Skip to main content

Advertisement

Log in

Comparison of Neuronal Death, Blood–Brain Barrier Leakage and Inflammatory Cytokine Expression in the Hippocampal CA1 Region Following Mild and Severe Transient Forebrain Ischemia in Gerbils

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Transient ischemia in the brain causes blood–brain barrier (BBB) breakdown and dysfunction, which is related to ischemia-induced neuronal damage. Leakage of plasma proteins following transient ischemia is one of the indicators that is used to determine the extent of BBB dysfunction. In this study, neuronal damage/death, leakage of albumin and IgG, microgliosis, and inflammatory cytokine expression were examined in the hippocampal CA1 region, which is vulnerable to transient ischemia, following 5-min (mild) and 15-min (severe) ischemia in gerbils induced by transient common carotid arteries occlusion (tCCAo). tCCAo-induced neuronal damage/death occurred earlier and was more severe after 15-min tCCAo vs. after 5-min tCCAo. Significant albumin and IgG leakage (albumin and IgG immunoreactivity) took 1 or 2 days to begin, and immunoreactivity was markedly increased 5 days after 5-min tCCAo. While, albumin and IgG leakage began to increase 6 h after 15-min tCCAo and remained significantly higher over time than that seen in 5-min tCCAo. IgG immunoreactivity was observed in degenerating neurons and activated microglia after tCCAo, and microglia were activated to a greater extent after 15-min tCCAo than 5-min tCCAo. In addition, following 15-min tCCAo, pro-inflammatory cytokines [tumor necrosis factor alpha (TNF-α) and interleukin 1 beta (IL-1β)] immunoreactivity was significantly higher than that seen following 5-min tCCAo, whereas immunoreactivity of anti-inflammatory cytokines (IL-4 and IL-13) was lower in 15-min than 5-min tCCAo. These results indicate that duration of tCCAo differentially affects the timing and degree of neuronal damage or loss, albumin and IgG leakage and inflammatory cytokine expression in brain tissue. In addition, more severe BBB leakage is closely related to acceleration of neuronal damage through increased microglial activation and pro-inflammatory cytokine expression in the ischemic hippocampal CA1 region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article.

References

  1. Araki T, Kato H, Kogure K (1989) Selective neuronal vulnerability following transient cerebral ischemia in the gerbil: distribution and time course. Acta Neurol Scand 80:548–553

    Article  PubMed  CAS  Google Scholar 

  2. Candelario-Jalil E, Mhadu NH, Al-Dalain SM et al (2001) Time course of oxidative damage in different brain regions following transient cerebral ischemia in gerbils. Neurosci Res 41:233–241

    Article  PubMed  CAS  Google Scholar 

  3. Kirino T (1982) Delayed neuronal death in the gerbil hippocampus following ischemia. Brain Res 239:57–69

    Article  PubMed  CAS  Google Scholar 

  4. Kirino T, Sano K (1984) Selective vulnerability in the gerbil hippocampus following transient ischemia. Acta Neuropathol 62:201–208

    Article  PubMed  CAS  Google Scholar 

  5. Medvedeva YV, Ji SG, Yin HZ et al (2017) Differential vulnerability of CA1 versus CA3 pyramidal neurons after ischemia: possible relationship to sources of Zn2+ accumulation and its entry into and prolonged effects on mitochondria. J Neurosci 37:726–737

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Zhang M, Li W-B, Liu Y-X et al (2011) High expression of GLT-1 in hippocampal CA3 and dentate gyrus subfields contributes to their inherent resistance to ischemia in rats. Neurochem Int 59:1019–1028

    Article  PubMed  CAS  Google Scholar 

  7. Zou B, Li Y, Deng P et al (2005) Alterations of potassium currents in ischemia-vulnerable and ischemia-resistant neurons in the hippocampus after ischemia. Brain Res 1033:78–89

    Article  PubMed  CAS  Google Scholar 

  8. Kirino T, Sano K (1984) Fine structural nature of delayed neuronal death following ischemia in the gerbil hippocampus. Acta Neuropathol 62:209–218

    Article  PubMed  CAS  Google Scholar 

  9. Johansen FF, Jørgensen MB, Diemer N (1983) Resistance of hippocampal CA-1 interneurons to 20 min of transient cerebral ischemia in the rat. Acta Neuropathol 61:135–140

    Article  Google Scholar 

  10. Nitsch C, Scotti A, Sommacal A et al (1989) GABAergic hippocampal neurons resistant to ischemia-induced neuronal death contain the Ca2+-binding protein parvalbumin. Neurosci Lett 105:263–268

    Article  PubMed  CAS  Google Scholar 

  11. Doyle KP, Simon RP, Stenzel-Poore MP (2008) Mechanisms of ischemic brain damage. Neuropharmacology 55:310–318

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Harukuni I, Bhardwaj A (2006) Mechanisms of brain injury after global cerebral ischemia. Neurol Clin 24:1–21

    Article  PubMed  Google Scholar 

  13. Lee J-C, Park CW, Shin MC et al (2018) Tumor necrosis factor receptor 2 is required for ischemic preconditioning-mediated neuroprotection in the hippocampus following a subsequent longer transient cerebral ischemia. Neurochem Int 118:292–303

    Article  PubMed  CAS  Google Scholar 

  14. Park CW, Ahn JH, Lee T-K et al (2020) Post-treatment with oxcarbazepine confers potent neuroprotection against transient global cerebral ischemic injury by activating Nrf2 defense pathway. Biomed Pharmacother 124:109850

    Article  PubMed  CAS  Google Scholar 

  15. Neuwelt EA, Bauer B, Fahlke C et al (2011) Engaging neuroscience to advance translational research in brain barrier biology. Nat Rev Neurosci 12:169–182

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Liu Z, Liu J, Wang S et al (2016) Neuronal uptake of serum albumin is associated with neuron damage during the development of epilepsy. Exp Ther Med 12:695–701

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. LeVine SM (2016) Albumin and multiple sclerosis. BMC Neurol 16:1–12

  18. Kassner A, Merali Z (2015) Assessment of blood-brain barrier disruption in stroke. Stroke 46:3310–3315

    Article  PubMed  Google Scholar 

  19. Tang XN, Cairns B, Kim JY et al (2012) NADPH oxidase in stroke and cerebrovascular disease. Neurol Res 34:338–345

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Wang Q, Tang XN, Yenari MA (2007) The inflammatory response in stroke. J Neuroimmunol 184:53–68

    Article  PubMed  CAS  Google Scholar 

  21. Chung TN, Kim JH, Choi BY et al (2015) Adipose-derived mesenchymal stem cells reduce neuronal death after transient global cerebral ischemia through prevention of blood-brain barrier disruption and endothelial damage. Stem Cells Transl Med 4:178–185

    Article  PubMed  CAS  Google Scholar 

  22. Lan XB, Wang Q, Yang JM et al (2019) Neuroprotective effect of Vanillin on hypoxic-ischemic brain damage in neonatal rats. Biomed Pharmacother 118:109196

    Article  PubMed  CAS  Google Scholar 

  23. Preston E, Webster J (2004) A two-hour window for hypothermic modulation of early events that impact delayed opening of the rat blood-brain barrier after ischemia. Acta Neuropathol 108:406–412

    Article  PubMed  Google Scholar 

  24. Woodruff TM, Thundyil J, Tang SC et al (2011) Pathophysiology, treatment, and animal and cellular models of human ischemic stroke. Mol Neurodegener 6:11

    Article  PubMed  PubMed Central  Google Scholar 

  25. Yang C, DeMars KM, Alexander JC et al (2017) sustained neurological recovery after stroke in aged rats treated with a novel prostacyclin analog. Stroke 48:1948–1956

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Zhang X, Chen XP, Lin JB et al (2017) Effect of enriched environment on angiogenesis and neurological functions in rats with focal cerebral ischemia. Brain Res 1655:176–185

    Article  PubMed  CAS  Google Scholar 

  27. Maeda M, Akai F, Nishida S et al (1992) Intracerebral distribution of albumin after transient cerebral ischemia: light and electron microscopic immunocytochemical investigation. Acta Neuropathol 84:59–66

    Article  PubMed  CAS  Google Scholar 

  28. Michalski D, Grosche J, Pelz J et al (2010) A novel quantification of blood-brain barrier damage and histochemical typing after embolic stroke in rats. Brain Res 1359:186–200

    Article  PubMed  CAS  Google Scholar 

  29. Ye XL, Lu LQ, Li W et al (2017) Oral administration of ampelopsin protects against acute brain injury in rats following focal cerebral ischemia. Exp Ther Med 13:1725–1734

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Borlongan CV, Yamamoto M, Takei N et al (2000) Glial cell survival is enhanced during melatonin-induced neuroprotection against cerebral ischemia. FASEB J 14:1307–1317

    PubMed  CAS  Google Scholar 

  31. Nordborg C, Sokrab T, Johansson B (1991) The relationship between plasma protein extravasation and remote tissue changes after experimental brain infarction. Acta Neuropathol 82:118–126

    Article  PubMed  CAS  Google Scholar 

  32. Lee TK, Kim H, Song M et al (2019) Time-course pattern of neuronal loss and gliosis in gerbil hippocampi following mild, severe, or lethal transient global cerebral ischemia. Neural Regen Res 14:1394–1403

    Article  PubMed  PubMed Central  Google Scholar 

  33. Yu DK, Yoo KY, Shin BN et al (2012) Neuronal damage in hippocampal subregions induced by various durations of transient cerebral ischemia in gerbils using Fluoro-Jade B histofluorescence. Brain Res 1437:50–57

    Article  PubMed  CAS  Google Scholar 

  34. Lee J-C, Ahn JH, Lee DH et al (2013) Neuronal damage and gliosis in the somatosensory cortex induced by various durations of transient cerebral ischemia in gerbils. Brain Res 1510:78–88

    Article  PubMed  CAS  Google Scholar 

  35. Ohk TG, Yoo K-Y, Park SM et al (2012) Neuronal damage using fluoro-jade B histofluorescence and gliosis in the striatum after various durations of transient cerebral ischemia in gerbils. Neurochem Res 37:826–834

    Article  PubMed  CAS  Google Scholar 

  36. Park CW, Lee J-C, Ahn JH et al (2013) Neuronal damage using fluoro-Jade B histofluorescence and gliosis in the gerbil septum submitted to various durations of cerebral ischemia. Cell Mol Neurobiol 33:991–1001

    Article  PubMed  CAS  Google Scholar 

  37. Ahn JH, Chen BH, Park JH et al (2018) Early IV-injected human dermis-derived mesenchymal stem cells after transient global cerebral ischemia do not pass through damaged blood–brain barrier. J Tissue Eng Regen Med 12:1646–1657

    Article  PubMed  CAS  Google Scholar 

  38. Park JH, Kim DW, Lee TK et al (2019) Improved HCN channels in pyramidal neurons and their new expression levels in pericytes and astrocytes in the gerbil hippocampal CA1 subfield following transient ischemia. Int J Mol Med 44:1801–1810

    PubMed  PubMed Central  CAS  Google Scholar 

  39. Radtke-Schuller S, Schuller G, Angenstein F et al (2016) Brain atlas of the Mongolian gerbil (Meriones unguiculatus) in CT/MRI-aided stereotaxic coordinates. Brain Struct Funct 221:1–272

    Article  PubMed  PubMed Central  Google Scholar 

  40. Schmued LC, Hopkins KJ (2000) Fluoro-Jade B: a high affinity fluorescent marker for the localization of neuronal degeneration. Brain Res 874:123–130

    Article  PubMed  CAS  Google Scholar 

  41. Sugawara T, Lewén A, Noshita N et al (2002) Effects of global ischemia duration on neuronal, astroglial, oligodendroglial, and microglial reactions in the vulnerable hippocampal CA1 subregion in rats. J Neurotrauma 19:85–98

    Article  PubMed  Google Scholar 

  42. Park JH, Park JA, Ahn JH et al (2017) Transient cerebral ischemia induces albumin expression in microglia only in the CA1 region of the gerbil hippocampus. Mol Med Rep 16:661–665

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Chen B, Friedman B, Cheng Q et al (2009) Severe blood-brain barrier disruption and surrounding tissue injury. Stroke 40:e666-674

    Article  PubMed  PubMed Central  Google Scholar 

  44. Kim H, Park JH, Shin MC et al (2019) Fate of astrocytes in the gerbil hippocampus after transient global cerebral ischemia. Int J Mol Sci 20:845

    Article  PubMed Central  CAS  Google Scholar 

  45. Lee CH, Moon SM, Yoo K-Y et al (2010) Long-term changes in neuronal degeneration and microglial activation in the hippocampal CA1 region after experimental transient cerebral ischemic damage. Brain Res 1342:138–149

    Article  PubMed  CAS  Google Scholar 

  46. Ahn JH, Choi JH, Park JH et al (2016) Long-term exercise improves memory deficits via restoration of myelin and microvessel damage, and enhancement of neurogenesis in the aged gerbil hippocampus after ischemic stroke. Neurorehabil Neural Repair 30:894–905

    Article  PubMed  Google Scholar 

  47. Lee JC, Park JH, Ahn JH et al (2016) New GABAergic neurogenesis in the hippocampal CA1 region of a gerbil model of long-term survival after transient cerebral ischemic injury. Brain Pathol 26:581–592

    Article  PubMed  CAS  Google Scholar 

  48. Jørgensen MB, Finsen BR, Jensen MB et al (1993) Microglial and astroglial reactions to ischemic and kainic acid-induced lesions of the adult rat hippocampus. Exp Neurol 120:70–88

    Article  PubMed  Google Scholar 

  49. Nishino H, Czurko A, Fukuda A et al (1994) Pathophysiological process after transient ischemia of the middle cerebral artery in the rat. Brain Res Bull 35:51–56

    Article  PubMed  CAS  Google Scholar 

  50. Michalak Z, Lebrun A, Di Miceli M et al (2012) IgG leakage may contribute to neuronal dysfunction in drug-refractory epilepsies with blood-brain barrier disruption. J Neuropathol Exp Neurol 71:826–838

    Article  PubMed  CAS  Google Scholar 

  51. da Fonseca ACC, Matias D, Garcia C et al (2014) The impact of microglial activation on blood-brain barrier in brain diseases. Front Cell Neurosci 8:362

    Article  PubMed  PubMed Central  Google Scholar 

  52. Yenari MA, Xu L, Tang XN et al (2006) Microglia potentiate damage to blood–brain barrier constituents: improvement by minocycline in vivo and in vitro. Stroke 37:1087–1093

    Article  PubMed  Google Scholar 

  53. Hwang IK, Park JH, Lee TK et al (2017) CD74-immunoreactive activated M1 microglia are shown late in the gerbil hippocampal CA1 region following transient cerebral ischemia. Mol Med Rep 15:4148–4154

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Hwang IK, Yoo K-Y, Kim DW et al (2006) Ionized calcium-binding adapter molecule 1 immunoreactive cells change in the gerbil hippocampal CA1 region after ischemia/reperfusion. Neurochem Res 31:957–965

    Article  PubMed  CAS  Google Scholar 

  55. Yan BC, Ohk TG, Ahn JH et al (2014) Differences in neuronal damage and gliosis in the hippocampus between young and adult gerbils induced by long duration of transient cerebral ischemia. J Neurol Sci 337:129–136

    Article  PubMed  CAS  Google Scholar 

  56. Hulse RE, Swenson WG, Kunkler PE et al (2008) Monomeric IgG is neuroprotective via enhancing microglial recycling endocytosis and TNF-α. J Neurosci 28:12199–12211

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Yang C, Hou X, Feng Q et al (2019) Lupus serum IgG induces microglia activation through Fc fragment dependent way and modulated by B-cell activating factor. J Transl Med 17:1–15

    Article  Google Scholar 

  58. Clausen BH, Wirenfeldt M, Høgedal SS et al (2020) Characterization of the TNF and IL-1 systems in human brain and blood after ischemic stroke. Acta Neuropathol Commun 8:1–17

    Article  CAS  Google Scholar 

  59. Ronaldson PT, Davis TP (2020) Regulation of blood–brain barrier integrity by microglia in health and disease: a therapeutic opportunity. J Cereb Blood Flow Metab 40:S6–S24

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Funding

This research was funded by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, grant number NRF-2020R1F1A1052380 and NRF-2019R1A6A1A11036849”.

Author information

Authors and Affiliations

Authors

Contributions

The author's individual contributions is provided as follow; “Conceptualization, CL, JA, MW and SC; methodology, TL, BK, and HS; software, TL, BK, and HS; validation, CL, JA, MW, SC, JL, MS, JC, and DK; formal analysis, TL, BK, HS, JL, MS, JC, and DK; investigation, TL, BK, HS, JL, MS, JC, and DK; resources, MW and SC; data cu-ration, CL and JA; writing—original draft preparation, CL and JA; writing—review and editing, MW and SC; visualization, JA, CL; supervision, MW and SC; project administration, CL, JA, MW and SC; funding acquisition, MW and SC. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Moo-Ho Won or Soo Young Choi.

Ethics declarations

Conflict of interest

The authors have declared that there are no competing interests.

Ethical Approval

The process of handling and caring animals conformed to the guidelines from the current international laws and policies in the “NIH Guide for the Care and Use of Laboratory Animals” (The National Academies Press, 8th Ed., 2011). The protocol of this experiment was approved (approval no. KW-2000113-1) by the Institutional Animal Care and Use Committee (IACUC) at Kangwon National University.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, CH., Ahn, J.H., Lee, TK. et al. Comparison of Neuronal Death, Blood–Brain Barrier Leakage and Inflammatory Cytokine Expression in the Hippocampal CA1 Region Following Mild and Severe Transient Forebrain Ischemia in Gerbils. Neurochem Res 46, 2852–2866 (2021). https://doi.org/10.1007/s11064-021-03362-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-021-03362-6

Keywords

Navigation