Skip to main content
Log in

SRC-1 Deficiency Increases Susceptibility of Mice to Depressive-Like Behavior After Exposure to CUMS

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Steroid receptor coactivator 1 (SRC-1) is one of the coactivators recruited by the nuclear receptors (NRs) when NRs are activated by steroid hormones, such as glucocorticoid. SRC-1 is abundant in hippocampus and hypothalamus and is also related to some major risk factors for depression, implicated by its reduced expression after stress and its effect on hypothalamus-pituitary-adrenal gland axis function. However, whether SRC-1 is involved in the formation of depression remains unclear. In this study, we firstly established chronic unpredictable stress (CUS) to induce depressive-like behaviors in mice and found that SRC-1 expression was reduced by CUS. A large number of studies have shown that neuroinflammation is associated with stress-induced depression and lipopolysaccharide (LPS) injection can lead to neuroinflammation and depressive-like behaviors in mice. Our result indicated that LPS treatment also decreased SRC-1 expression in mouse brain, implying the involvement of SRC-1 in the process of inflammation and depression. Next, we showed that the chronic unpredictable mild stress (CUMS) failed to elicit the depressive-like behaviors and dramatically promoted the expression of SRC-1 in brain of wild type mice. What’s more, the SRC-1 knockout mice were more susceptible to CUMS to develop depressive-like behaviors and presented the changed expression of glucocorticoid receptor. However, SRC-1 deficiency did not affect the microglia activation induced by CUMS. Altogether, these results indicate a correlation between SRC-1 level and depressive-like behaviors, suggesting that SRC-1 might be involved in the development of depression induced by stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Price RB, Duman R (2020) Neuroplasticity in cognitive and psychological mechanisms of depression: an integrative model. Mol Psychiatry 25(3):530–543

    Article  Google Scholar 

  2. Willner P (1997) Validity reliability and utility of the chronic mild stress model of depression: a 10-year review and evaluation. Psychopharmacology 134(4):319–329

    Article  CAS  Google Scholar 

  3. Schoenfeld TJ, McCausland HC, Douglas Morris H, Padmanaban V, Cameron HA (2017) Stress and loss of adult neurogenesis differentially reduce hippocampal volume. Biol Psychiatry 82(12):914–923

    Article  Google Scholar 

  4. Wang Q, Timberlake MA, Prall K, Dwivedi Y (2017) The recent progress in animal models of depression. Prog Neuropsychopharmacol Biol Psychiatry 3(77):99–109

    Article  Google Scholar 

  5. Ménard C, Pfau ML, Hodes GE, Russo SJ (2017) Immune and neuroendocrine mechanisms of stress vulnerability and resilience. Neuropsychopharmacology 42(1):62–80

    Article  Google Scholar 

  6. Qiong Wu, Wang B, Li Q-F, Zhang X, Ntim M, Xue-Fei Wu, Li Na, Zhu D-D, Jiang R, Yang J-Y, Yuan Y-H, Li S (2020) SRC-1 knockout exerts no effect on amyloid β deposition in APP/PS1 mice. Front Aging Neurosci 17(12):145

    Google Scholar 

  7. Auger AP, Tetel MJ, McCarthy MM (2000) Steroid receptor coactivator-1 (SRC-1) mediates the development of sex-specific brain morphology and behavior. Proc Natl Acad Sci USA 97(13):7551–7555

    Article  CAS  Google Scholar 

  8. Bian C, Huang Y, Zhu H, Zhao Y, Zhao J, Zhang J (2018) Steroid receptor coactivator-1 knockdown decreases synaptic plasticity and impairs spatial memory in the hippocampus of mice. Neuroscience 1(377):114–125

    Article  Google Scholar 

  9. Lachize S, Apostolakis EM, van der Laan S, Tijssen AM, Xu J, de Kloet ER, Meijer OC (2009) Steroid receptor coactivator-1 is necessary for regulation of corticotropin-releasing hormone by chronic stress and glucocorticoids. Proc Natl Acad Sci USA 106(19):8038–8042

    Article  CAS  Google Scholar 

  10. Winnay JN, Jianming Xu, O’Malley BW, Hammer GD (2006) Steroid receptor coactivator-1-deficient mice exhibit altered hypothalamic-pituitary-adrenal axis function. Endocrinology 147(3):1322–1332

    Article  CAS  Google Scholar 

  11. Bousios S, Karandrea D, Kittas C, Kitraki E (2001) Effects of gender and stress on the regulation of steroid receptor coactivator-1 expression in the rat brain and pituitary. J Steroid Biochem Mol Biol 78(5):401–407

    Article  CAS  Google Scholar 

  12. Stashi E, Wang L, Mani SK, York B, O’Malley BW (2013) Research resource: loss of the steroid receptor coactivators confers neurobehavioral consequences. Mol Endocrinol 27(10):1776–1787

    Article  CAS  Google Scholar 

  13. Patchev AV, Fischer D, Wolf SS, Herkenham M, Götz F, Gehin M, Chambon P, Patchev VK, Almeida OFX (2007) Insidious adrenocortical insufficiency underlies neuroendocrine dysregulation in TIF-2 deficient mice. FASEB J 21(1):231–238

    Article  CAS  Google Scholar 

  14. Rohleder N (2019) Stress and inflammation—The need to address the gap in the transition between acute and chronic stress effects. Psychoneuroendocrinology 105:164–171

    Article  Google Scholar 

  15. Rajabi M, Mohaddes G, Farajdokht F, Nayebi RS, Mesgari M, Babri S (2018) Impact of loganin on pro-inflammatory cytokines and depression- and anxiety-like behaviors in male diabetic rats. Physiol Int 105(2):116

    Article  CAS  Google Scholar 

  16. Horchar MJ, Wohleb ES (2019) Glucocorticoid receptor antagonism prevents microglia-mediated neuronal remodeling and behavioral despair following chronic unpredictable stress. Brain Behav Immun 81:329–340

    Article  CAS  Google Scholar 

  17. Xiao Y, Jingwei Xu, Wang S, Mao C, Jin M, Ning G, Jianming Xu, Zhang Y (2010) Genetic ablation of steroid receptor coactivator-3 promotes PPAR-beta-mediated alternative activation of microglia in experimental autoimmune encephalomyelitis. Glia 58(8):932–942

    PubMed  PubMed Central  Google Scholar 

  18. Mullany LK, Rohira AD, Leach JP, Kim JH, Monroe TO, Ortiz AR, Stork B, Gaber MW, Sarkar P, Sikora AG, Rosengart TK, York B, Song Y, Dacso CC, Lonard DM, Martin JF, O’Malley BW (2020) A steroid receptor coactivator stimulator (MCB-613) attenuates adverse remodeling after myocardial infarction. Proc Natl Acad Sci USA 117(49):31353–31364

    Article  CAS  Google Scholar 

  19. Wang B, Wang Y, Wu Q, Huang H-p, Li S (2017) Effects of α2A adrenoceptors on norepinephrine secretion from the locus coeruleus during chronic stress-induced depression. Front Neurosci 1(11):243

    Google Scholar 

  20. Salem NA, Alnahdi HS (2020) The impact of nandrolone decanoate abuse on experimental animal model: Hormonal and biochemical assessment. Steroids 153:108526

    Article  CAS  Google Scholar 

  21. Kuniishi H, Ichisaka S, Yamamoto M, Ikubo N, Matsuda S, Futora E, Harada R, Ishihara K, Hata Y (2017) Early deprivation increases high-leaning behavior, a novel anxiety-like behavior, in the open field test in rats. Neurosci Res 123:27–35

    Article  Google Scholar 

  22. Yankelevitch-Yahav R, Franko M, Huly A, Doron R (2015) The forced swim test as a model of depressive-like behavior. J Vis Exp. https://doi.org/10.3791/52587

    Article  PubMed  PubMed Central  Google Scholar 

  23. Wang B, Wu Q, Lei L, Sun H, Michael N, Zhang X, Wang Y, Zhang Y, Ge B, Wu X (2019) Long-term social isolation inhibits autophagy activation, induces postsynaptic dysfunctions and impairs spatial memory. Exp Neurol 311:213–224

    Article  Google Scholar 

  24. Li Q, Zhang Y, Ge B-Y, Li Na, Sun H-L, Ntim M, Sun Y-P, Xue-Fei Wu, Yang J-Y, Li S (2020) GPR50 distribution in the mouse cortex and hippocampus. Neurochem Res 45(10):2312–2323

    Article  CAS  Google Scholar 

  25. Li H, Li L, Wang Y (2016) G-CSF improves CUMS-induced depressive behaviors through downregulating Ras/ERK/MAPK signaling pathway. Biochem Biophys Res Commun 479(4):827–832

    Article  CAS  Google Scholar 

  26. Carlessi AS, Borba LA, Zugno AI, Quevedo J, Réus GZ (2021) Gut microbiota–brain axis in depression: the role of neuroinflammation. Eur J Neurosci 53(1):222–235

    Article  Google Scholar 

  27. Teng-Yun Wu, Liu L, Zhang W, Zhang Yi, Yun-ZiLiu X-L, Gong H, Yang Y-Y, Bi X-Y, Jiang C-L, Wang Y-X (2015) High-mobility group box-1 was released actively and involved in LPS induced depressive-like behavior. J Psychiatr Res 64:99–106

    Article  Google Scholar 

  28. Giridharan VV, Réus GZ, Selvaraj S, Scaini G, Barichello T, Quevedo J (2019) Maternal deprivation increases microglial activation and neuroinflammatory markers in the prefrontal cortex and hippocampus of infant rats. J Psychiatr Res 115:13–20

    Article  Google Scholar 

  29. Carola V, D’Olimpio F, Brunamonti E, Mangia F, Renzi P (2002) Evaluation of the elevated plus-maze and open-field tests for the assessment of anxiety-related behaviour in inbred mice. Behav Brain Res 134(1–2):49–57

    Article  Google Scholar 

  30. Dowlati Y, Herrmann N, Swardfager W, Liu H, Sham L, Reim EK, Lanctôt KL (2010) A meta-analysis of cytokines in major depression. Biol Psychiatry 67(5):446–457

    Article  CAS  Google Scholar 

  31. Jeon SW, Kim YK (2016) Neuroinflammation and cytokine abnormality in major depression: cause or consequence in that illness? World J Psychiatry 6(3):283–293

    Article  Google Scholar 

  32. Weber MD, Frank MG, Tracey KJ, Watkins LR, Maier SF (2015) Stress induces the danger-associated molecular pattern HMGB-1 in the hippocampus of male Sprague Dawley rats: a priming stimulus of microglia and the NLRP3 inflammasome. J Neurosci 35(1):316–324

    Article  Google Scholar 

  33. Xie Z-M, Wang X-M, Xu N, Wang J, Pan W, Tang X-H, Zhou Z-Q, Hashimoto K, Yang J-J (2017) Alterations in the inflammatory cytokines and brain-derived neurotrophic factor contribute to depression-like phenotype after spared nerve injury: improvement by ketamine. Sci Rep 7(1):3124

    Article  Google Scholar 

  34. Hokenson RE, Short AK, Chen Y, Pham AL, Adams ET, Bolton JL, Swarup V, Gall CM, Baram TZ (2021) Unexpected role of physiological estrogen in acute stress-induced memory deficits. J Neurosci 41(4):648–662

    Article  CAS  Google Scholar 

  35. Chiba S, Numakawa T, Ninomiya M, Richards MC, Wakabayashi C, Kunugi H (2012) Chronic restraint stress causes anxiety- and depression-like behaviors, downregulates glucocorticoid receptor expression, and attenuates glutamate release induced by brain-derived neurotrophic factor in the prefrontal cortex. Prog Neuropsychopharmacol Biol Psychiatry 39(1):112–119

    Article  CAS  Google Scholar 

  36. Vagnerová K, Vodička M, Hermanová P, Ergang P, Šrůtková D, Klusoňová P, Balounová K, Hudcovic T, Pácha J (2019) Interactions between gut microbiota and acute restraint stress in peripheral structures of the hypothalamic-pituitary-adrenal axis and the intestine of male mice. Front Immunol 10:2655

    Article  Google Scholar 

  37. Tian Y, Wu Z, Wang Y, Chen C, He Y, Lan T, Li Y, Bai M, Yu H, Chen X, Chen Z, Cheng K, Xie P (2021) Alterations of neurotransmitters and related metabolites in the habenulafrom CUMS-susceptible and -resilient rats. Biochem Biophys Res Commun 534:422–428

    Article  CAS  Google Scholar 

  38. McEwen BS (2017) Neurobiological and systemic effects of chronic stress. Chronic Stress 2017(1):2470547017692328

    Google Scholar 

  39. Anacker C, Zunszain PA, Carvalho LA, Pariante CM (2011) The glucocorticoid receptor: pivot of depression and of antidepressant treatment? Psychoneuroendocrinology 36(3):415–425

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from Liaoning Provincial Key R&D Program (2019020048-JH2/103); Liaoning Revitalization Talents Program (XLYC1902044, XLYC1808031); The State Key Program of National Natural Science Foundation of China (U1908208); The National Natural Science Foundation of China (30973519); Liaoning Provincial Doctoral Research Fund (2019-BS-064) and Natural Science Foundation of Liaoning province of China (2015020672, 201602218).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xue-Fei Wu, Jin-Yi Yang or Shao Li.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Q., Wang, B., Ntim, M. et al. SRC-1 Deficiency Increases Susceptibility of Mice to Depressive-Like Behavior After Exposure to CUMS. Neurochem Res 46, 1830–1843 (2021). https://doi.org/10.1007/s11064-021-03316-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-021-03316-y

Keywords

Navigation