Skip to main content

Advertisement

Log in

Posttreatment with 11-Keto-β-Boswellic Acid Ameliorates Cerebral Ischemia–Reperfusion Injury: Nrf2/HO-1 Pathway as a Potential Mechanism

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Oxidative stress is well known to play a pivotal role in cerebral ischemia–reperfusion injury. The nuclear factor erythroid-2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) pathway has been considered a potential target for neuroprotection in stroke. 11-Keto-β-boswellic acid (KBA) is a triterpenoid compound from extracts of Boswellia serrata. The aim of the present study was to determine whether KBA, a novel Nrf2 activator, can protect against cerebral ischemic injury. Middle cerebral artery occlusion (MCAO) was operated on male Sprague–Dawley rats. KBA (25 mg/kg) applied 1 h after reperfusion significantly reduced infarct volumes and apoptotic cells as well as increased neurologic scores at 48 h after reperfusion. Meanwhile, posttreatment with KBA significantly decreased malondialdehyde (MDA) levels, restored the superoxide dismutase (SOD) activity, and increased the protein Nrf2 and HO-1 expression in brain tissues. In primary cultured astrocytes, KBA increased the Nrf2 and HO-1 expression, which provided protection against oxygen and glucose deprivation (OGD)-induced oxidative insult. But knockdown of Nrf2 or HO-1 attenuated the protective effect of KBA. In conclusion, these findings provide evidence that the neuroprotection of KBA against oxidative stress-induced ischemic injury involves the Nrf2/HO-1 pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

KBA:

11-Keto-β-boswellic acid

ARE:

Antioxidant response elements

CBF:

Cerebral blood flow

EMSA:

Electrophoresis mobility shift assay

GPx:

Glutathione peroxidase

I/R:

Ischemia–reperfusion

HE:

Hematoxylin and eosin

HO-1:

Heme oxygenase-1

Keap1:

Kelch-like ECH-associated protein 1

MCAO:

Middle cerebral artery occlusion

MDA:

Malondialdehyde

MTT:

3-[4,5-Dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide

Nrf2:

Nuclear factor erythroid-2-related factor 2

OGD:

Oxygen and glucose deprivation

PBS:

Phosphate-buffered saline

ROS:

Reactive oxygen species

SD:

Standard deviation

siRNA:

Small interfering RNA

SOD:

Superoxide dismutase

TTC:

2,3,5-Triphenyltetrazolium chloride

TUNEL:

Terminal deoxynucleotidyl transferase dUTP nick end labeling

References

  1. Chan PH (1994) Oxygen radicals in focal cerebral ischemia. Brain Pathol 4(1):59–65

    Article  CAS  PubMed  Google Scholar 

  2. Jaiswal AK (2004) Nrf2 signaling in coordinated activation of antioxidant gene expression. Free Radic Biol Med 36(10):1199–1207

    Article  CAS  PubMed  Google Scholar 

  3. Shah ZA, R-c L, Ahmad AS, Kensler TW, Yamamoto M, Biswal S, Doré S (2010) The flavanol (−)-epicatechin prevents stroke damage through the Nrf2/HO1 pathway. J Cereb Blood Flow Metab 30(12):1951–1961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Alfieri A, Srivastava S, Siow R, Cash D, Modo M, Duchen MR, Fraser PA, Williams SC, Mann GE (2013) Sulforaphane preconditioning of the Nrf2/HO-1 defense pathway protects the cerebral vasculature against blood–brain barrier disruption and neurological deficits in stroke. Free Radic Biol Med 65:1012–1022

    Article  CAS  PubMed  Google Scholar 

  5. Guo C, Zhu Y, Weng Y, Wang S, Guan Y, Wei G, Yin Y, Xi M, Wen A (2014) Therapeutic time window and underlying therapeutic mechanism of breviscapine injection against cerebral ischemia/reperfusion injury in rats. J Ethnopharmacol 151(1):660–666. doi:10.1016/j.jep.2013.11.026

    Article  CAS  PubMed  Google Scholar 

  6. Ding Y, Zhang B, Zhou K, Chen M, Wang M, Jia Y, Song Y, Li Y, Wen A (2014) Dietary ellagic acid improves oxidant-induced endothelial dysfunction and atherosclerosis: role of Nrf2 activation. Int J Cardiol. doi:10.1016/j.ijcard.2014.06.045

    Google Scholar 

  7. Safayhi H, Mack T, Sabieraj J, Anazodo MI, Subramanian LR, Ammon HP (1992) Boswellic acids: novel, specific, nonredox inhibitors of 5-lipoxygenase. J Pharmacol Exp Ther 261(3):1143–1146

    CAS  PubMed  Google Scholar 

  8. Assimopoulou A, Zlatanos S, Papageorgiou V (2005) Antioxidant activity of natural resins and bioactive triterpenes in oil substrates. Food Chem 92(4):721–727

    Article  CAS  Google Scholar 

  9. Hartmann RM, Morgan Martins MI, Tieppo J, Fillmann HS, Marroni NP (2012) Effect of Boswellia serrata on antioxidant status in an experimental model of colitis rats induced by acetic acid. Dig Dis Sci 57(8):2038–2044. doi:10.1007/s10620-012-2134-3

    Article  PubMed  Google Scholar 

  10. Elshazly SM, El Motteleb DMA, Nassar NN (2013) The selective 5-LOX inhibitor 11-keto-β-boswellic acid protects against myocardial ischemia reperfusion injury in rats: involvement of redox and inflammatory cascades. Naunyn Schmiedeberg’s Arch Pharmacol 386(9):823–833

    Article  CAS  Google Scholar 

  11. Rong ZT, Gong XJ, Sun HB, Li YM, Ji H (2011) Protective effects of oleanolic acid on cerebral ischemic damage in vivo and H(2)O(2)-induced injury in vitro. Pharm Biol 49(1):78–85. doi:10.3109/13880209.2010.499130

    Article  CAS  PubMed  Google Scholar 

  12. Li L, Zhang X, Cui L, Wang L, Liu H, Ji H, Du Y (2013) Ursolic acid promotes the neuroprotection by activating Nrf2 pathway after cerebral ischemia in mice. Brain Res 1497:32–39. doi:10.1016/j.brainres.2012.12.032

    Article  CAS  PubMed  Google Scholar 

  13. Yan W, Fang Z, Yang Q, Dong H, Lu Y, Lei C, Xiong L (2013) SirT1 mediates hyperbaric oxygen preconditioning-induced ischemic tolerance in rat brain. J Cereb Blood Flow Metab: Off J Int Soc Cereb Blood Flow Metab 33(3):396–406. doi:10.1038/jcbfm.2012.179

    Article  CAS  Google Scholar 

  14. Kruger P, Daneshfar R, Eckert GP, Klein J, Volmer DA, Bahr U, Muller WE, Karas M, Schubert-Zsilavecz M, Abdel-Tawab M (2008) Metabolism of boswellic acids in vitro and in vivo. Drug Metab Dispos: Biol Fate Chem 36(6):1135–1142. doi:10.1124/dmd.107.018424

    Article  Google Scholar 

  15. Reising K, Meins J, Bastian B, Eckert G, Mueller WE, Schubert-Zsilavecz M, Abdel-Tawab M (2005) Determination of boswellic acids in brain and plasma by high-performance liquid chromatography/tandem mass spectrometry. Anal Chem 77(20):6640–6645. doi:10.1021/ac0506478

    Article  CAS  PubMed  Google Scholar 

  16. Garcia JH, Wagner S, Liu KF, Hu XJ (1995) Neurological deficit and extent of neuronal necrosis attributable to middle cerebral artery occlusion in rats. Statistical validation. Stroke; J Cereb Circ 26(4):627–634, discussion 635

    Article  CAS  Google Scholar 

  17. Halim ND, McFate T, Mohyeldin A, Okagaki P, Korotchkina LG, Patel MS, Jeoung NH, Harris RA, Schell MJ, Verma A (2010) Phosphorylation status of pyruvate dehydrogenase distinguishes metabolic phenotypes of cultured rat brain astrocytes and neurons. Glia 58(10):1168–1176. doi:10.1002/glia.20996

    PubMed  PubMed Central  Google Scholar 

  18. Zhao J, Kobori N, Aronowski J, Dash PK (2006) Sulforaphane reduces infarct volume following focal cerebral ischemia in rodents. Neurosci Lett 393(2–3):108–112. doi:10.1016/j.neulet.2005.09.065

    Article  CAS  PubMed  Google Scholar 

  19. Ungvari Z, Bagi Z, Feher A, Recchia FA, Sonntag WE, Pearson K, de Cabo R, Csiszar A (2010) Resveratrol confers endothelial protection via activation of the antioxidant transcription factor Nrf2. Am J Physiol Heart Circ Physiol 299(1):H18–H24. doi:10.1152/ajpheart.00260.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Qian Y, Guan T, Tang X, Huang L, Huang M, Li Y, Sun H (2011) Maslinic acid, a natural triterpenoid compound from Olea europaea, protects cortical neurons against oxygen-glucose deprivation-induced injury. Eur J Pharmacol 670(1):148–153. doi:10.1016/j.ejphar.2011.07.037

    Article  CAS  PubMed  Google Scholar 

  21. Kaidery NA, Banerjee R, Yang L, Smirnova NA, Hushpulian DM, Liby KT, Williams CR, Yamamoto M, Kensler TW, Ratan RR, Sporn MB, Beal MF, Gazaryan IG, Thomas B (2013) Targeting Nrf2-mediated gene transcription by extremely potent synthetic triterpenoids attenuate dopaminergic neurotoxicity in the MPTP mouse model of Parkinson’s disease. Antioxid Redox Signal 18(2):139–157. doi:10.1089/ars.2011.4491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Tanaka N, Ikeda Y, Ohta Y, Deguchi K, Tian F, Shang J, Matsuura T, Abe K (2011) Expression of Keap1-Nrf2 system and antioxidative proteins in mouse brain after transient middle cerebral artery occlusion. Brain Res 1370:246–253. doi:10.1016/j.brainres.2010.11.010

    Article  CAS  PubMed  Google Scholar 

  23. Nimura T, Weinstein PR, Massa SM, Panter S, Sharp FR (1996) Heme oxygenase-1 (HO-1) protein induction in rat brain following focal ischemia. Brain Res Mol Brain Res 37(1–2):201–208

    Article  CAS  PubMed  Google Scholar 

  24. Ishii T, Itoh K, Ruiz E, Leake DS, Unoki H, Yamamoto M, Mann GE (2004) Role of Nrf2 in the regulation of CD36 and stress protein expression in murine macrophages: activation by oxidatively modified LDL and 4-hydroxynonenal. Circ Res 94(5):609–616. doi:10.1161/01.RES.0000119171.44657.45

    Article  CAS  PubMed  Google Scholar 

  25. Taguchi K, Motohashi H, Yamamoto M (2011) Molecular mechanisms of the Keap1-Nrf2 pathway in stress response and cancer evolution. Genes Cells: Devoted Mol Cell Mech 16(2):123–140. doi:10.1111/j.1365-2443.2010.01473.x

    Article  CAS  Google Scholar 

  26. Zhao Z, Chen Y, Wang J, Sternberg P, Freeman ML, Grossniklaus HE, Cai J (2011) Age-related retinopathy in NRF2-deficient mice. PLoS One 6(4):e19456. doi:10.1371/journal.pone.0019456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Shah ZA, Li RC, Thimmulappa RK, Kensler TW, Yamamoto M, Biswal S, Dore S (2007) Role of reactive oxygen species in modulation of Nrf2 following ischemic reperfusion injury. Neuroscience 147(1):53–59. doi:10.1016/j.neuroscience.2007.02.066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kensler TW, Wakabayashi N, Biswal S (2007) Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway. Annu Rev Pharmacol Toxicol 47:89–116. doi:10.1146/annurev.pharmtox.46.120604.141046

    Article  CAS  PubMed  Google Scholar 

  29. Durante W (2010) Targeting heme oxygenase-1 in vascular disease. Curr Drug Targets 11(12):1504–1516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Paine A, Eiz-Vesper B, Blasczyk R, Immenschuh S (2010) Signaling to heme oxygenase-1 and its anti-inflammatory therapeutic potential. Biochem Pharmacol 80(12):1895–1903. doi:10.1016/j.bcp.2010.07.014

    Article  CAS  PubMed  Google Scholar 

  31. Zeynalov E, Dore S (2009) Low doses of carbon monoxide protect against experimental focal brain ischemia. Neurotox Res 15(2):133–137. doi:10.1007/s12640-009-9014-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Dore S, Takahashi M, Ferris CD, Zakhary R, Hester LD, Guastella D, Snyder SH (1999) Bilirubin, formed by activation of heme oxygenase-2, protects neurons against oxidative stress injury. Proc Natl Acad Sci U S A 96(5):2445–2450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kim YM, Pae HO, Park JE, Lee YC, Woo JM, Kim NH, Choi YK, Lee BS, Kim SR, Chung HT (2011) Heme oxygenase in the regulation of vascular biology: from molecular mechanisms to therapeutic opportunities. Antioxid Redox Signal 14(1):137–167. doi:10.1089/ars.2010.3153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Warner DS, Sheng H, Batinic-Haberle I (2004) Oxidants, antioxidants and the ischemic brain. J Exp Biol 207(Pt 18):3221–3231. doi:10.1242/jeb.01022

    Article  CAS  PubMed  Google Scholar 

  35. Yin MC, Lin MC, Mong MC, Lin CY (2012) Bioavailability, distribution, and antioxidative effects of selected triterpenes in mice. J Agric Food Chem 60(31):7697–7701. doi:10.1021/jf302529x

    Article  CAS  PubMed  Google Scholar 

  36. Bell KF, Al-Mubarak B, Fowler JH, Baxter PS, Gupta K, Tsujita T, Chowdhry S, Patani R, Chandran S, Horsburgh K (2011) Mild oxidative stress activates Nrf2 in astrocytes, which contributes to neuroprotective ischemic preconditioning. Proc Natl Acad Sci 108(1):E1–E2

    Article  CAS  PubMed  Google Scholar 

  37. Dringen R, Pfeiffer B, Hamprecht B (1999) Synthesis of the antioxidant glutathione in neurons: supply by astrocytes of CysGly as precursor for neuronal glutathione. J Neurosci Off J Soc Neurosci 19(2):562–569

    CAS  Google Scholar 

  38. Zhang M, Wang S, Mao L, Leak RK, Shi Y, Zhang W, Hu X, Sun B, Cao G, Gao Y (2014) Omega-3 fatty acids protect the brain against ischemic injury by activating Nrf2 and upregulating heme oxygenase 1. J Neurosci 34(5):1903–1915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Elshazly SM, Abd El Motteleb DM, Nassar NN (2013) The selective 5-LOX inhibitor 11-keto-beta-boswellic acid protects against myocardial ischemia reperfusion injury in rats: involvement of redox and inflammatory cascades. Naunyn Schmiedeberg’s Arch Pharmacol 386(9):823–833. doi:10.1007/s00210-013-0885-9

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work received the support of the grant from the Key Technologies for New Drug Innovation and Development of China (No. 2011ZXJ09202-13; No. 2012BAK25B00) and National Natural Science Foundation of China (No.81373947; No.81201985).

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to YuWen Li or AiDong Wen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, Y., Chen, M., Wang, M. et al. Posttreatment with 11-Keto-β-Boswellic Acid Ameliorates Cerebral Ischemia–Reperfusion Injury: Nrf2/HO-1 Pathway as a Potential Mechanism. Mol Neurobiol 52, 1430–1439 (2015). https://doi.org/10.1007/s12035-014-8929-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-014-8929-9

Keywords

Navigation