Skip to main content

Advertisement

Log in

Bioinformatic Analysis of Exosomal MicroRNAs of Cerebrospinal Fluid in Ischemic Stroke Rats After Physical Exercise

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Physical exercise is beneficial to the structural and functional recovery of post-ischemic stroke, but its molecular mechanism remains obscure. Herein, we aimed to explore the underlying mechanism of exercise-induced neuroprotection from the perspective of microRNAs (miRNAs). Adult male Sprague–Dawley (SD) rats were randomly distributed into 4 groups, i.e., the physical exercise group with the transient middle cerebral artery occlusion (tMCAO) surgery (PE-IS, n = 28); the physical exercise group without tMCAO surgery (PE, n = 6); the sedentary group with tMCAO surgery (Sed-IS, n = 28); and the sedentary group without tMCAO surgery (Sed, n = 6). Notably, rats in the PE-IS and PE groups were subjected to a running exercise for 28 days while rats in the Sed-IS and Sed groups received no exercise training. After long-term exercise, exosomal miRNAs of cerebrospinal fluid (CSF) were analyzed using high-throughput sequencing. Furthermore, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were employed for the differentially expressed miRNAs. Physical exercise improved the neurological function and attenuated the lesion expansion after stroke. In total, 41 differentially expressed miRNAs were screened for the GO and KEGG analysis. GO enriched terms were associated with the central nervous system, including cellular response to retinoic acid, vagus nerve morphogenesis, cellular response to hypoxia, dendritic cell chemotaxis, cell differentiation, and regulation of neuron death. Besides, these differentially expressed miRNAs were linked to the pathophysiological process of stroke, including axon guidance, NF-kappa B signaling pathway, thiamine metabolism, and MAPK signaling pathway according to KEGG analysis. In summary, exercise training significantly alleviated the neurological damage at both functional and structural levels. Moreover, the differentially expressed miRNAs regulating multiple signal pathways were potentially involved in the neuroprotective effects of physical exercise. Therefore, these miRNAs altered by physical exercise might represent the therapeutic strategy for cerebral ischemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

All raw data in this article are available from the corresponding author.

References

  1. Lackland DT, Roccella EJ, Deutsch AF, Fornage M, George MG, Howard G, Kissela BM, Kittner SJ, Lichtman JH, Lisabeth LD, Schwamm LH, Smith EE, Towfighi A (2014) Factors influencing the decline in stroke mortality: a statement from the American Heart Association/American Stroke Association. Stroke 45(1):315–353. https://doi.org/10.1161/01.str.0000437068.30550.cf

    Article  PubMed  Google Scholar 

  2. Patel P, Yavagal D, Khandelwal P (2020) Hyperacute management of ischemic strokes: JACC focus seminar. J Am Coll Cardiol 75(15):1844–1856. https://doi.org/10.1016/j.jacc.2020.03.006

    Article  PubMed  Google Scholar 

  3. Prabhakaran S, Ruff I, Bernstein RA (2015) Acute stroke intervention: a systematic review. JAMA 313(14):1451–1462. https://doi.org/10.1001/jama.2015.3058

    Article  CAS  PubMed  Google Scholar 

  4. Zheng HQ, Zhang LY, Luo J, Li LL, Li M, Zhang Q, Hu XQ (2014) Physical exercise promotes recovery of neurological function after ischemic stroke in rats. Int J Mol Sci 15(6):10974–10988. https://doi.org/10.3390/ijms150610974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hubbard IJ, Carey LM, Budd TW, Levi C, McElduff P, Hudson S, Bateman G, Parsons MW (2015) A randomized controlled trial of the effect of early upper-limb training on stroke recovery and brain activation. Neurorehabil Neural Repair 29(8):703–713. https://doi.org/10.1177/1545968314562647

    Article  PubMed  Google Scholar 

  6. Raposo G, Stoorvogel W (2013) Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol 200(4):373–383. https://doi.org/10.1083/jcb.201211138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ha M, Kim VN (2014) Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol 15(8):509–524. https://doi.org/10.1038/nrm3838

    Article  CAS  PubMed  Google Scholar 

  8. Xin H, Katakowski M, Wang F, Qian JY, Liu XS, Ali MM, Buller B, Zhang ZG, Chopp M (2017) MicroRNA cluster miR-17-92 cluster in exosomes enhance neuroplasticity and functional recovery after stroke in rats. Stroke 48(3):747–753. https://doi.org/10.1161/strokeaha.116.015204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhang H, Wu J, Wu J, Fan Q, Zhou J, Wu J, Liu S, Zang J, Ye J, Xiao M, Tian T, Gao J (2019) Exosome-mediated targeted delivery of miR-210 for angiogenic therapy after cerebral ischemia in mice. J Nanobiotechnol 17(1):29. https://doi.org/10.1186/s12951-019-0461-7

    Article  Google Scholar 

  10. Ma C, Wang J, Liu H, Chen Y, Ma X, Chen S, Chen Y, Bihl JI, Yang YI (2018) Moderate exercise enhances endothelial progenitor cell exosomes release and function. Med Sci Sports Exerc 50(10):2024–2032. https://doi.org/10.1249/mss.0000000000001672

    Article  PubMed  Google Scholar 

  11. Orts-Del’Immagine A, Wyart C (2017) Cerebrospinal-fluid-contacting neurons. Curr Biol 27(22):R1198-r1200. https://doi.org/10.1016/j.cub.2017.09.017

    Article  CAS  PubMed  Google Scholar 

  12. Bhalala OG, Srikanth M, Kessler JA (2013) The emerging roles of microRNAs in CNS injuries. Nat Rev Neurol 9(6):328–339. https://doi.org/10.1038/nrneurol.2013.67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Longa EZ, Weinstein PR, Carlson S, Cummins R (1989) Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke 20(1):84–91. https://doi.org/10.1161/01.str.20.1.84

    Article  CAS  PubMed  Google Scholar 

  14. Zhang L, Yang X, Yin M, Yang H, Li L, Parashos A, Alawieh A, Feng W, Zheng H, Hu X (2020) An animal trial on the optimal time and intensity of exercise after stroke. Med Sci Sports Exerc. https://doi.org/10.1249/mss.0000000000002318

    Article  PubMed  Google Scholar 

  15. Metz GA, Whishaw IQ (2009) The ladder rung walking task: a scoring system and its practical application. J Vis Exp. https://doi.org/10.3791/1204

    Article  PubMed  PubMed Central  Google Scholar 

  16. Wang L, Feng Z, Wang X, Wang X, Zhang X (2010) DEGseq: an R package for identifying differentially expressed genes from RNA-seq data. Bioinformatics (Oxford, England) 26(1):136–138. https://doi.org/10.1093/bioinformatics/btp612

    Article  CAS  Google Scholar 

  17. Smoot ME, Ono K, Ruscheinski J, Wang PL, Ideker T (2011) Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics (Oxford, England) 27(3):431–432. https://doi.org/10.1093/bioinformatics/btq675

    Article  CAS  Google Scholar 

  18. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G (2000) Gene ontology: tool for the unification of biology. Gene Ontol Consort Nat Genet 25(1):25–29. https://doi.org/10.1038/75556

    Article  CAS  Google Scholar 

  19. Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K (2017) KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res 45(D1):D353–D361. https://doi.org/10.1093/nar/gkw1092

    Article  CAS  PubMed  Google Scholar 

  20. Svensson E (2001) Guidelines to statistical evaluation of data from rating scales and questionnaires. J Rehabil Med 33(1):47–48. https://doi.org/10.1080/165019701300006542

    Article  CAS  PubMed  Google Scholar 

  21. Zhang L, Yang X, Yin M, Yang H, Li L, Parashos A, Alawieh A, Feng W, Zheng H, Hu X (2020) An animal trial on the optimal time and intensity of exercise after stroke. Med Sci Sports Exerc 52(8):1699–1709. https://doi.org/10.1249/mss.0000000000002318

    Article  PubMed  Google Scholar 

  22. Hu X, Zheng H, Yan T, Pan S, Fang J, Jiang R, Ma S (2010) Physical exercise induces expression of CD31 and facilitates neural function recovery in rats with focal cerebral infarction. Neurol Res 32(4):397–402. https://doi.org/10.1179/016164110x12670144526309

    Article  CAS  PubMed  Google Scholar 

  23. Pan X, Jiang T, Zhang L, Zheng H, Luo J, Hu X (2017) Physical exercise promotes novel object recognition memory in spontaneously hypertensive rats after ischemic stroke by promoting neural plasticity in the entorhinal cortex. Front Behav Neurosci 11:185. https://doi.org/10.3389/fnbeh.2017.00185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Luo J, Hu X, Zhang L, Li L, Zheng H, Li M, Zhang Q (2014) Physical exercise regulates neural stem cells proliferation and migration via SDF-1α/CXCR4 pathway in rats after ischemic stroke. Neurosci Lett 578:203–208. https://doi.org/10.1016/j.neulet.2014.06.059

    Article  CAS  PubMed  Google Scholar 

  25. Xin H, Wang F, Li Y, Lu QE, Cheung WL, Zhang Y, Zhang ZG, Chopp M (2017) Secondary release of exosomes from astrocytes contributes to the increase in neural plasticity and improvement of functional recovery after stroke in rats treated with exosomes harvested from microRNA 133b-overexpressing multipotent mesenchymal stromal cells. Cell Transplant 26(2):243–257. https://doi.org/10.3727/096368916x693031

    Article  PubMed  PubMed Central  Google Scholar 

  26. Hou Z, Qin X, Hu Y, Zhang X, Li G, Wu J, Li J, Sha J, Chen J, Xia J, Wang L, Gao F (2019) Longterm exercise-derived exosomal miR-342-5p: a novel exerkine for cardioprotection. Circ Res. https://doi.org/10.1161/CIRCRESAHA.118.314635

    Article  PubMed  PubMed Central  Google Scholar 

  27. Chen F, Du Y, Esposito E, Liu Y, Guo S, Wang X, Lo EH, Xing C, Ji X (2015) Effects of focal cerebral ischemia on exosomal versus serum miR126. Transl Stroke Res 6(6):478–484. https://doi.org/10.1007/s12975-015-0429-3

    Article  CAS  PubMed  Google Scholar 

  28. Li DB, Liu JL, Wang W, Luo XM, Zhou X, Li JP, Cao XL, Long XH, Chen JG, Qin C (2018) Plasma exosomal miRNA-122-5p and miR-300-3p as potential markers for transient ischaemic attack in rats. Front Aging Neurosci 10:24. https://doi.org/10.3389/fnagi.2018.00024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Liu E, Sun H, Wu J, Kuang Y (2020) MiR-92b-3p regulates oxygen and glucose deprivation-reperfusion-mediated apoptosis and inflammation by targeting TRAF3 in PC12 cells. Exp Physiol. https://doi.org/10.1113/ep088708

    Article  PubMed  Google Scholar 

  30. Deng Y, Chen D, Gao F, Lv H, Zhang G, Sun X, Liu L, Mo D, Ma N, Song L, Huo X, Yan T, Zhang J, Miao Z (2019) Exosomes derived from microRNA-138-5p-overexpressing bone marrow-derived mesenchymal stem cells confer neuroprotection to astrocytes following ischemic stroke via inhibition of LCN2. J Biol Eng 13:71. https://doi.org/10.1186/s13036-019-0193-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Qi J, Luo X, Ma Z, Zhang B, Li S, Zhang J (2020) Downregulation of miR-26b-5p, miR-204-5p, and miR-497-3p expression facilitates exercise-induced physiological cardiac hypertrophy by augmenting autophagy in rats. Front Genet 11:78. https://doi.org/10.3389/fgene.2020.00078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hagstrom AD, Denham J (2018) MicroRNAs in high and low responders to resistance training in breast cancer survivors. Int J Sports Med 39(6):482–489. https://doi.org/10.1055/a-0592-7691

    Article  CAS  PubMed  Google Scholar 

  33. Yang X, Zi XH (2019) LncRNA SNHG1 alleviates OGD induced injury in BMEC via miR-338/HIF-1α axis. Brain Res 1714:174–181. https://doi.org/10.1016/j.brainres.2018.11.003

    Article  CAS  PubMed  Google Scholar 

  34. Cuomo O, Cepparulo P, Anzilotti S, Serani A, Sirabella R, Brancaccio P, Guida N, Valsecchi V, Vinciguerra A, Molinaro P, Formisano L, Annunziato L, Pignataro G (2019) Anti-miR-223-5p ameliorates ischemic damage and improves neurological function by preventing NCKX2 downregulation after ischemia in rats. Mol Therapy Nucleic acids 18:1063–1071. https://doi.org/10.1016/j.omtn.2019.10.022

    Article  CAS  Google Scholar 

  35. Wu J, Du K, Lu X (2015) Elevated expressions of serum miR-15a, miR-16, and miR-17-5p are associated with acute ischemic stroke. Int J Clin Exp Med 8(11):21071–21079

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Chen LT, Jiang CY (2018) MicroRNA expression profiles identify biomarker for differentiating the embolic stroke from thrombotic stroke. Biomed Res Int 2018:4514178. https://doi.org/10.1155/2018/4514178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Takuma A, Abe A, Saito Y, Nito C, Ueda M, Ishimaru Y, Harada H, Abe K, Kimura K, Asakura T (2017) Gene expression analysis of the effect of ischemic infarction in whole blood. Int J Mol Sci 18(11):2335. https://doi.org/10.3390/ijms18112335

    Article  CAS  PubMed Central  Google Scholar 

  38. Rupaimoole R, Slack FJ (2017) MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat Rev Drug Discov 16(3):203–222. https://doi.org/10.1038/nrd.2016.246

    Article  CAS  PubMed  Google Scholar 

  39. Zhang P, Li C, Zhang R, Zhang W, Jin C, Wang L, Song L (2015) The roles of two miRNAs in regulating the immune response of sea cucumber. Genetics 201(4):1397–1410. https://doi.org/10.1534/genetics.115.178871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136(2):215–233. https://doi.org/10.1016/j.cell.2009.01.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ding Q, Liao SJ, Yu J (2014) Axon guidance factor netrin-1 and its receptors regulate angiogenesis after cerebral ischemia. Neurosci Bull 30(4):683–691. https://doi.org/10.1007/s12264-013-1441-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zheng M, Chen R, Chen H, Zhang Y, Chen J, Lin P, Lan Q, Yuan Q, Lai Y, Jiang X, Pan X, Liu N (2018) Netrin-1 promotes synaptic formation and axonal regeneration via JNK1/c-Jun pathway after the middle cerebral artery occlusion. Front Cell Neurosci 12:13. https://doi.org/10.3389/fncel.2018.00013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Simmons LJ, Surles-Zeigler MC, Li Y, Ford GD, Newman GD, Ford BD (2016) Regulation of inflammatory responses by neuregulin-1 in brain ischemia and microglial cells in vitro involves the NF-kappa B pathway. J Neuroinflamm 13(1):237. https://doi.org/10.1186/s12974-016-0703-7

    Article  CAS  Google Scholar 

  44. Jhala SS, Hazell AS (2011) Modeling neurodegenerative disease pathophysiology in thiamine deficiency: consequences of impaired oxidative metabolism. Neurochem Int 58(3):248–260. https://doi.org/10.1016/j.neuint.2010.11.019

    Article  CAS  PubMed  Google Scholar 

  45. Feng L, He W, Huang G, Lin S, Yuan C, Cheng H, He J, Liu Y (2020) Reduced thiamine is a predictor for cognitive impairment of cerebral infarction. Brain Behav. https://doi.org/10.1002/brb3.1709

    Article  PubMed  PubMed Central  Google Scholar 

  46. She DT, Wong LJ, Baik SH, Arumugam TV (2018) SIRT2 inhibition confers neuroprotection by downregulation of FOXO3a and MAPK signaling pathways in ischemic stroke. Mol Neurobiol 55(12):9188–9203. https://doi.org/10.1007/s12035-018-1058-0

    Article  CAS  PubMed  Google Scholar 

  47. Fann DY, Lim YA, Cheng YL, Lok KZ, Chunduri P, Baik SH, Drummond GR, Dheen ST, Sobey CG, Jo DG, Chen CL, Arumugam TV (2018) Evidence that NF-κB and MAPK signaling promotes NLRP inflammasome activation in neurons following ischemic stroke. Mol Neurobiol 55(2):1082–1096. https://doi.org/10.1007/s12035-017-0394-9

    Article  CAS  PubMed  Google Scholar 

  48. Zhu L, Ye T, Tang Q, Wang Y, Wu X, Li H, Jiang Y (2016) Exercise preconditioning regulates the toll-like receptor 4/nuclear factor-κB signaling pathway and reduces cerebral ischemia/reperfusion inflammatory injury: a study in rats. J Stroke Cerebrovasc Dis 25(11):2770–2779. https://doi.org/10.1016/j.jstrokecerebrovasdis.2016.07.033

    Article  PubMed  Google Scholar 

  49. Cole DJ, Drummond JC, Ghazal EA, Shapiro HM (1990) A reversible component of cerebral injury as identified by the histochemical stain 2,3,5-triphenyltetrazolium chloride (TTC). Acta Neuropathol 80(2):152–155. https://doi.org/10.1007/bf00308918

    Article  CAS  PubMed  Google Scholar 

  50. Benedek A, Móricz K, Jurányi Z, Gigler G, Lévay G, Hársing LG Jr, Mátyus P, Szénási G, Albert M (2006) Use of TTC staining for the evaluation of tissue injury in the early phases of reperfusion after focal cerebral ischemia in rats. Brain Res 1116(1):159–165. https://doi.org/10.1016/j.brainres.2006.07.123

    Article  CAS  PubMed  Google Scholar 

  51. Park CK, Mendelow AD, Graham DI, McCulloch J, Teasdale GM (1988) Correlation of triphenyltetrazolium chloride perfusion staining with conventional neurohistology in the detection of early brain ischaemia. Neuropathol Appl Neurobiol 14(4):289–298. https://doi.org/10.1111/j.1365-2990.1988.tb00889.x

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Natural Science Foundation of China (81972151, 81572228) and the Guangdong Basic and Applied Basic Research Foundation (2019A1515011106).

Author information

Authors and Affiliations

Authors

Contributions

MH and CX are joint first authors. MH, CX and LZ carried out the assays. LL, JL and LC assisted with the experiments. MH and CX performed the data analysis and wrote the paper. XH and HZ participated in the design of the study. HZ conceived the research study and contributed to draft the manuscript.

Corresponding author

Correspondence to Haiqing Zheng.

Ethics declarations

Conflict of interest

All authors have proclaimed that they have no conflict of interest.

Ethics Approval

All experimental procedures of this study were approved by the Institutional Animal Ethical Committee of Sun Yat-sen University and conducted following the Guide for the Care and Use of Laboratory Animal of the National Institute of Health.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary Information 1 (DOCX 18 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, M., Xiao, C., Zhang, L. et al. Bioinformatic Analysis of Exosomal MicroRNAs of Cerebrospinal Fluid in Ischemic Stroke Rats After Physical Exercise. Neurochem Res 46, 1540–1553 (2021). https://doi.org/10.1007/s11064-021-03294-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-021-03294-1

Keywords

Navigation