan S, Monga V, Rani M, Dudi R, Ghimire K (2018) Neuroprotective effect of solanesol against 3-nitropropionic acid-induced Huntington’s disease-like behavioral, biochemical and cellular alterations: restoration of coenzyme-Q10-mediated mitochondrial dysfunction. Indian J Pharmacol 50(6):309. https://doi.org/10.4103/ijp.IJP_11_18

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Matthew DR, Conrad K, Marvin E, Harvey K, Henderson D, Tawil R, Sobolewski M, Deborah A (2020) Cory-Slechta1 developmental exposure to methylmercury and resultant muscle mercury accumulation and adult motor deficits in mice. Neurotoxicology 20:30116–30119. https://doi.org/10.1016/j.neuro.2020.07.007

    Article  CAS  Google Scholar 

  93. Cryan JF, Markou A, Lucki I (2002) Assessing anti-depressant activity in rodents: recent developments and future needs. Trends Pharma Col Sci 23:238–245. https://doi.org/10.1016/s0165-6147(02)02017-5

    Article  CAS  Google Scholar 

  94. Pehar M, Vargas MR, Robinson KM, Cassina P, Diaz-Amarilla PJ, Hagen TM, Radi R, Barbeito L, Beckman JS (2007) Mitochondrial superoxide production and nuclear factor erythroid 2-related factor 2 activation in p75 neurotrophin receptor-induced motor neuron apoptosis. J Neuro Sci 27:7777–7785. https://doi.org/10.1523/JNEUROSCI.0823-07.2007

    Article  CAS  Google Scholar 

  95. Barbeito LH, Pehar M, Cassina P, Vargas MR, Peluffo H, Viera L, Estevez AG, Beckman JS (2004) A role for astrocytes in motor neuron loss in amyotrophic lateral sclerosis. Brain Res Brain Res Rev 47(1–3):263–274. https://doi.org/10.1016/j.brainresrev.2004.05.003

    Article  PubMed  CAS  Google Scholar 

  96. Frakes AE (2014) The role of neuroinflammation in the pathogenesis of amyotrophic lateral sclerosis. Front Immunol 8:1005. https://doi.org/10.3389/fimmu.2017

    Article  Google Scholar 

  97. Napier MD, Poole C, Satten GA, Ashley-Koch A, Marrie RA, Williamson DM (2016) Heavy metals, organic solvents, and multiple sclerosis: an exploratory look at gene-environment interactions. Arch Environ Occup Health 71(1):26–34. https://doi.org/10.1080/19338244.2014.937381

    Article  PubMed  CAS  Google Scholar 

  98. Nave KA (2010) Myelination and support of axonal integrity by glia. Nature 468:244–252. https://doi.org/10.1038/nature09614

    Article  PubMed  CAS  Google Scholar 

  99. Padhi BK, Pelletier G (2012) Perturbation of Myelin basic protein (Mbp) splice variant expression in developing rat cerebellum following perinatal exposure to methylmercury. Toxicol Lett 213:374–380. https://doi.org/10.1016/j.toxlet.2012.07.011

    Article  PubMed  CAS  Google Scholar 

  100. Kang DS, Yang YR, Lee C, Kim S, Ryu SH, Suh PG (2016) Roles of phosphoinositide-specific phospholipase Cgamma1 in brain development. Adv Biol Regul 60:167–173. https://doi.org/10.1016/j.jbior.2015.10.002

    Article  PubMed  CAS  Google Scholar 

  101. Maione AG, Brudno Y, Stojadinovic O, Park LK, Smith A, Tellechea A, Leal EC, Kearney CJ, Veves A, Tomic-Canic M (2015) Three-dimensional human tissue models that incorporate diabetic foot ulcer-derived fibroblasts mimic in vivo features of chronic wounds. Tissue Eng Part C Methods 21:499–508. https://doi.org/10.1089/ten.TEC.2014.0414

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Foerster BR, Callaghan BC, Petrou M, Edden RAE, Chenevert TL, Feldman EL (2012) Decreased motor cortex γ-aminobutyric acid in amyotrophic lateral sclerosis. Neurology 78(20):1596–1600. https://doi.org/10.1212/WNL.0b013e3182563b57

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Nakanishi ST, Cope TC, Rich MM, Carrasco DI, Pinter MJ (2005) Regulation of motoneuron excitability via motor endplate acetylcholine receptor activation. J Neuro Sci 25(9):2226–2232. https://doi.org/10.1523/JNEUROSCI.5065-04.2005

    Article  CAS  Google Scholar 

  104. Sandyk R (2006) Serotonergic mechanisms in amyotrophic lateral sclerosis. Int J Neurosci 116(7):775–826. https://doi.org/10.1080/00207450600754087

    Article  PubMed  CAS  Google Scholar 

  105. Pollard KM, Cauvi DM, Toomey CB, Hultman P, Kono DH (2019) Mercury-induced inflammation and autoimmunity. Biochim Biophys Acta. https://doi.org/10.1016/j.bbagen.2019.02.001

    Article  Google Scholar 

  106. Barber SC, Shaw PJ (2010) Oxidative stress in ALS: key role in motor neuron injury and therapeutic target. Free Radical Biol Med 48:629–641. https://doi.org/10.1016/j.freeradbiomed.2009.11.018

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to Chairman, Mr. Parveen Garg, and Director, Dr. G.D. Gupta, ISF College of Pharmacy, Moga (Punjab), India, for their great vision and support.

Author information

Authors and Affiliations

Authors

Contributions

All data were generated in-house, and no paper mill was used. All authors agree to be accountable for all aspects of work ensuring integrity and accuracy. EM: Contribution: Clinical and pre-clinical survey. SU: Contribution: Compilation of statistical research data, revision of research manuscript. SM: Contribution: Original research hypothesis, guide, and compilation of all manuscript data. All authors approved the final version of this study.

Corresponding author

Correspondence to Sidharth Mehan.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical Approval

All applicable institutional guidelines for the care and use of animals were followed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Minj, E., Upadhayay, S. & Mehan, S. Nrf2/HO-1 Signaling Activator Acetyl-11-keto-beta Boswellic Acid (AKBA)-Mediated Neuroprotection in Methyl Mercury-Induced Experimental Model of ALS. Neurochem Res 46, 2867–2884 (2021). https://doi.org/10.1007/s11064-021-03366-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-021-03366-2

Keywords

Navigation