Skip to main content

Advertisement

Log in

lncRNA MIR155HG Alleviates Depression-Like Behaviors in Mice by Regulating the miR-155/BDNF Axis

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Depression is one of most common psychiatric disorders, and the detailed molecular mechanism remains to be fully elucidated. Brain-derived neurotrophic factor (BDNF) is a critical neurotrophic factor that is decreased and closely involved in the development of depression. Noncoding RNAs are central regulators of cellular activities that modulate target genes. However, the roles of long noncoding RNA (lncRNA) MIR155HG and miRNA-155 (miR-155) in the pathophysiology of depression are unclear. In the present study, we aimed to explore the effects of lncRNA MIR155HG and miR-155 on the development of depression and uncover the underlying molecular mechanism. Real-time quantitative polymerase chain reaction was used to examine the expression of MIR155HG and miR-155. Western blotting was applied to measure the expression of BDNF. A luciferase reporter assay was utilized to determine the regulatory relationship between MIR155HG and miR-155. Our current work found that lncRNA MIR155HG and BDNF levels decreased while miR-155 levels increased in the hippocampal region of CUMS (chronic unpredictable mild stress) mice, a well-accepted mouse model of depression. Moreover, MIR155HG rescued while miR-155 exacerbated the depression-like behaviors of CUMS mice. Through bioinformatics analysis and luciferase reporter assays, we found that MIR155HG directly bound to and negatively modulated the expression of miR-155. Moreover, increased miR-155 was found to repress the expression of BDNF, a critical neurotrophic factor that has been reported to alleviate the depression-like behaviors of CUMS mice. Our present study revealed that lncRNA MIR155HG protected CUMS mice by regulating the miR-155/BDNF axis. Our study aimed to understand the pathophysiology of depression and provided potential therapeutic targets to diagnose and treat depression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

All data and materials in this study are available upon request.

References

  1. Cree RA, Okoro CA, Zack MM, Carbone E (2020) Frequent mental distress among adults, by disability status, disability type, and selected characteristics—United States, 2018. MMWR Morb Mortal Wkly Rep 69(36):1238–1243. https://doi.org/10.15585/mmwr.mm6936a2

    Article  PubMed  PubMed Central  Google Scholar 

  2. Carles S, Carriere I, Reppermund S, Davin A, Guaita A, Vaccaro R, Ganguli M, Jacobsen EP, Beer JC, Riedel-Heller SG, Roehr S, Pabst A, Haan MN, Brodaty H, Kochan NA, Trollor JN, Kim KW, Han JW, Suh SW, Lobo A, la Camara C, Lobo E, Lipnicki DM, Sachdev PS, Ancelin ML, Ritchie K, for Cohort Studies of Memory in an International C (2020) A cross-national study of depression in preclinical dementia: A COSMIC collaboration study. Alzheimers Dement 16(11):1544–1552. https://doi.org/10.1002/alz.12149

    Article  PubMed  Google Scholar 

  3. Lasselin J, Lekander M, Benson S, Schedlowski M, Engler H (2020) Sick for science: experimental endotoxemia as a translational tool to develop and test new therapies for inflammation-associated depression. Mol Psychiatry. https://doi.org/10.1038/s41380-020-00869-2

  4. Liu D, Tang QQ, Wang D, Song SP, Yang XN, Hu SW, Wang ZY, Xu Z, Liu H, Yang JX, Montgomery SE, Zhang H, Han MH, Ding HL, Cao JL (2020) Mesocortical BDNF signaling mediates antidepressive-like effects of lithium. Neuropsychopharmacology 45(9):1557–1566. https://doi.org/10.1038/s41386-020-0713-0

    Article  CAS  PubMed  Google Scholar 

  5. Xin C, Xia J, Liu Y, Zhang Y (2020) MicroRNA-202-3p targets brain-derived neurotrophic factor and is involved in depression-like behaviors. Neuropsychiatr Dis Treat 16:1073–1083. https://doi.org/10.2147/NDT.S241136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zhang E, Liao P (2020) Brain-derived neurotrophic factor and post-stroke depression. J Neurosci Res 98(3):537–548. https://doi.org/10.1002/jnr.24510

    Article  CAS  PubMed  Google Scholar 

  7. Wang C, Wu C, Yan Z, Cheng X (2019) Ameliorative effect of Xiaoyao-jieyu-san on post-stroke depression and its potential mechanisms. J Nat Med 73(1):76–84. https://doi.org/10.1007/s11418-018-1243-5

    Article  PubMed  Google Scholar 

  8. Siuda J, Patalong-Ogiewa M, Zmuda W, Targosz-Gajniak M, Niewiadomska E, Matuszek I, Jedrzejowska-Szypulka H, Lewin-Kowalik J, Rudzinska-Bar M (2017) Cognitive impairment and BDNF serum levels. Neurol Neurochir Pol 51(1):24–32. https://doi.org/10.1016/j.pjnns.2016.10.001

    Article  PubMed  Google Scholar 

  9. Pascale E, Divisato G, Palladino R, Auriemma M, Ngalya EF, Caiazzo M (2020) Noncoding RNAs and midbrain DA neurons: novel molecular mechanisms and therapeutic targets in health and disease. Biomolecules 10(9):1269. https://doi.org/10.3390/biom10091269

    Article  CAS  PubMed Central  Google Scholar 

  10. Guo CJ, Xu G, Chen LL (2020) Mechanisms of long noncoding RNA nuclear retention. Trends Biochem Sci 45:947. https://doi.org/10.1016/j.tibs.2020.07.001

    Article  CAS  PubMed  Google Scholar 

  11. Yang H, Zhang X, Zhao Y, Sun G, Zhang J, Gao Y, Liu Q, Zhang W, Zhu H (2020) Downregulation of lncRNA XIST represses tumor growth and boosts radiosensitivity of neuroblastoma via modulation of the miR-375/L1CAM Axis. Neurochem Res 45:2679–2690. https://doi.org/10.1007/s11064-020-03117-9

    Article  CAS  PubMed  Google Scholar 

  12. Ni X, Liao Y, Li L, Zhang X, Wu Z (2018) Therapeutic role of long non-coding RNA TCONS_00019174 in depressive disorders is dependent on Wnt/beta-catenin signaling pathway. J Integr Neurosci 17(2):125–132. https://doi.org/10.31083/JIN-170052

    Article  PubMed  Google Scholar 

  13. Chen S, Zhu X, Niu W, Yao G, Kong L, He M, Chen C, Lu Z, Cui X, Zhang L (2019) Regulatory role of lncRNA NONHSAT089447 in the dopamine signaling pathway in schizophrenic patients. Med Sci Monit 25:4322–4332. https://doi.org/10.12659/MSM.915684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ren XY, Han YD, Lin Q (2020) Long non-coding RNA MIR155HG knockdown suppresses cell proliferation, migration and invasion in NSCLC by upregulating TP53INP1 directly targeted by miR-155-3p and miR-155-5p. Eur Rev Med Pharmacol Sci 24(9):4822–4835. https://doi.org/10.26355/eurrev_202005_21171

    Article  PubMed  Google Scholar 

  15. Wu W, Yu T, Wu Y, Tian W, Zhang J, Wang Y (2019) The miR155HG/miR-185/ANXA2 loop contributes to glioblastoma growth and progression. J Exp Clin Cancer Res 38(1):133. https://doi.org/10.1186/s13046-019-1132-0

    Article  PubMed  PubMed Central  Google Scholar 

  16. Tao H, Cui L, Li Y, Zhou X, Ma G, Yao L, Fu J, Li W, Cai Y, Zhou H, Zhong W, Zhang S, Xu Z, Li K, Zhao B (2015) Association of tag SNPs and rare CNVs of the MIR155HG/miR-155 gene with epilepsy in the Chinese Han population. Biomed Res Int 2015:837213. https://doi.org/10.1155/2015/837213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lewandowski JP, Dumbovic G, Watson AR, Hwang T, Jacobs-Palmer E, Chang N, Much C, Turner KM, Kirby C, Rubinstein ND, Groff AF, Liapis SC, Gerhardinger C, Bester A, Pandolfi PP, Clohessy JG, Hoekstra HE, Sauvageau M, Rinn JL (2020) The Tug1 lncRNA locus is essential for male fertility. Genome Biol 21(1):237. https://doi.org/10.1186/s13059-020-02081-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chen B, Dragomir MP, Fabris L, Bayraktar R, Knutsen E, Liu X, Tang C, Li Y, Shimura T, Ivkovic TC, De Los Santos MC, Anfossi S, Shimizu M, Shah MY, Ling H, Shen P, Multani AS, Pardini B, Burks JK, Katayama H, Reineke LC, Huo L, Syed M, Song S, Ferracin M, Oki E, Fromm B, Ivan C, Bhuvaneshwar K, Gusev Y, Mimori K, Menter D, Sen S, Matsuyama T, Uetake H, Vasilescu C, Kopetz S, Parker-Thornburg J, Taguchi A, Hanash SM, Girnita L, Slaby O, Goel A, Varani G, Gagea M, Li C, Ajani JA, Calin GA (2020) The long noncoding RNA CCAT2 induces chromosomal instability through BOP1—AURKB signaling. Gastroenterology 159(6):2146–2162. https://doi.org/10.1053/j.gastro.2020.08.018

    Article  CAS  PubMed  Google Scholar 

  19. Issler O, van der Zee YY, Ramakrishnan A, Wang J, Tan C, Loh YE, Purushothaman I, Walker DM, Lorsch ZS, Hamilton PJ, Pena CJ, Flaherty E, Hartley BJ, Torres-Berrio A, Parise EM, Kronman H, Duffy JE, Estill MS, Calipari ES, Labonte B, Neve RL, Tamminga CA, Brennand KJ, Dong Y, Shen L, Nestler EJ (2020) Sex-specific role for the long non-coding RNA LINC00473 in depression. Neuron 106(6):912–926. https://doi.org/10.1016/j.neuron.2020.03.023

    Article  CAS  PubMed  Google Scholar 

  20. Seki T, Yamagata H, Uchida S, Chen C, Kobayashi A, Kobayashi M, Harada K, Matsuo K, Watanabe Y, Nakagawa S (2019) Altered expression of long noncoding RNAs in patients with major depressive disorder. J Psychiatr Res 117:92–99. https://doi.org/10.1016/j.jpsychires.2019.07.004

    Article  PubMed  Google Scholar 

  21. Cui X, Niu W, Kong L, He M, Jiang K, Chen S, Zhong A, Li W, Lu J, Zhang L (2017) Long noncoding RNA expression in peripheral blood mononuclear cells and suicide risk in Chinese patients with major depressive disorder. Brain Behav 7(6):e00711. https://doi.org/10.1002/brb3.711

    Article  PubMed  PubMed Central  Google Scholar 

  22. Elton TS, Selemon H, Elton SM, Parinandi NL (2013) Regulation of the MIR155 host gene in physiological and pathological processes. Gene 532(1):1–12. https://doi.org/10.1016/j.gene.2012.12.009

    Article  CAS  PubMed  Google Scholar 

  23. Wu X, Wang Y, Yu T, Nie E, Hu Q, Wu W, Zhi T, Jiang K, Wang X, Lu X, Li H, Liu N, Zhang J, You Y (2017) Blocking MIR155HG/miR-155 axis inhibits mesenchymal transition in glioma. Neuro-Oncology 19(9):1195–1205. https://doi.org/10.1093/neuonc/nox017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Xiyang YB, Liu R, Wang XY, Li S, Zhao Y, Lu BT, Xiao ZC, Zhang LF, Wang TH, Zhang J (2020) COX5A plays a vital role in memory impairment associated with brain aging via the BDNF/ERK1/2 signaling pathway. Front Aging Neurosci 12:215. https://doi.org/10.3389/fnagi.2020.00215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lalo U, Bogdanov A, Moss GW, Pankratov Y (2020) Astroglia-derived BDNF and MSK-1 mediate experience- and diet-dependent synaptic plasticity. Brain Sci 10(7):462. https://doi.org/10.3390/brainsci10070462

    Article  CAS  PubMed Central  Google Scholar 

  26. Bruijniks SJE, van Grootheest G, Cuijpers P, de Kluiver H, Vinkers CH, Peeters F, Penninx B, Teunissen CE, Huibers MJH (2020) Working memory moderates the relation between the brain-derived neurotropic factor (BDNF) and psychotherapy outcome for depression. J Psychiatr Res 130:424–432. https://doi.org/10.1016/j.jpsychires.2020.07.045

    Article  PubMed  Google Scholar 

  27. Xu Y, Liang L (2020) Vitamin D3/vitamin D receptor signaling mitigates symptoms of post-stroke depression in mice by upregulating hippocampal BDNF expression. Neurosci Res. https://doi.org/10.1016/j.neures.2020.08.002

Download references

Funding

Key development projects in Shaanxi Province, S2018-YF-YBSF-0830.

Author information

Authors and Affiliations

Authors

Contributions

L.Y. and Z.K.: conceptualization, methodology, and writing (reviewing and editing). Z.H., L.Y.: investigation, data curation, and writing (original draft preparation). Z.M., H.N.: visualization and investigation. M.X., W.Y.: visualization and supervision. L.L., W.L.: software and validation.

Corresponding author

Correspondence to Liu Yanan.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Ethical Approval

The animal experiments performed in this study were approved by the Institute for Experimental Animals of Xi’an Jiaotong University.

Consent for Publication

This research has not been previously published and is not currently being considered for publication elsewhere.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huan, Z., Mei, Z., Na, H. et al. lncRNA MIR155HG Alleviates Depression-Like Behaviors in Mice by Regulating the miR-155/BDNF Axis. Neurochem Res 46, 935–944 (2021). https://doi.org/10.1007/s11064-021-03234-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-021-03234-z

Keywords

Navigation